mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75834 Approved by: https://github.com/zou3519, https://github.com/jbschlosser
183 lines
7.2 KiB
Python
183 lines
7.2 KiB
Python
# Owner(s): ["module: nn"]
|
|
|
|
import unittest
|
|
import sys
|
|
import os
|
|
import subprocess
|
|
|
|
import torch
|
|
|
|
import torch.nn.utils.stateless as stateless
|
|
from torch.testing._internal.common_cuda import TEST_MULTIGPU
|
|
from torch.testing._internal.common_utils import run_tests, TestCase
|
|
|
|
|
|
class MockModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l1 = torch.nn.Linear(1, 1)
|
|
self.register_buffer('buffer', torch.ones(1))
|
|
|
|
def forward(self, x):
|
|
return self.l1(x) + self.buffer
|
|
|
|
|
|
class TestStatelessFunctionalAPI(TestCase):
|
|
def _run_call_with_mock_module(self, module, device='cpu', prefix=''):
|
|
x = torch.rand((1, 1)).to(device)
|
|
weight = torch.tensor([[1.0]], device=device)
|
|
bias = torch.tensor([0.0], device=device)
|
|
buffer = torch.tensor([0.0], device=device)
|
|
if prefix != '':
|
|
parameters = {f'{prefix}.l1.weight': weight,
|
|
f'{prefix}.l1.bias': bias,
|
|
f'{prefix}.buffer': buffer}
|
|
else:
|
|
parameters = {'l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'buffer': buffer}
|
|
to_check = module
|
|
if prefix != '':
|
|
to_check = getattr(module, prefix)
|
|
prev_weight = to_check.l1.weight.clone()
|
|
prev_buffer = to_check.buffer.clone()
|
|
# the parameters represent an identity function contrary to the
|
|
# existing params in module. So here we expect the result to be the
|
|
# same as the input if the weight swapping went well.
|
|
res = stateless.functional_call(module, parameters, x)
|
|
self.assertEqual(x, res)
|
|
# check that the weight remain unmodified
|
|
cur_weight = to_check.l1.weight
|
|
cur_buffer = to_check.buffer
|
|
self.assertEqual(cur_weight, prev_weight)
|
|
self.assertEqual(cur_buffer, prev_buffer)
|
|
|
|
def test_functional_call(self):
|
|
module = MockModule()
|
|
self._run_call_with_mock_module(module)
|
|
|
|
def test_functional_call_with_jit(self):
|
|
module = MockModule()
|
|
jit_module = torch.jit.script(module)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r'used with Jitted modules'
|
|
):
|
|
self._run_call_with_mock_module(jit_module)
|
|
x = torch.rand((1, 1))
|
|
traced_module = torch.jit.trace(module, x)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r'used with Jitted modules'
|
|
):
|
|
self._run_call_with_mock_module(traced_module)
|
|
|
|
@unittest.skipIf(not TEST_MULTIGPU, 'multi-GPU not supported')
|
|
def test_functional_call_with_data_parallel(self):
|
|
module = MockModule()
|
|
module.cuda()
|
|
dp_module = torch.nn.DataParallel(module, [0, 1])
|
|
self._run_call_with_mock_module(dp_module, device='cuda', prefix='module')
|
|
|
|
def test_functional_call_with_gradient(self):
|
|
module = MockModule()
|
|
x = torch.rand((1, 1))
|
|
weight = torch.tensor([[1.0]], requires_grad=True)
|
|
bias = torch.tensor([0.0], requires_grad=True)
|
|
buffer = torch.tensor([0.0])
|
|
parameters = {'l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'buffer': buffer}
|
|
res = stateless.functional_call(module, parameters, x)
|
|
# Check that a backward step calculates the gradient of the supplied parameters
|
|
res.backward()
|
|
self.assertIsNotNone(weight.grad)
|
|
self.assertIsNotNone(bias.grad)
|
|
self.assertIsNone(buffer.grad)
|
|
# Gradient was not calculated for the module stated and buffers
|
|
self.assertIsNone(module.l1.weight.grad)
|
|
self.assertIsNone(module.l1.bias.grad)
|
|
self.assertIsNone(module.buffer.grad)
|
|
|
|
def test_functional_batch_norm(self):
|
|
module = torch.nn.BatchNorm1d(10)
|
|
module.train() # Allow stats update
|
|
# lets replace the running_mean buffer and check if its correctly updated
|
|
x = torch.full((20, 10), 128.0)
|
|
rm = torch.zeros(10)
|
|
parameters = {'running_mean': rm}
|
|
prev_rm = module.running_mean.clone()
|
|
res = stateless.functional_call(module, parameters, x)
|
|
cur_rm = module.running_mean
|
|
self.assertEqual(cur_rm, prev_rm)
|
|
self.assertEqual(rm, torch.full((10,), 12.8))
|
|
# Now run functional without reparametrization and check that the module has
|
|
# been updated
|
|
res = stateless.functional_call(module, {}, x)
|
|
self.assertEqual(module.running_mean, torch.full((10,), 12.8))
|
|
|
|
def test_circular_references(self):
|
|
module = MockModule()
|
|
# Add a circular reference
|
|
module.l1.m = module
|
|
x = torch.rand((1, 1))
|
|
weight = torch.tensor([[1.0]])
|
|
bias = torch.tensor([0.0])
|
|
buffer = torch.tensor([0.0])
|
|
parameters = {'l1.m.l1.weight': weight,
|
|
'l1.bias': bias,
|
|
'l1.m.buffer': buffer}
|
|
prev_weight = module.l1.weight.clone()
|
|
prev_buffer = module.buffer.clone()
|
|
res = stateless.functional_call(module, parameters, x)
|
|
self.assertEqual(x, res)
|
|
# check that the weights remain unmodified and were correctly accesed
|
|
cur_weight = module.l1.weight
|
|
cur_buffer = module.buffer
|
|
self.assertEqual(cur_weight, prev_weight)
|
|
self.assertEqual(cur_buffer, prev_buffer)
|
|
|
|
def test_reparametrized_module_change_parametrization_original(self):
|
|
module = MockModule()
|
|
torch.nn.utils.parametrizations.spectral_norm(module.l1)
|
|
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
|
|
orig_sn_weight = module.l1.weight.clone()
|
|
x = torch.rand((1, 1))
|
|
# We substitute the parameter inside the parametrization
|
|
# the parametrization itself is not overwritten so it will be applied with a different
|
|
# value for the original tensor
|
|
parameters = {'l1.parametrizations.weight.original': torch.nn.Parameter(torch.tensor([[1.0]])),
|
|
'l1.bias': torch.tensor([0.0]),
|
|
'buffer': torch.tensor([0.0])}
|
|
res = stateless.functional_call(module, parameters, x)
|
|
self.assertEqual(x, res)
|
|
# verify that the spectral normalization is still applied
|
|
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
|
|
self.assertEqual(orig_sn_weight, module.l1.weight)
|
|
|
|
class TestStatelessDeprecation(TestCase):
|
|
def test_private_stateless_warns(self):
|
|
script = """
|
|
import torch
|
|
import warnings
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
from torch.nn.utils import _stateless
|
|
|
|
exit(len(w))
|
|
"""
|
|
try:
|
|
subprocess.check_output(
|
|
[sys.executable, '-W', 'all', '-c', script],
|
|
stderr=subprocess.STDOUT,
|
|
# On Windows, opening the subprocess with the default CWD makes `import torch`
|
|
# fail, so just set CWD to this script's directory
|
|
cwd=os.path.dirname(os.path.realpath(__file__)),)
|
|
except subprocess.CalledProcessError as e:
|
|
self.assertEqual(e.returncode, 1)
|
|
else:
|
|
self.assertTrue(False, "No warning was raised.")
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|