mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57386 Here is the PR for what's discussed in the RFC https://github.com/pytorch/pytorch/issues/55374 to enable the autocast for CPU device. Currently, this PR only enable BF16 as the lower precision datatype. Changes: 1. Enable new API `torch.cpu.amp.autocast` for autocast on CPU device: include the python API, C++ API, new Dispatchkey etc. 2. Consolidate the implementation for each cast policy sharing between CPU and GPU devices. 3. Add the operation lists to corresponding cast policy for cpu autocast. Test Plan: Imported from OSS Reviewed By: soulitzer Differential Revision: D28572219 Pulled By: ezyang fbshipit-source-id: db3db509973b16a5728ee510b5e1ee716b03a152
1441 lines
76 KiB
Python
1441 lines
76 KiB
Python
"""
|
|
Python implementation of ``__torch_function__``
|
|
|
|
While most of the torch API and handling for ``__torch_function__`` happens
|
|
at the C++ level, some of the torch API is written in Python so we need
|
|
python-level handling for ``__torch_function__`` overrides as well. The main
|
|
developer-facing functionality in this file are handle_torch_function and
|
|
has_torch_function. See torch/functional.py and test/test_overrides.py
|
|
for usage examples.
|
|
|
|
Note
|
|
----
|
|
heavily inspired by NumPy's ``__array_function__`` (see:
|
|
https://github.com/pytorch/pytorch/issues/24015 and
|
|
https://www.numpy.org/neps/nep-0018-array-function-protocol.html
|
|
)
|
|
|
|
If changing this file in a way that can affect ``__torch_function__`` overhead,
|
|
please report the benchmarks in ``benchmarks/overrides_benchmark``. See the
|
|
instructions in the ``README.md`` in that directory.
|
|
"""
|
|
|
|
import __future__
|
|
|
|
import collections
|
|
import functools
|
|
import types
|
|
from typing import Dict, Set, List, Any, Callable, Iterable, Type
|
|
|
|
import torch
|
|
from torch._C import (
|
|
_has_torch_function, _has_torch_function_unary,
|
|
_has_torch_function_variadic, _add_docstr)
|
|
|
|
__all__ = [
|
|
"get_ignored_functions",
|
|
"get_overridable_functions",
|
|
"get_testing_overrides",
|
|
"handle_torch_function",
|
|
"has_torch_function",
|
|
"is_tensor_like",
|
|
"is_tensor_method_or_property",
|
|
"wrap_torch_function",
|
|
]
|
|
|
|
@functools.lru_cache(None)
|
|
def get_ignored_functions() -> Set[Callable]:
|
|
"""
|
|
Return public functions that cannot be overridden by ``__torch_function__``.
|
|
|
|
Returns
|
|
-------
|
|
Set[Callable]
|
|
A tuple of functions that are publicly available in the torch API but cannot
|
|
be overridden with ``__torch_function__``. Mostly this is because none of the
|
|
arguments of these functions are tensors or tensor-likes.
|
|
|
|
Examples
|
|
--------
|
|
>>> torch.Tensor.as_subclass in torch.overrides.get_ignored_functions()
|
|
True
|
|
>>> torch.add in torch.overrides.get_ignored_functions()
|
|
False
|
|
"""
|
|
Tensor = torch.Tensor
|
|
return {
|
|
torch.typename,
|
|
torch.is_tensor,
|
|
torch.is_storage,
|
|
torch.set_default_tensor_type,
|
|
torch.set_rng_state,
|
|
torch.get_rng_state,
|
|
torch.manual_seed,
|
|
torch.initial_seed,
|
|
torch.seed,
|
|
torch.save,
|
|
torch.load,
|
|
torch.set_printoptions,
|
|
torch.fork,
|
|
torch.get_default_dtype,
|
|
torch.get_num_interop_threads,
|
|
torch.get_num_threads,
|
|
torch.init_num_threads,
|
|
torch.import_ir_module,
|
|
torch.import_ir_module_from_buffer,
|
|
torch.is_anomaly_enabled,
|
|
torch.is_grad_enabled,
|
|
torch.merge_type_from_type_comment,
|
|
torch.parse_ir,
|
|
torch.parse_schema,
|
|
torch.parse_type_comment,
|
|
torch.set_anomaly_enabled,
|
|
torch.set_flush_denormal,
|
|
torch.set_num_interop_threads,
|
|
torch.set_num_threads,
|
|
torch.wait,
|
|
torch.as_tensor,
|
|
torch.from_numpy,
|
|
torch.get_device,
|
|
torch.tensor,
|
|
torch.default_generator,
|
|
torch.has_cuda,
|
|
torch.has_cudnn,
|
|
torch.has_lapack,
|
|
torch.device,
|
|
torch.dtype,
|
|
torch.finfo,
|
|
torch.has_mkl,
|
|
torch.has_mkldnn,
|
|
torch.has_openmp,
|
|
torch.iinfo,
|
|
torch.memory_format,
|
|
torch.qscheme,
|
|
torch.set_grad_enabled,
|
|
torch.no_grad,
|
|
torch.enable_grad,
|
|
torch.inference_mode,
|
|
torch.is_inference_mode_enabled,
|
|
torch.layout,
|
|
torch.align_tensors,
|
|
torch.arange,
|
|
torch.as_strided,
|
|
torch.bartlett_window,
|
|
torch.blackman_window,
|
|
torch.broadcast_shapes,
|
|
torch.can_cast,
|
|
torch.cudnn_affine_grid_generator,
|
|
torch.cudnn_batch_norm,
|
|
torch.cudnn_convolution,
|
|
torch.cudnn_convolution_transpose,
|
|
torch.cudnn_convolution_relu,
|
|
torch.cudnn_convolution_add_relu,
|
|
torch.cudnn_grid_sampler,
|
|
torch.cudnn_is_acceptable,
|
|
torch.empty,
|
|
torch.empty_strided,
|
|
torch.empty_quantized,
|
|
torch.eye,
|
|
torch.fft.fftfreq,
|
|
torch.fft.rfftfreq,
|
|
torch.from_file,
|
|
torch.full,
|
|
torch.hamming_window,
|
|
torch.hann_window,
|
|
torch.kaiser_window,
|
|
torch.linspace,
|
|
torch.logspace,
|
|
torch.mkldnn_adaptive_avg_pool2d,
|
|
torch.mkldnn_convolution,
|
|
torch.mkldnn_convolution_backward_weights,
|
|
torch.mkldnn_max_pool2d,
|
|
torch.mkldnn_max_pool3d,
|
|
torch.mkldnn_linear_backward_weights,
|
|
torch.normal,
|
|
torch.ones,
|
|
torch.promote_types,
|
|
torch.rand,
|
|
torch.randn,
|
|
torch.randint,
|
|
torch.randperm,
|
|
torch.range,
|
|
torch.result_type,
|
|
torch.scalar_tensor,
|
|
torch.sparse_coo_tensor,
|
|
torch.sparse_csr_tensor,
|
|
torch.tril_indices,
|
|
torch.triu_indices,
|
|
torch.vander,
|
|
torch.zeros,
|
|
torch._jit_internal.boolean_dispatch,
|
|
torch.nn.functional.assert_int_or_pair,
|
|
torch.nn.functional.upsample,
|
|
torch.nn.functional.upsample_bilinear,
|
|
torch.nn.functional.upsample_nearest,
|
|
torch.nn.functional.has_torch_function,
|
|
torch.nn.functional.has_torch_function_unary,
|
|
torch.nn.functional.has_torch_function_variadic,
|
|
torch.nn.functional.handle_torch_function,
|
|
torch.nn.functional.sigmoid,
|
|
torch.nn.functional.hardsigmoid,
|
|
torch.nn.functional.tanh,
|
|
has_torch_function,
|
|
handle_torch_function,
|
|
torch.set_autocast_enabled,
|
|
torch.is_autocast_enabled,
|
|
torch.clear_autocast_cache,
|
|
torch.set_autocast_cpu_enabled,
|
|
torch.is_autocast_cpu_enabled,
|
|
torch.set_autocast_cpu_dtype,
|
|
torch.get_autocast_cpu_dtype,
|
|
torch.autocast_increment_nesting,
|
|
torch.autocast_decrement_nesting,
|
|
torch.nn.functional.hardswish,
|
|
torch.is_vulkan_available,
|
|
torch.is_deterministic,
|
|
torch.are_deterministic_algorithms_enabled,
|
|
torch.use_deterministic_algorithms,
|
|
torch.set_deterministic,
|
|
torch.unify_type_list,
|
|
torch.is_warn_always_enabled,
|
|
torch.set_warn_always,
|
|
torch.vitals_enabled,
|
|
torch.set_vital,
|
|
Tensor.__delitem__,
|
|
Tensor.__dir__,
|
|
Tensor.__getattribute__,
|
|
Tensor.__init__,
|
|
Tensor.__iter__,
|
|
Tensor.__init_subclass__,
|
|
Tensor.__delattr__,
|
|
Tensor.__setattr__,
|
|
Tensor.__torch_function__,
|
|
Tensor.__new__,
|
|
Tensor.__class__,
|
|
Tensor.__subclasshook__,
|
|
Tensor.as_subclass,
|
|
Tensor.reinforce,
|
|
Tensor.new,
|
|
Tensor.new_tensor,
|
|
Tensor.new_empty,
|
|
Tensor.new_empty_strided,
|
|
Tensor.new_zeros,
|
|
Tensor.new_ones,
|
|
Tensor.new_full,
|
|
Tensor._make_subclass,
|
|
Tensor.stride,
|
|
Tensor.unflatten,
|
|
Tensor.to_sparse_csr,
|
|
Tensor._reduce_ex_internal,
|
|
}
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def get_testing_overrides() -> Dict[Callable, Callable]:
|
|
"""Return a dict containing dummy overrides for all overridable functions
|
|
|
|
Returns
|
|
-------
|
|
Dict[Callable, Callable]
|
|
A dictionary that maps overridable functions in the PyTorch API to
|
|
lambda functions that have the same signature as the real function
|
|
and unconditionally return -1. These lambda functions are useful
|
|
for testing API coverage for a type that defines ``__torch_function__``.
|
|
|
|
Examples
|
|
--------
|
|
>>> import inspect
|
|
>>> my_add = torch.overrides.get_testing_overrides()[torch.add]
|
|
>>> inspect.signature(my_add)
|
|
<Signature (input, other, out=None)>
|
|
"""
|
|
# Every function in the PyTorchAPI that can be overriden needs an entry
|
|
# in this dict.
|
|
#
|
|
# Optimally we would use inspect to get the function signature and define
|
|
# the lambda function procedurally but that is blocked by generating
|
|
# function signatures for native kernels that can be consumed by inspect.
|
|
# See Issue #28233.
|
|
Tensor = torch.Tensor
|
|
ret: Dict[Callable, Callable] = {
|
|
torch.abs: lambda input, out=None: -1,
|
|
torch.absolute: lambda input, out=None: -1,
|
|
torch.adaptive_avg_pool1d: lambda input, output_size: -1,
|
|
torch.adaptive_max_pool1d: lambda inputs, output_size: -1,
|
|
torch.acos: lambda input, out=None: -1,
|
|
torch.arccos: lambda input, out=None: -1,
|
|
torch.acosh: lambda input, out=None: -1,
|
|
torch.arccosh: lambda input, out=None: -1,
|
|
torch.add: lambda input, other, out=None: -1,
|
|
torch.addbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1,
|
|
torch.addcdiv: lambda input, tensor1, tensor2, value=1, out=None: -1,
|
|
torch.addcmul: lambda input, tensor1, tensor2, value=1, out=None: -1,
|
|
torch.addmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
|
|
torch.addmv: lambda input, mat, vec, beta=1, alpha=1, out=None: -1,
|
|
torch.addr: lambda input, vec1, vec2, beta=1, alpha=1, out=None: -1,
|
|
torch.affine_grid_generator: lambda theta, size, align_corners: -1,
|
|
torch.all: lambda input, dim=None: -1,
|
|
torch.allclose: lambda input, other, trol=1e-05, atol=1e-08, equal_nan=False: -1,
|
|
torch.alpha_dropout: lambda input, p, train, inplace=False: -1,
|
|
torch.amax: lambda input, dim=None: -1,
|
|
torch.amin: lambda input, dim=None: -1,
|
|
torch.angle: lambda input, out=None: -1,
|
|
torch.any: lambda input, dim=None, keepdim=False, out=None: -1,
|
|
torch.argmax: lambda input: -1,
|
|
torch.argmin: lambda input: -1,
|
|
torch.argsort: lambda input, dim=None: -1,
|
|
torch.asin: lambda input, out=None: -1,
|
|
torch._assert_async: lambda input: -1,
|
|
torch.arcsin: lambda input, out=None: -1,
|
|
torch.asinh: lambda input, out=None: -1,
|
|
torch.arcsinh: lambda input, out=None: -1,
|
|
torch.atan: lambda input, out=None: -1,
|
|
torch.arctan: lambda input, out=None: -1,
|
|
torch.atan2: lambda input, other, out=None: -1,
|
|
torch.atanh: lambda input, out=None: -1,
|
|
torch.arctanh: lambda input, out=None: -1,
|
|
torch.atleast_1d: lambda *tensors: -1,
|
|
torch.atleast_2d: lambda *tensors: -1,
|
|
torch.atleast_3d: lambda *tensors: -1,
|
|
torch.avg_pool1d: lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True: -1,
|
|
torch.baddbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1,
|
|
torch.batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled: -1,
|
|
torch.batch_norm_backward_elemt: lambda grad_out, input, mean, invstd, weight, sum_dy, sum_dy_xmu, count_tensor: -1,
|
|
torch.batch_norm_backward_reduce: lambda grad_out, input, mean, invstd, weight, input_g, weight_g, bias_g: -1,
|
|
torch.batch_norm_elemt: lambda input, weight, bias, mean, invstd, eps: -1,
|
|
torch.batch_norm_gather_stats: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1,
|
|
torch.batch_norm_gather_stats_with_counts: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1,
|
|
torch.batch_norm_stats: lambda input, eps: -1,
|
|
torch.batch_norm_update_stats: lambda input, running_mean, running_var, momentum: -1,
|
|
torch.bernoulli: lambda input, generator=None, out=None: -1,
|
|
torch.bilinear: lambda input1, input2, weight, bias: -1,
|
|
torch.binary_cross_entropy_with_logits: (lambda input, target, weight=None, size_average=None, reduce=None,
|
|
reduction='mean', pos_weight=None: -1),
|
|
torch.bincount: lambda input, weights=None, minlength=0: -1,
|
|
torch.binomial: lambda count, prob, generator=None: -1,
|
|
torch.bitwise_and: lambda input, other, out=None: -1,
|
|
torch.bitwise_not: lambda input, out=None: -1,
|
|
torch.bitwise_or: lambda input, other, out=None: -1,
|
|
torch.bitwise_xor: lambda input, other, out=None: -1,
|
|
torch.block_diag: lambda *tensors: -1,
|
|
torch.bmm: lambda input, mat2, out=None: -1,
|
|
torch.broadcast_tensors: lambda *tensors: -1,
|
|
torch.broadcast_to: lambda self, size: -1,
|
|
torch.bucketize: lambda input, boundaries, out_int32=False, right=False, out=None: -1,
|
|
torch.cartesian_prod: lambda *tensors: -1,
|
|
torch.cat: lambda tensors, dim=0, out=None: -1,
|
|
torch.cdist: lambda x1, x2, p=2.0, compute_mode='use_mm_for_euclid_dist_if_necessary': -1,
|
|
torch.ceil: lambda input, out=None: -1,
|
|
torch.celu: lambda input, alhpa=1., inplace=False: -1,
|
|
torch.chain_matmul: lambda *matrices, out=None: -1,
|
|
torch.channel_shuffle: lambda input, groups : -1,
|
|
torch.cholesky: lambda input, upper=False, out=None: -1,
|
|
torch.linalg.cholesky: lambda input, out=None: -1,
|
|
torch.linalg.cholesky_ex: lambda input, check_errors=False, out=None: -1,
|
|
torch.cholesky_inverse: lambda input, upper=False, out=None: -1,
|
|
torch.cholesky_solve: lambda input1, input2, upper=False, out=None: -1,
|
|
torch.choose_qparams_optimized: lambda input, numel, n_bins, ratio, bit_width: -1,
|
|
torch.chunk: lambda input, chunks, dim=0: -1,
|
|
torch.clamp: lambda input, min=None, max=None, out=None: -1,
|
|
torch.clip: lambda input, min=None, max=None, out=None: -1,
|
|
torch.clamp_min: lambda input, min, out=None: -1,
|
|
torch.clamp_max: lambda input, max, out=None: -1,
|
|
torch.column_stack: lambda tensors, out=None: -1,
|
|
torch.clone: lambda input: -1,
|
|
torch.combinations: lambda input, r=2, with_replacement=False: -1,
|
|
torch.complex: lambda real, imag: -1,
|
|
torch.copysign: lambda input, other, out=None: -1,
|
|
torch.polar: lambda abs, ang: -1,
|
|
torch.linalg.cond: lambda input, ord=None: -1,
|
|
torch.conj: lambda input, out=None: -1,
|
|
torch.constant_pad_nd: lambda input, pad, value=0: -1,
|
|
torch.conv1d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
|
|
torch.conv2d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
|
|
torch.conv3d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
|
|
torch.convolution: lambda input, weight, bias, stride, padding, dilation, transposed, output_adding, groups: -1,
|
|
torch.conv_tbc: lambda input, weight, bias, pad=0: -1,
|
|
torch.conv_transpose1d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
|
|
torch.conv_transpose2d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
|
|
torch.conv_transpose3d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
|
|
torch.cos: lambda input, out=None: -1,
|
|
torch.cosine_embedding_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.cosh: lambda input, out=None: -1,
|
|
torch.cosine_similarity: lambda x1, x2, dim=1, eps=1e-8: -1,
|
|
torch.count_nonzero: lambda input: -1,
|
|
torch.cross: lambda input, other, dim=-1, out=None: -1,
|
|
torch.ctc_loss: (lambda log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean',
|
|
zero_infinity=False: -1),
|
|
torch.cummax: lambda input, dim, out=None: -1,
|
|
torch.cummin: lambda input, dim, out=None: -1,
|
|
torch.cumprod: lambda input, dim, out=None, dtype=None: -1,
|
|
torch.cumsum: lambda input, dim, out=None, dtype=None: -1,
|
|
torch.logcumsumexp: lambda input, dim, out=None: -1,
|
|
torch.deg2rad: lambda input, out=None: -1,
|
|
torch.dequantize: lambda input: -1,
|
|
torch.det: lambda input: -1,
|
|
torch.linalg.det: lambda input: -1, # alias for torch.det # type: ignore[attr-defined]
|
|
torch.detach: lambda input: -1,
|
|
torch.diag: lambda input, diagonal=0, out=None: -1,
|
|
torch.diag_embed: lambda input, diagonal=0, out=None: -1,
|
|
torch.diagflat: lambda input, offset=0: -1,
|
|
torch.diff: lambda input, n=1, dim=-1, prepend=None, append=None, out=None: -1,
|
|
torch.diagonal: lambda input, offset=0, dim1=0, dim2=1: -1,
|
|
torch.digamma: lambda input, out=None: -1,
|
|
torch.dist: lambda input, other, p=2: -1,
|
|
torch.div: lambda input, other, rounding_mode=None, out=None: -1,
|
|
torch.divide: lambda input, other, rounding_mode=None, out=None: -1,
|
|
torch.dot: lambda input, other, out=None: -1,
|
|
torch.dropout: lambda input, p, train, inplace=False: -1,
|
|
torch.dsmm: lambda input, mat2: -1,
|
|
torch.hsmm: lambda mat1, mat2: -1,
|
|
torch.dsplit: lambda input, indices_or_sections: -1,
|
|
torch.dstack: lambda tensors, out=None: -1,
|
|
torch.eig: lambda input, eigenvectors=False, out=None: -1,
|
|
torch.linalg.eig: lambda input, out=None: -1,
|
|
torch.linalg.eigvals: lambda input, out=None: -1,
|
|
torch.linalg.eigh: lambda input, UPLO="L", out=None: -1,
|
|
torch.linalg.eigvalsh: lambda input, UPLO="L", out=None: -1,
|
|
torch.einsum: lambda equation, *operands: -1,
|
|
torch.embedding: (lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False,
|
|
sparse=False: -1),
|
|
torch.embedding_bag: (lambda input, weight, offsets, max_norm=None, norm_type=2, scale_grad_by_freq=False,
|
|
mode='mean', sparse=False, per_sample_weights=None, padding_idx=None: -1),
|
|
torch.empty_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch.eq: lambda input, other, out=None: -1,
|
|
torch.equal: lambda input, other: -1,
|
|
torch.erf: lambda input, out=None: -1,
|
|
torch.erfc: lambda input, out=None: -1,
|
|
torch.erfinv: lambda input, out=None: -1,
|
|
torch.exp: lambda input, out=None: -1,
|
|
torch.exp2: lambda input, out=None: -1,
|
|
torch.expm1: lambda input, out=None: -1,
|
|
torch.fake_quantize_per_channel_affine: lambda input, scale, zero_point, axis, quant_min, quant_max: -1,
|
|
torch.fake_quantize_per_tensor_affine: lambda input, scale, zero_point, quant_min, quant_max: -1,
|
|
torch.fbgemm_linear_fp16_weight: lambda input, packed_weight, bias: -1,
|
|
torch.fbgemm_linear_fp16_weight_fp32_activation: lambda input, packed_weight, bias: -1,
|
|
torch.fbgemm_linear_int8_weight: lambda input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias: -1,
|
|
torch.fbgemm_linear_int8_weight_fp32_activation: (lambda input, weight, packed, col_offsets, weight_scale,
|
|
weight_zero_point, bias: -1),
|
|
torch.fbgemm_linear_quantize_weight: lambda input: -1,
|
|
torch.fbgemm_pack_gemm_matrix_fp16: lambda input: -1,
|
|
torch.fbgemm_pack_quantized_matrix: lambda input, a, b: -1,
|
|
torch.feature_alpha_dropout: lambda input, p, train: -1,
|
|
torch.feature_dropout: lambda input, p, train: -1,
|
|
torch.fft.fft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.ifft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.rfft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.irfft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.hfft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.ihfft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.fftn: lambda input, s=None, dim=None, norm=None: -1,
|
|
torch.fft.ifftn: lambda input, s=None, dim=None, norm=None: -1,
|
|
torch.fft.rfftn: lambda input, s=None, dim=None, norm=None: -1,
|
|
torch.fft.irfftn: lambda input, s=None, dim=None, norm=None: -1,
|
|
torch.fft.fft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.ifft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.rfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.irfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.fftshift: lambda input, dim=None: -1,
|
|
torch.fft.ifftshift: lambda input, dim=None: -1,
|
|
torch.fft.fft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fix: lambda input, out=None: -1,
|
|
torch.flatten: lambda input, start_dim=0, end_dim=-1: -1,
|
|
torch.flip: lambda input, dims: -1,
|
|
torch.fliplr: lambda input: -1,
|
|
torch.flipud: lambda input: -1,
|
|
torch.frobenius_norm: lambda input, dim=None, keepdim=False, out=None: -1,
|
|
torch.floor: lambda input, out=None: -1,
|
|
torch.floor_divide: lambda input, other: -1,
|
|
torch.float_power: lambda input, exponent, out=None: -1,
|
|
torch.fmod: lambda input, other, out=None: -1,
|
|
torch.frac: lambda input, out=None: -1,
|
|
torch.frexp: lambda input, out=None: -1,
|
|
torch.full_like: lambda input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1,
|
|
torch.lu_unpack: lambda LU_data, LU_pivots, unpack_data=True, unpack_pivots=True: -1,
|
|
torch.gather: lambda input, dim, index, out=None, sparse_grad=False: -1,
|
|
torch.gcd: lambda input, other, out=None: -1,
|
|
torch.ge: lambda input, other, out=None: -1,
|
|
torch.greater_equal: lambda input, other, out=None: -1,
|
|
torch.geqrf: lambda input, out=None: -1,
|
|
torch.i0: lambda input, out=None: -1,
|
|
torch.inner: lambda input, other, out=None: -1,
|
|
torch.outer: lambda input, vec2, out=None: -1, # alias for torch.ger
|
|
torch.ger: lambda input, vec2, out=None: -1,
|
|
torch.gradient: lambda input, spacing=None, dim=None, edge_order=1: -1,
|
|
torch.grid_sampler: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
|
|
torch.grid_sampler_2d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
|
|
torch.grid_sampler_3d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
|
|
torch.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05, cudnn_enabled=True: -1,
|
|
torch.gru: lambda input, hx, params, has_biases, num_layers, gropout, train, bidirectional, batch_first: -1,
|
|
torch.gru_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
|
|
torch.gt: lambda input, other, out=None: -1,
|
|
torch.greater: lambda input, other, out=None: -1,
|
|
torch.hardshrink: lambda input, lambd=0.5: -1,
|
|
torch.heaviside: lambda input, values, out=None: -1,
|
|
torch.hinge_embedding_loss: lambda input, target, margin=1.0, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.histc: lambda input, bins=100, min=0, max=0, out=None: -1,
|
|
torch.linalg.householder_product: lambda input, tau: -1,
|
|
torch.hspmm: lambda mat1, mat2, out=None: -1,
|
|
torch.hsplit: lambda input, indices_or_sections: -1,
|
|
torch.hstack: lambda tensors, out=None: -1,
|
|
torch.hypot: lambda input, other, out=None: -1,
|
|
torch.igamma: lambda input, other, out=None: -1,
|
|
torch.igammac: lambda input, other, out=None: -1,
|
|
torch.imag: lambda input, out=None: -1,
|
|
torch.index_add: lambda input, dim, index, source: -1,
|
|
torch.index_copy: lambda input, dim, index, source: -1,
|
|
torch.index_put: lambda input, indices, values, accumulate=False: -1,
|
|
torch.index_select: lambda input, dim, index, out=None: -1,
|
|
torch.index_fill: lambda input, dim, index, value: -1,
|
|
torch.isfinite: lambda tensor: -1,
|
|
torch.isinf: lambda tensor: -1,
|
|
torch.isreal: lambda tensor: -1,
|
|
torch.isposinf: lambda input, out=None: -1,
|
|
torch.isneginf: lambda input, out=None: -1,
|
|
torch.instance_norm: (lambda input, running_mean, running_var, weight, bias, use_input_stats, momentum, eps,
|
|
cudnn_enabled: -1),
|
|
torch.int_repr: lambda input: -1,
|
|
torch.inverse: lambda input, out=None: -1,
|
|
torch.linalg.inv: lambda input, out=None: -1,
|
|
torch.linalg.inv_ex: lambda input, check_errors=False, out=None: -1,
|
|
torch.is_complex: lambda input: -1,
|
|
torch.is_distributed: lambda input: -1,
|
|
torch.is_floating_point: lambda input: -1,
|
|
torch.is_nonzero: lambda input: -1,
|
|
torch.is_same_size: lambda input, other: -1,
|
|
torch.is_signed: lambda input: -1,
|
|
torch.isclose: lambda input, other, rtol=1e-05, atol=1e-08, equal_nan=False: -1,
|
|
torch.isnan: lambda input: -1,
|
|
torch.istft: (lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True,
|
|
normalized=False, onesided=None, length=None, return_complex=False: -1),
|
|
torch.kl_div: lambda input, target, size_average=None, reduce=None, reduction='mean', log_target=False: -1,
|
|
torch.kron: lambda input, other: -1,
|
|
torch.kthvalue: lambda input, k, dim=None, keepdim=False, out=None: -1,
|
|
torch.layer_norm: lambda input, normalized_shape, weight=None, bias=None, esp=1e-05, cudnn_enabled=True: -1,
|
|
torch.lcm: lambda input, other, out=None: -1,
|
|
torch.ldexp: lambda input, other, out=None: -1,
|
|
torch.le: lambda input, other, out=None: -1,
|
|
torch.less_equal: lambda input, other, out=None: -1,
|
|
torch.lerp: lambda input, end, weight, out=None: -1,
|
|
torch.lgamma: lambda input, out=None: -1,
|
|
torch.lobpcg: lambda input, k=None, B=None, X=None, n=None, iK=None, niter=None, tol=None, largest=None, method=None,
|
|
tracker=None, ortho_iparams=None, ortho_fparams=None, ortho_bparams=None: -1,
|
|
torch.log: lambda input, out=None: -1,
|
|
torch.log_softmax: lambda input, dim, dtype=None: -1,
|
|
torch.log10: lambda input, out=None: -1,
|
|
torch.log1p: lambda input, out=None: -1,
|
|
torch.log2: lambda input, out=None: -1,
|
|
torch.logaddexp: lambda input, other, out=None: -1,
|
|
torch.logaddexp2: lambda input, other, out=None: -1,
|
|
torch.logdet: lambda input: -1,
|
|
torch.xlogy: lambda x, y: -1,
|
|
torch.logical_and: lambda input, other, out=None: -1,
|
|
torch.logical_not: lambda input, out=None: -1,
|
|
torch.logical_or: lambda input, other, out=None: -1,
|
|
torch.logical_xor: lambda input, other, out=None: -1,
|
|
torch.logsumexp: lambda input, names, keepdim=False, out=None: -1,
|
|
torch.logit: lambda input, eps=None: -1,
|
|
torch.logsumexp: lambda input, names, keepdim=False, out=None: -1,
|
|
torch.lstm: lambda data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional: -1,
|
|
torch.lstm_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
|
|
torch.lstsq: lambda input, A, out=None: -1,
|
|
torch.lt: lambda input, other, out=None: -1,
|
|
torch.less: lambda input, other, out=None: -1,
|
|
torch.lu: lambda A, pivot=True, get_infos=False, out=None: -1,
|
|
torch.lu_solve: lambda b, LU_data, LU_pivots, out=None: -1,
|
|
torch.margin_ranking_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean': -1, # type: ignore[attr-defined] # noqa: B950
|
|
torch.masked_fill: lambda input, mask, value: -1,
|
|
torch.masked_scatter: lambda input, mask, source: -1,
|
|
torch.masked_select: lambda input, mask, out=None: -1,
|
|
torch.matmul: lambda input, other, out=None: -1,
|
|
torch.matrix_power: lambda input, n: -1,
|
|
torch.linalg.matrix_power: lambda input, n, out=None: -1,
|
|
torch.matrix_rank: lambda input, tol=None, symmetric=False: -1,
|
|
torch.linalg.matrix_rank: lambda input, tol=None, hermitian=False: -1,
|
|
torch.linalg.multi_dot: lambda tensors, out=None: -1,
|
|
torch.matrix_exp: lambda input: -1,
|
|
torch.max: lambda input, out=None: -1,
|
|
torch.maximum: lambda input, other, out=None: -1,
|
|
torch.fmax: lambda input, other, out=None: -1,
|
|
torch.max_pool1d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1,
|
|
torch.max_pool2d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1,
|
|
torch.max_pool3d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1,
|
|
torch.max_pool1d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.mean: lambda input, dim=None: -1,
|
|
torch.median: lambda input, dim=None: -1,
|
|
torch.nanmedian: lambda input, dim=None: -1,
|
|
torch.meshgrid: lambda *tensors, **kwargs: -1,
|
|
torch.min: lambda input, out=None: -1,
|
|
torch.minimum: lambda input, other, out=None: -1,
|
|
torch.fmin: lambda input, other, out=None: -1,
|
|
torch.miopen_batch_norm: (lambda input, weight, bias, running_mean, running_var, training,
|
|
exponential_average_factor, epsilon: -1),
|
|
torch.miopen_convolution: lambda input, weight, bias, padding, stride, dilation, groups, benchmark, deterministic: -1,
|
|
torch.miopen_convolution_transpose: (lambda input, weight, bias, padding, output_padding, stride, dilation,
|
|
groups, benchmark, deterministic: -1),
|
|
torch.miopen_depthwise_convolution: (lambda input, weight, bias, padding, stride, dilation, groups, benchmark,
|
|
deterministic: -1),
|
|
torch.miopen_rnn: (lambda input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first,
|
|
dropout, train, bidirectional, batch_sizes, dropout_state: -1),
|
|
torch.mm: lambda input, mat2, out=None: -1,
|
|
torch.mode: lambda input, dim=-1, keepdim=False, out=None: -1,
|
|
torch.movedim: lambda input, source, destination: -1,
|
|
torch.moveaxis: lambda input, source, destination: -1,
|
|
torch.msort: lambda input, descending=False, out=None: -1,
|
|
torch.mul: lambda input, other, out=None: -1,
|
|
torch.multiply: lambda input, other, out=None: -1,
|
|
torch.multinomial: lambda input, num_samples, replacement=False, out=None: -1,
|
|
torch.mv: lambda input, vec, out=None: -1,
|
|
torch.mvlgamma: lambda input, p: -1,
|
|
torch.narrow: lambda input, dim, start, length: -1,
|
|
torch.narrow_copy: lambda input, dim, start, length: -1,
|
|
torch.nan_to_num: lambda input, nan=0.0, posinf=None, neginf=None, out=None: -1,
|
|
torch.native_batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps: -1,
|
|
torch.native_layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1,
|
|
torch.native_group_norm: lambda input, weight, bias, N, C, HxW, group, eps: -1,
|
|
torch.native_norm: lambda input, p=2: -1,
|
|
torch.native_norm: lambda input, p=2: -1,
|
|
torch.native_norm: lambda input, p=2, dim=None, keepdim=False, dtype=None: -1,
|
|
torch.ne: lambda input, other, out=None: -1,
|
|
torch.not_equal: lambda input, other, out=None: -1,
|
|
torch.neg: lambda input, out=None: -1,
|
|
torch.negative: lambda input, out=None: -1,
|
|
torch.nextafter: lambda input, other, out=None: -1,
|
|
torch.nn.functional.adaptive_avg_pool2d: lambda input, output_size: -1,
|
|
torch.nn.functional.adaptive_avg_pool3d: lambda input, output_size: -1,
|
|
torch.nn.functional.adaptive_max_pool1d: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool1d_with_indices: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool2d: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool2d_with_indices: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool3d: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool3d_with_indices: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.affine_grid: lambda theta, size, align_corners=None: -1,
|
|
torch.nn.functional.alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1,
|
|
torch.nn.functional.avg_pool2d: (lambda input, kernel_size, stride=None, padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=None: -1),
|
|
torch.nn.functional.avg_pool3d: (lambda input, kernel_size, stride=None, padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=None: -1),
|
|
torch.nn.functional.batch_norm: (lambda input, running_mean, running_var, weight=None, bias=None, training=False,
|
|
momentum=0.1, eps=1e-05: -1),
|
|
torch.nn.functional.bilinear: lambda input1, input2, weight, bias=None: -1,
|
|
torch.nn.functional.binary_cross_entropy: (lambda input, target, weight=None, size_average=None, reduce=None,
|
|
reduction="mean": -1),
|
|
torch.nn.functional.binary_cross_entropy_with_logits: (lambda input, target, weight=None, size_average=None,
|
|
reduce=None, reduction="mean", pos_weight=None: -1),
|
|
torch.nn.functional.celu: lambda input, alpha=1.0, inplace=False: -1,
|
|
torch.nn.functional.cosine_embedding_loss: (lambda input1, input2, target, margin=0, size_average=None,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.cross_entropy: (lambda input, target, weight=None, size_average=None, ignore_index=-100,
|
|
reduce=None, reduction="mean": -1),
|
|
torch.nn.functional.ctc_loss: (lambda log_probs, targets, input_lengths, target_lengths, blank=0,
|
|
reduction='mean', zero_infinity=False: -1),
|
|
torch.nn.functional.dropout: lambda input, p=0.5, training=True, inplace=False: -1,
|
|
torch.nn.functional.dropout2d: lambda input, p=0.5, training=True, inplace=False: -1,
|
|
torch.nn.functional.dropout3d: lambda input, p=0.5, training=True, inplace=False: -1,
|
|
torch.nn.functional.elu: lambda input, alpha=1.0, inplace=False: -1,
|
|
torch.nn.functional.embedding: (lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0,
|
|
scale_grad_by_freq=False, sparse=False: -1),
|
|
torch.nn.functional.embedding_bag: (lambda input, weight, offsets=None, max_norm=None, norm_type=2,
|
|
scale_grad_by_freq=False, mode='mean', sparse=False, per_sample_weights=None,
|
|
include_last_offset=False, padding_idx=None: -1),
|
|
torch.nn.functional.feature_alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1,
|
|
torch.nn.functional.fold: lambda input, output_size, kernel_size, dilation=1, padding=0, stride=1: -1,
|
|
torch.nn.functional.fractional_max_pool2d: (lambda input, kernel_size, output_size=None, output_ratio=None,
|
|
return_indices=False, _random_samples=None: -1),
|
|
torch.nn.functional.fractional_max_pool2d_with_indices: (
|
|
lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False,
|
|
_random_samples=None: -1),
|
|
torch.nn.functional.fractional_max_pool3d: (lambda input, kernel_size, output_size=None, output_ratio=None,
|
|
return_indices=False, _random_samples=None: -1),
|
|
torch.nn.functional.fractional_max_pool3d_with_indices: (
|
|
lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False,
|
|
_random_samples=None: -1),
|
|
torch.nn.functional.gaussian_nll_loss: lambda input, target, var, full=False, eps=1e-06, reduction='mean': -1,
|
|
torch.nn.functional.gelu: lambda input: -1,
|
|
torch.nn.functional.glu: lambda input, dim=-1: -1,
|
|
torch.nn.functional.grid_sample: lambda input, grid, mode='bilinear', padding_mode='zeros', align_corners=None: -1,
|
|
torch.nn.functional.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05: -1,
|
|
torch.nn.functional.gumbel_softmax: lambda logits, tau=1, hard=False, eps=1e-10, dim=-1: -1,
|
|
torch.nn.functional.hardshrink: lambda input, lambd=0.5: -1,
|
|
torch.nn.functional.hardtanh: lambda input, min_val=-1., max_val=1., inplace=False: -1,
|
|
torch.nn.functional.hinge_embedding_loss: (lambda input, target, margin=1.0, size_average=None, reduce=None,
|
|
reduction='mean': -1),
|
|
torch.nn.functional.instance_norm: (lambda input, running_mean=None, running_var=None, weight=None, bias=None,
|
|
use_input_stats=True, momentum=0.1, eps=1e-05: -1),
|
|
torch.nn.functional.interpolate: (lambda input, size=None, scale_factor=None, mode='nearest', align_corners=None,
|
|
recompute_scale_factor=None: -1),
|
|
torch.nn.functional.kl_div: lambda input, target, size_average=None, reduce=None, reduction='mean', log_target=False: -1,
|
|
torch.nn.functional.l1_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.nn.functional.layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1,
|
|
torch.nn.functional.leaky_relu: lambda input, negative_slope=0.01, inplace=False: -1,
|
|
torch.nn.functional.linear: lambda input, weight, bias=None: -1,
|
|
torch.nn.functional.local_response_norm: lambda input, size, alpha=0.0001, beta=0.75, k=1.0: -1,
|
|
torch.nn.functional.log_softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
|
|
torch.nn.functional.logsigmoid: lambda input: -1,
|
|
torch.nn.functional.lp_pool1d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1,
|
|
torch.nn.functional.lp_pool2d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1,
|
|
torch.nn.functional.margin_ranking_loss: (lambda input1, input2, target, margin=0, size_average=None,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.max_pool1d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
ceil_mode=False, return_indices=False: -1),
|
|
torch.nn.functional.max_pool1d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.nn.functional.max_pool2d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
ceil_mode=False, return_indices=False: -1),
|
|
torch.nn.functional.max_pool2d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.nn.functional.max_pool3d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.nn.functional.max_pool3d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.nn.functional.max_unpool1d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
|
|
torch.nn.functional.max_unpool2d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
|
|
torch.nn.functional.max_unpool3d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
|
|
torch.nn.functional.mse_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.nn.functional.multi_head_attention_forward: (
|
|
lambda query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v,
|
|
add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=True, key_padding_mask=None,
|
|
need_weights=True, attn_mask=None, use_separate_proj_weight=False, q_proj_weight=None, k_proj_weight=None,
|
|
v_proj_weight=None, static_k=None, static_v=None: -1),
|
|
torch.nn.functional.multi_margin_loss: (lambda input, target, p=1, margin=1.0, weight=None, size_average=None,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.multilabel_margin_loss: (lambda input, target, size_average=None, reduce=None,
|
|
reduction='mean': -1),
|
|
torch.nn.functional.multilabel_soft_margin_loss: (lambda input, target, weight=None, size_average=None,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.nll_loss: (lambda input, target, weight=None, size_average=None, ignore_index=-100,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.normalize: lambda input, p=2, dim=1, eps=1e-12, out=None: -1,
|
|
torch.nn.functional.one_hot: lambda tensor, num_classes=-1: -1,
|
|
torch.nn.functional.pad: lambda input, pad, mode='constant', value=0: -1,
|
|
torch.nn.functional.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1,
|
|
torch.nn.functional.poisson_nll_loss: (lambda input, target, log_input=True, full=False, size_average=None,
|
|
eps=1e-08, reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.prelu: lambda input, weight: -1,
|
|
torch.nn.functional.relu: lambda input, inplace=False: -1,
|
|
torch.nn.functional.relu6: lambda input, inplace=False: -1,
|
|
torch.nn.functional.rrelu: lambda input, lower=0.125, upper=0.3333333333333333, training=False, inplace=False: -1,
|
|
torch.nn.functional.selu: lambda input, inplace=False: -1,
|
|
torch.nn.functional.silu: lambda input, inplace=False: -1,
|
|
torch.nn.functional.smooth_l1_loss: lambda input, target, size_average=None, reduce=None, reduction='mean', beta=1.: -1,
|
|
torch.nn.functional.huber_loss: lambda input, target, reduction='mean', delta=1.: -1,
|
|
torch.nn.functional.soft_margin_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.nn.functional.softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
|
|
torch.nn.functional.softmin: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
|
|
torch.nn.functional.softplus: lambda input, beta=1, threshold=20: -1,
|
|
torch.nn.functional.softshrink: lambda input, lambd=0.5: -1,
|
|
torch.nn.functional.softsign: lambda input: -1,
|
|
torch.nn.functional.tanhshrink: lambda input: -1,
|
|
torch.nn.functional.threshold: lambda input, threshold, value, inplace=False: -1,
|
|
torch.nn.functional.triplet_margin_loss: (lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06,
|
|
swap=False, size_average=None, reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.triplet_margin_with_distance_loss: (lambda anchor, positive, negative, *,
|
|
distance_function=None, margin=1.0,
|
|
swap=False, reduction='mean': -1),
|
|
torch.nn.functional.unfold: lambda input, kernel_size, dilation=1, padding=0, stride=1: -1,
|
|
torch.nonzero: lambda input, as_tuple=False: -1,
|
|
torch.norm: lambda input, p='fro', dim=None, keepdim=False, out=None, dtype=None: -1,
|
|
torch.linalg.norm: lambda input, ord=None, dim=None, keepdim=False, out=None, dtype=None: -1,
|
|
torch.linalg.vector_norm: lambda input, ord=2, dim=None, keepdim=False, out=None, dtype=None: -1,
|
|
torch.linalg.matrix_norm: lambda input, ord='fro', dim=(-2, -1), keepdim=False, out=None, dtype=None: -1,
|
|
torch.norm_except_dim: lambda v, pow=2, dim=0: -1,
|
|
torch.nuclear_norm: lambda input, p='fro', dim=None, keepdim=False, out=None, dtype=None: -1,
|
|
torch.numel: lambda input: -1,
|
|
torch.orgqr: lambda input, tau: -1,
|
|
torch.ormqr: lambda input, input2, input3, left=True, transpose=False: -1,
|
|
torch.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1,
|
|
torch.permute: lambda self, dim: -1,
|
|
torch.pca_lowrank: lambda input, q=None, center=True, niter=2: -1,
|
|
torch.pdist: lambda input, p=2: -1,
|
|
torch.pinverse: lambda input, rcond=1e-15: -1,
|
|
torch.linalg.pinv: lambda input, rcond=1e-15, hermitian=False: -1,
|
|
torch.pixel_shuffle: lambda input, upscale_factor: -1,
|
|
torch.pixel_unshuffle: lambda input, downscale_factor: -1,
|
|
torch.poisson: lambda input, generator=None: -1,
|
|
torch.poisson_nll_loss: lambda input, target, log_input, full, eps, reduction: -1,
|
|
torch.polygamma: lambda input, n, out=None: -1,
|
|
torch.positive: lambda input, out=None: -1,
|
|
torch.prelu: lambda input, weight: -1,
|
|
torch.ones_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch.pow: lambda input, exponent, out=None: -1,
|
|
torch.prod: lambda input, dtype=None: -1,
|
|
torch.put: lambda input, index, source, accumulate=False: -1,
|
|
torch.q_per_channel_axis: lambda input: -1,
|
|
torch.q_per_channel_scales: lambda input: -1,
|
|
torch.q_per_channel_zero_points: lambda input: -1,
|
|
torch.q_scale: lambda input: -1,
|
|
torch.q_zero_point: lambda input: -1,
|
|
torch.qr: lambda input, some=True, out=None: -1,
|
|
torch.linalg.qr: lambda input, mode='reduced', out=None: -1,
|
|
torch.quantile: lambda input, q, dim=None, keepdim=False, out=None: -1,
|
|
torch.nanquantile: lambda input, q, dim=None, keepdim=False, out=None: -1,
|
|
torch.quantize_per_channel: lambda input, scales, zero_points, axis, dtype: -1,
|
|
torch.quantize_per_tensor: lambda input, scale, zero_point, dtype: -1,
|
|
torch.quantized_batch_norm: lambda input, weight, bias, mean, var, eps, output_scale, output_zero_point: -1,
|
|
torch.quantized_gru_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
|
|
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
|
|
|
|
torch.quantized_lstm_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
|
|
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
|
|
torch.quantized_max_pool1d: (lambda input, kernel_size, stride=tuple(), padding=(0,),
|
|
dilation=(1,), ceil_mode=False: -1),
|
|
torch.quantized_max_pool2d: (lambda input, kernel_size, stride=tuple(), padding=(0, 0),
|
|
dilation=(1, 1), ceil_mode=False: -1),
|
|
torch.quantized_rnn_relu_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
|
|
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
|
|
torch.quantized_rnn_tanh_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
|
|
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
|
|
torch.rad2deg: lambda input, out=None: -1,
|
|
torch.rand_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch.randint_like: lambda input, high, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1,
|
|
torch.randn_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch.ravel: lambda input: -1,
|
|
torch.real: lambda input, out=None: -1,
|
|
torch.vdot: lambda input, other, out=None: -1,
|
|
torch.view_as_real: lambda input: -1,
|
|
torch.view_as_complex: lambda input: -1,
|
|
torch.reciprocal: lambda input, out=None: -1,
|
|
torch.relu: lambda input, inplace=False: -1,
|
|
torch.remainder: lambda input, other, out=None: -1,
|
|
torch.renorm: lambda input, p, dim, maxnorm, out=None: -1,
|
|
torch.repeat_interleave: lambda input, dim=None: -1,
|
|
torch.reshape: lambda input, shape: -1,
|
|
torch.rnn_relu: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1,
|
|
torch.rnn_relu_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
|
|
torch.rnn_tanh: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1,
|
|
torch.rnn_tanh_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
|
|
torch.roll: lambda input, shifts, dims=None: -1,
|
|
torch.rot90: lambda input, k=1, dims=(0, 1): -1,
|
|
torch.round: lambda input, out=None: -1,
|
|
torch.row_stack: lambda tensors, out=None: -1, # alias for torch.vstack
|
|
torch._rowwise_prune: (lambda weight, mask, compressed_indices_dtype: -1),
|
|
torch.rrelu: lambda input, lower=1. / 8, upper=1. / 3, training=False, inplace=False: -1,
|
|
torch.rsqrt: lambda input, out=None: -1,
|
|
torch.rsub: lambda input, other, alpha=1: -1,
|
|
torch.saddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
|
|
torch.scatter: lambda input, dim, index, src: -1,
|
|
torch.scatter_add: lambda input, dim, index, src: -1,
|
|
torch.searchsorted: lambda sorted_sequence, input, out_int32=False, right=False, out=None: -1,
|
|
torch.segment_reduce: lambda data, reduce="max", lengths=None, indices=None, axis=0, unsafe=False: -1,
|
|
torch.select: lambda input, dim, index: -1,
|
|
torch.selu: lambda input, inplace=False: -1,
|
|
torch.sigmoid: lambda input, out=None: -1,
|
|
torch.sign: lambda input, out=None: -1,
|
|
torch.signbit: lambda input, out=None: -1,
|
|
torch.sgn: lambda input, out=None: -1,
|
|
torch.sin: lambda input, out=None: -1,
|
|
torch.sinc: lambda input, out=None: -1,
|
|
torch.sinh: lambda input, out=None: -1,
|
|
torch.slogdet: lambda input: -1,
|
|
torch.linalg.slogdet: lambda input: -1,
|
|
torch.smm: lambda input, mat2: -1,
|
|
torch.spmm: lambda input, mat2: -1,
|
|
torch.softmax: lambda input, dim, dtype=None: -1,
|
|
torch.solve: lambda input, A, out=None: -1,
|
|
torch.linalg.solve: lambda input, other, out=None: -1,
|
|
torch.sort: lambda input, dim=-1, descending=False, *, stable=False, out=None: -1,
|
|
torch.split: lambda tensor, split_size_or_sections, dim=0: -1,
|
|
torch.split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1,
|
|
torch.sqrt: lambda input, out=None: -1,
|
|
torch.square: lambda input, out=None: -1,
|
|
torch.squeeze: lambda input, dim=None, out=None: -1,
|
|
torch.sspaddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
|
|
torch.stack: lambda tensors, dim=0, out=None: -1,
|
|
torch.std: lambda input, dim=None: -1,
|
|
torch.std_mean: lambda input, dim=None: -1,
|
|
torch.stft: (lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True,
|
|
pad_mode='reflect', normalized=False, onesided=True, return_complex=None: -1),
|
|
torch.sub: lambda input, other, out=None: -1,
|
|
torch.subtract: lambda input, other, out=None: -1,
|
|
torch.sum: lambda input, dim=None: -1,
|
|
torch.nansum: lambda input, dim=None: -1,
|
|
torch.svd: lambda input, some=True, compute_uv=True, out=None: -1,
|
|
torch.svd_lowrank: lambda input, q=6, niter=2, M=None: -1,
|
|
torch.linalg.svd: lambda input, full_matrices=True, out=None: -1,
|
|
torch.linalg.svdvals: lambda input, out=None: -1,
|
|
torch.symeig: lambda input, eigenvectors=False, upper=True, out=None: -1,
|
|
torch.swapaxes: lambda input, dim0, dim1: -1,
|
|
torch.swapdims: lambda input, axis0, axis1: -1,
|
|
torch.special.entr: lambda input: -1,
|
|
torch.special.erf: lambda input: -1,
|
|
torch.special.erfc: lambda input: -1,
|
|
torch.special.erfinv: lambda input: -1,
|
|
torch.special.exp2: lambda input: -1,
|
|
torch.special.expm1: lambda input: -1,
|
|
torch.special.expit: lambda input: -1,
|
|
torch.special.gammaln: lambda input: -1,
|
|
torch.special.i0e: lambda input: -1,
|
|
torch.special.logit: lambda input: -1,
|
|
torch.special.xlog1py: lambda input, other, out=None: -1,
|
|
torch.t: lambda input: -1,
|
|
torch.take: lambda input, index: -1,
|
|
torch.take_along_dim: lambda input, indices, dim=None, out=None: -1,
|
|
torch.tan: lambda input, out=None: -1,
|
|
torch.tanh: lambda input, out=None: -1,
|
|
torch.linalg.tensorinv: lambda a, ind=2: -1,
|
|
torch.linalg.tensorsolve: lambda a, b, dims=None: -1,
|
|
torch.tensordot: lambda a, b, dims=2, out=None: -1,
|
|
torch.tensor_split: lambda input, indices_or_sections, dim=0: -1,
|
|
torch.threshold: lambda input, threshold, value, inplace=False: -1,
|
|
torch.tile: lambda input, dims: -1,
|
|
torch.topk: lambda input, k, dim=-1, descending=False, out=None: -1,
|
|
torch.trace: lambda input: -1,
|
|
torch.transpose: lambda input, dim0, dim1: -1,
|
|
torch.trapz: lambda y, x=None, dim=-1: -1,
|
|
torch.triangular_solve: lambda input, A, upper=True, transpose=False, unitriangular=False: -1,
|
|
torch.tril: lambda input, diagonal=0, out=None: -1,
|
|
torch.triplet_margin_loss: (lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False,
|
|
|
|
size_average=None, reduce=None, reduction='mean': -1),
|
|
torch.triu: lambda input, diagonal=0, out=None: -1,
|
|
torch.true_divide: lambda input, other: -1,
|
|
torch.trunc: lambda input, out=None: -1,
|
|
torch.unbind: lambda input, dim=0: -1,
|
|
torch.unique: lambda input, sorted=True, return_inverse=False, return_counts=False, dim=None: -1,
|
|
torch.unique_consecutive: lambda input, return_inverse=False, return_counts=False, dim=None: -1,
|
|
torch.unsafe_chunk: lambda input, chunks, dim=0: -1,
|
|
torch.unsafe_split: lambda tensor, split_size_or_sections, dim=0: -1,
|
|
torch.unsafe_split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1,
|
|
torch.unsqueeze: lambda input, dim, out=None: -1,
|
|
torch.var: lambda input, dim=None: -1,
|
|
torch.var_mean: lambda input, dim=None: -1,
|
|
torch.vsplit: lambda input, indices_or_sections: -1,
|
|
torch.vstack: lambda tensors, out=None: -1,
|
|
torch.where: lambda condition, x=None, y=None: -1,
|
|
torch.zeros_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
Tensor.__floordiv__: lambda self, other: -1,
|
|
Tensor.__rfloordiv__: lambda self, other: -1,
|
|
Tensor.__ifloordiv__: lambda self, other: -1,
|
|
Tensor.__truediv__: lambda self, other: -1,
|
|
Tensor.__rtruediv__: lambda self, other: -1,
|
|
Tensor.__itruediv__: lambda self, other: -1,
|
|
Tensor.__lshift__: lambda self, other: -1,
|
|
Tensor.__ilshift__: lambda self, other: -1,
|
|
Tensor.__rshift__: lambda self, other: -1,
|
|
Tensor.__irshift__: lambda self, other: -1,
|
|
Tensor.__float__: lambda self: -1,
|
|
Tensor.__complex__: lambda self: -1,
|
|
Tensor.__array__: lambda self, dtype: -1,
|
|
Tensor.__bool__: lambda self: -1,
|
|
Tensor.__contains__: lambda self, other: -1,
|
|
Tensor.__neg__: lambda self: -1,
|
|
Tensor.__invert__: lambda self: -1,
|
|
Tensor.__mod__: lambda self, other: -1,
|
|
Tensor.__imod__: lambda self, other: -1,
|
|
Tensor.__array_wrap__: lambda self, array: -1,
|
|
Tensor.__getitem__: lambda self, idx: -1,
|
|
Tensor.__deepcopy__: lambda self, memo: -1,
|
|
Tensor.__int__: lambda self: -1,
|
|
Tensor.__long__: lambda self: -1,
|
|
Tensor.__hash__: lambda self: -1,
|
|
Tensor.__index__: lambda self: -1,
|
|
Tensor.__len__: lambda self: -1,
|
|
Tensor.__format__: lambda self, format_spec: -1,
|
|
Tensor.__reduce_ex__: lambda self, proto: -1,
|
|
Tensor.__reversed__: lambda self: -1,
|
|
Tensor.__repr__: lambda self: -1,
|
|
Tensor.__setitem__: lambda self, k, v: -1,
|
|
Tensor.__setstate__: lambda self, d: -1,
|
|
Tensor.T.__get__: lambda self: -1,
|
|
Tensor._backward_hooks.__get__: lambda self: -1,
|
|
Tensor._base.__get__: lambda self: -1,
|
|
Tensor._cdata.__get__: lambda self: -1,
|
|
Tensor.grad.__get__: lambda self: -1,
|
|
Tensor._grad.__get__: lambda self: -1,
|
|
Tensor._grad_fn.__get__: lambda self: -1,
|
|
Tensor.grad_fn.__get__: lambda self: -1,
|
|
Tensor._version.__get__: lambda self: -1,
|
|
Tensor.data.__get__: lambda self: -1,
|
|
Tensor.device.__get__: lambda self: -1,
|
|
Tensor.dtype.__get__: lambda self: -1,
|
|
Tensor.is_cuda.__get__: lambda self: -1,
|
|
Tensor.is_xpu.__get__: lambda self: -1,
|
|
Tensor.is_leaf.__get__: lambda self: -1,
|
|
Tensor.is_meta.__get__: lambda self: -1,
|
|
Tensor.is_mlc.__get__: lambda self: -1,
|
|
Tensor.is_mkldnn.__get__: lambda self: -1,
|
|
Tensor.is_quantized.__get__: lambda self: -1,
|
|
Tensor.is_sparse.__get__: lambda self: -1,
|
|
Tensor.is_sparse_csr.__get__: lambda self: -1,
|
|
Tensor.is_vulkan.__get__: lambda self: -1,
|
|
Tensor.layout.__get__: lambda self: -1,
|
|
Tensor.name.__get__: lambda self: -1,
|
|
Tensor.names.__get__: lambda self: -1,
|
|
Tensor.ndim.__get__: lambda self: -1,
|
|
Tensor.output_nr.__get__: lambda self: -1,
|
|
Tensor.requires_grad.__get__: lambda self: -1,
|
|
Tensor.shape.__get__: lambda self: -1,
|
|
Tensor.volatile.__get__: lambda self: -1,
|
|
Tensor.real.__get__: lambda self: -1,
|
|
Tensor.imag.__get__: lambda self: -1,
|
|
Tensor.__cuda_array_interface__.__get__: lambda self: -1,
|
|
Tensor.type: lambda self, dtype=None, non_blocking=False, **kwargs: -1,
|
|
Tensor._coalesced_: lambda self: -1,
|
|
Tensor._dimI: lambda self: -1,
|
|
Tensor._dimV: lambda self: -1,
|
|
Tensor._indices: lambda self: -1,
|
|
Tensor._is_view: lambda self: -1,
|
|
Tensor._nnz: lambda self: -1,
|
|
Tensor.crow_indices: lambda self: -1,
|
|
Tensor.col_indices: lambda self: -1,
|
|
Tensor._update_names: lambda self, names, inplace: -1,
|
|
Tensor._values: lambda self: -1,
|
|
Tensor.align_as: lambda self, other: -1,
|
|
Tensor.align_to: lambda self, order, ellipsis_idx: -1,
|
|
Tensor.apply_: lambda self, callable: -1,
|
|
Tensor.as_strided: lambda self, size, stride: -1,
|
|
Tensor.as_strided_: lambda self, size, stride: -1,
|
|
Tensor.backward: lambda self, gradient=None, retain_graph=None, create_graph=False, inputs=None: -1,
|
|
Tensor.bfloat16: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.bool: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.byte: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.char: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.cauchy_: lambda self, median=0, sigma=1, *, generator=None: -1,
|
|
Tensor.coalesce: lambda self: -1,
|
|
Tensor._coalesced_: lambda self, coalesced: -1,
|
|
Tensor.contiguous: lambda self, memory_format=torch.contiguous_format: -1,
|
|
Tensor.copy_: lambda self, src, non_blocking=False: -1,
|
|
Tensor.cpu: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.cuda: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.xpu: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.data_ptr: lambda self: -1,
|
|
Tensor.dense_dim: lambda self: -1,
|
|
Tensor.dim: lambda self: -1,
|
|
Tensor.double: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.cdouble: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.element_size: lambda self: -1,
|
|
Tensor.expand: lambda self, size: -1,
|
|
Tensor.expand_as: lambda self, other: -1,
|
|
Tensor.exponential_: lambda self, lambd=1, *, generator=None: -1,
|
|
Tensor.fill_: lambda self, value: -1,
|
|
Tensor.fill_diagonal_: lambda self, value: -1,
|
|
Tensor.float: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.cfloat: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.geometric_: lambda self, p, *, generator=None: -1,
|
|
Tensor.get_device: lambda self: -1,
|
|
Tensor.half: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.has_names: lambda self: -1,
|
|
Tensor.indices: lambda self: -1,
|
|
Tensor.int: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.is_coalesced: lambda self: -1,
|
|
Tensor.is_contiguous: lambda self: -1,
|
|
Tensor.is_pinned: lambda self: -1,
|
|
Tensor.is_set_to: lambda self, tensor: -1,
|
|
Tensor.is_shared: lambda self: -1,
|
|
Tensor.item: lambda self: -1,
|
|
Tensor.log_normal_: lambda self, mean=1, std=2, *, generator=None: -1,
|
|
Tensor.log_softmax: lambda self, dim: -1,
|
|
Tensor.long: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.map_: lambda self, tensor, callable: -1,
|
|
Tensor.map2_: lambda self, x, y, callable: -1,
|
|
Tensor.mm: lambda self, mat2: -1,
|
|
Tensor.narrow_copy: lambda self, dimension, start, length: -1,
|
|
Tensor.ndimension: lambda self: -1,
|
|
Tensor.nelement: lambda self: -1,
|
|
Tensor.normal_: lambda self: -1,
|
|
Tensor.numpy: lambda self: -1,
|
|
Tensor.permute: lambda self, dim: -1,
|
|
Tensor.pin_memory: lambda self: -1,
|
|
Tensor.put_: lambda self, indices, tensor, accumulate=False: -1,
|
|
Tensor.qscheme: lambda self: -1,
|
|
Tensor.random_: lambda self, from_=0, to=None, *, generator=None: -1,
|
|
Tensor.record_stream: lambda self, stream: -1,
|
|
Tensor.refine_names: lambda self, names: -1,
|
|
Tensor.register_hook: lambda self, hook: -1,
|
|
Tensor.rename: lambda self, name: -1,
|
|
Tensor.repeat: lambda self, *size: -1,
|
|
Tensor.requires_grad_: lambda self, requires_grad=True: -1,
|
|
Tensor.reshape_as: lambda self, other: -1,
|
|
Tensor.resize: lambda self, *size: -1,
|
|
Tensor.resize_: lambda self, size: -1,
|
|
Tensor.resize_as: lambda self, other: -1,
|
|
Tensor.retain_grad: lambda self: -1,
|
|
Tensor.set_: lambda self, source=None, storage_offset=0, size=None, stride=None: -1,
|
|
Tensor.share_memory_: lambda self: -1,
|
|
Tensor.short: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.size: lambda self: -1,
|
|
Tensor.sparse_dim: lambda self: -1,
|
|
Tensor.sparse_mask: lambda self, mask: -1,
|
|
Tensor.sparse_resize_: lambda self, size1, size2, dense_dim: -1,
|
|
Tensor.sparse_resize_and_clear_: lambda self, size1, size2, dense_dim: -1,
|
|
Tensor.sspaddmm: lambda self, mat1, mat2, beta=1, alpha=1, out=None: -1,
|
|
Tensor.storage: lambda self: -1,
|
|
Tensor.storage_offset: lambda self: -1,
|
|
Tensor.storage_type: lambda self: -1,
|
|
Tensor.sum_to_size: lambda self, size: -1,
|
|
Tensor.tile: lambda self, *reps: -1,
|
|
Tensor.to: lambda self, dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format: -1,
|
|
Tensor.to_dense: lambda self: -1,
|
|
Tensor.to_sparse: lambda self: -1,
|
|
Tensor.tolist: lambda self: -1,
|
|
Tensor.to_mkldnn: lambda self: -1,
|
|
Tensor.type_as: lambda self, other: -1,
|
|
Tensor.unfold: lambda self, dimension, size, step: -1,
|
|
Tensor.uniform_: lambda self, from_=0, to=1: -1,
|
|
Tensor.values: lambda self: -1,
|
|
Tensor.view: lambda self, shape: -1,
|
|
Tensor.view_as: lambda self, other: -1,
|
|
Tensor.zero_: lambda self: -1,
|
|
torch.linalg.lstsq: lambda self, b, cond=None, driver=None: -1,
|
|
}
|
|
|
|
ret2 = {}
|
|
ignored = get_ignored_functions()
|
|
|
|
for k, v in ret.items():
|
|
# Generate methods like __add__ and add_ by default from add
|
|
names = [
|
|
k.__name__, # Default method
|
|
k.__name__ + "_", # Inplace variant
|
|
"__" + k.__name__ + "__", # Dunder method
|
|
"__i" + k.__name__ + "__", # Inplace dunder method
|
|
"__r" + k.__name__ + "__", # Reverse dunder method
|
|
]
|
|
|
|
if k.__name__.startswith("bitwise_"):
|
|
# bitwise_<op> have dunder methods of the form __<op>__
|
|
# And so on.
|
|
subname = k.__name__[len("bitwise_"):]
|
|
names.extend([
|
|
"__" + subname + "__",
|
|
"__i" + subname + "__",
|
|
"__r" + subname + "__"
|
|
])
|
|
|
|
for name in names:
|
|
func = getattr(Tensor, name, None)
|
|
if callable(func) and func not in ret and func not in ignored:
|
|
ret2[func] = v
|
|
|
|
ret.update(ret2)
|
|
return ret
|
|
|
|
def wrap_torch_function(dispatcher: Callable):
|
|
"""Wraps a given function with ``__torch_function__`` -related functionality.
|
|
|
|
Parameters
|
|
----------
|
|
dispatcher: Callable
|
|
A callable that returns an iterable of Tensor-likes passed into the function.
|
|
|
|
Note
|
|
----
|
|
This decorator may reduce the performance of your code. Generally, it's enough to express
|
|
your code as a series of functions that, themselves, support __torch_function__. If you
|
|
find yourself in the rare situation where this is not the case, e.g. if you're wrapping a
|
|
low-level library and you also need it to work for Tensor-likes, then this function is available.
|
|
|
|
Examples
|
|
--------
|
|
>>> def dispatcher(a): # Must have the same signature as func
|
|
... return (a,)
|
|
>>> @torch.overrides.wrap_torch_function(dispatcher)
|
|
>>> def func(a): # This will make func dispatchable by __torch_function__
|
|
... return a + 0
|
|
"""
|
|
def inner(func):
|
|
@functools.wraps(func)
|
|
def wrapped(*args, **kwargs):
|
|
relevant_args = dispatcher(*args, **kwargs)
|
|
if has_torch_function(relevant_args):
|
|
return handle_torch_function(func, relevant_args, *args, **kwargs)
|
|
|
|
return func(*args, **kwargs)
|
|
|
|
return wrapped
|
|
|
|
return inner
|
|
|
|
def _get_overloaded_args(relevant_args: Iterable[Any]) -> List[Any]:
|
|
"""Returns a list of arguments on which to call __torch_function__.
|
|
|
|
Checks arguments in relevant_args for __torch_function__ implementations,
|
|
storing references to the arguments and their types in overloaded_args and
|
|
overloaded_types in order of calling precedence. Only distinct types are
|
|
considered. If a type is a subclass of another type it will have higher
|
|
precedence, otherwise the precedence order is the same as the order of
|
|
arguments in relevant_args, that is, from left-to-right in the argument list.
|
|
|
|
The precedence-determining algorithm implemented in this function is
|
|
described in `NEP-0018`_.
|
|
|
|
See torch::append_overloaded_arg for the equivalent function in the C++
|
|
implementation.
|
|
|
|
Parameters
|
|
----------
|
|
relevant_args : iterable of array-like
|
|
Iterable of array-like arguments to check for __torch_function__
|
|
methods.
|
|
|
|
Returns
|
|
-------
|
|
overloaded_args : list
|
|
Arguments from relevant_args on which to call __torch_function__
|
|
methods, in the order in which they should be called.
|
|
|
|
.. _NEP-0018:
|
|
https://numpy.org/neps/nep-0018-array-function-protocol.html
|
|
"""
|
|
# Runtime is O(num_arguments * num_unique_types)
|
|
overloaded_types: Set[Type] = set()
|
|
overloaded_args: List[Any] = []
|
|
for arg in relevant_args:
|
|
arg_type = type(arg)
|
|
# We only collect arguments if they have a unique type, which ensures
|
|
# reasonable performance even with a long list of possibly overloaded
|
|
# arguments.
|
|
if (arg_type not in overloaded_types and hasattr(arg_type, '__torch_function__')):
|
|
# Create lists explicitly for the first type (usually the only one
|
|
# done) to avoid setting up the iterator for overloaded_args.
|
|
if overloaded_types:
|
|
overloaded_types.add(arg_type)
|
|
# By default, insert argument at the end, but if it is
|
|
# subclass of another argument, insert it before that argument.
|
|
# This ensures "subclasses before superclasses".
|
|
index = len(overloaded_args)
|
|
for i, old_arg in enumerate(overloaded_args):
|
|
if issubclass(arg_type, type(old_arg)):
|
|
index = i
|
|
break
|
|
overloaded_args.insert(index, arg)
|
|
else:
|
|
overloaded_types = {arg_type}
|
|
overloaded_args = [arg]
|
|
return overloaded_args
|
|
|
|
|
|
def handle_torch_function(
|
|
public_api: Callable, relevant_args: Iterable[Any], *args, **kwargs) -> Any:
|
|
"""Implement a function with checks for ``__torch_function__`` overrides.
|
|
|
|
See torch::autograd::handle_torch_function for the equivalent of this
|
|
function in the C++ implementation.
|
|
|
|
Arguments
|
|
---------
|
|
public_api : function
|
|
Function exposed by the public torch API originally called like
|
|
``public_api(*args, **kwargs)`` on which arguments are now being
|
|
checked.
|
|
relevant_args : iterable
|
|
Iterable of arguments to check for __torch_function__ methods.
|
|
args : tuple
|
|
Arbitrary positional arguments originally passed into ``public_api``.
|
|
kwargs : tuple
|
|
Arbitrary keyword arguments originally passed into ``public_api``.
|
|
|
|
Returns
|
|
-------
|
|
object
|
|
Result from calling ``implementation`` or an ``__torch_function__``
|
|
method, as appropriate.
|
|
|
|
Raises
|
|
------
|
|
TypeError : if no implementation is found.
|
|
|
|
Example
|
|
-------
|
|
>>> def func(a):
|
|
... if type(a) is not torch.Tensor: # This will make func dispatchable by __torch_function__
|
|
... return handle_torch_function(func, (a,), a)
|
|
... return a + 0
|
|
"""
|
|
# Check for __torch_function__ methods.
|
|
overloaded_args = _get_overloaded_args(relevant_args)
|
|
# overloaded_args already have unique types.
|
|
types = tuple(map(type, overloaded_args))
|
|
|
|
# Call overrides
|
|
for overloaded_arg in overloaded_args:
|
|
# Use `public_api` instead of `implementation` so __torch_function__
|
|
# implementations can do equality/identity comparisons.
|
|
result = overloaded_arg.__torch_function__(public_api, types, args, kwargs)
|
|
|
|
if result is not NotImplemented:
|
|
return result
|
|
|
|
func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
|
|
raise TypeError("no implementation found for '{}' on types that implement "
|
|
'__torch_function__: {}'
|
|
.format(func_name, [type(arg) for arg in overloaded_args]))
|
|
|
|
has_torch_function = _add_docstr(
|
|
_has_torch_function,
|
|
r"""Check for __torch_function__ implementations in the elements of an iterable.
|
|
Considers exact ``Tensor`` s and ``Parameter`` s non-dispatchable.
|
|
Arguments
|
|
---------
|
|
relevant_args : iterable
|
|
Iterable or aguments to check for __torch_function__ methods.
|
|
Returns
|
|
-------
|
|
bool
|
|
True if any of the elements of relevant_args have __torch_function__
|
|
implementations, False otherwise.
|
|
See Also
|
|
________
|
|
torch.is_tensor_like
|
|
Checks if something is a Tensor-like, including an exact ``Tensor``.
|
|
"""
|
|
)
|
|
|
|
has_torch_function_unary = _add_docstr(
|
|
_has_torch_function_unary,
|
|
r"""Special case of `has_torch_function` for single inputs.
|
|
Instead of:
|
|
`has_torch_function((t,))`
|
|
call:
|
|
`has_torch_function_unary(t)`
|
|
which skips unnecessary packing and unpacking work.
|
|
"""
|
|
)
|
|
|
|
has_torch_function_variadic = _add_docstr(
|
|
_has_torch_function_variadic,
|
|
r"""Special case of `has_torch_function` that skips tuple creation.
|
|
|
|
This uses the METH_FASTCALL protocol introduced in Python 3.7; for 3.6
|
|
and before it has roughly equivilent performance compared to
|
|
`has_torch_function`.
|
|
|
|
Instead of:
|
|
`has_torch_function((a, b))`
|
|
call:
|
|
`has_torch_function_variadic(a, b)`
|
|
which skips unnecessary packing and unpacking work.
|
|
"""
|
|
)
|
|
|
|
@functools.lru_cache(None)
|
|
def get_overridable_functions() -> Dict[Any, List[Callable]]:
|
|
"""List functions that are overridable via __torch_function__
|
|
|
|
Returns
|
|
-------
|
|
Dict[Any, List[Callable]]
|
|
A dictionary that maps namespaces that contain overridable functions
|
|
to functions in that namespace that can be overridden.
|
|
"""
|
|
overridable_funcs = collections.defaultdict(list)
|
|
tested_namespaces = [
|
|
(torch, torch.__all__ + dir(torch._C._VariableFunctions)),
|
|
(torch.functional, torch.functional.__all__),
|
|
(torch.nn.functional, dir(torch.nn.functional)),
|
|
(torch.Tensor, dir(torch.Tensor)),
|
|
(torch.linalg, dir(torch.linalg)),
|
|
(torch.fft, dir(torch.fft)),
|
|
(torch.special, dir(torch.special)),
|
|
]
|
|
for namespace, ns_funcs in tested_namespaces:
|
|
for func_name in ns_funcs:
|
|
# ignore private functions or functions that are deleted in torch.__init__
|
|
if namespace is not torch.Tensor:
|
|
if func_name.startswith('_'):
|
|
continue
|
|
elif func_name.endswith('_'):
|
|
continue
|
|
elif not func_name[0].islower():
|
|
continue
|
|
elif func_name == 'unique_dim':
|
|
continue
|
|
else:
|
|
func = getattr(namespace, func_name)
|
|
if getattr(object, func_name, None) == func:
|
|
continue
|
|
if func_name == '__weakref__':
|
|
continue
|
|
func = getattr(namespace, func_name)
|
|
if namespace is torch.Tensor and getattr(object, func_name, None) == func:
|
|
continue
|
|
# ignore re-exported modules
|
|
if isinstance(func, types.ModuleType):
|
|
continue
|
|
# ignore __future__ imports
|
|
if isinstance(func, __future__._Feature):
|
|
continue
|
|
|
|
if not callable(func) and hasattr(func, "__get__"):
|
|
overridable_funcs[func].append(func.__get__)
|
|
continue
|
|
|
|
if not callable(func):
|
|
continue
|
|
|
|
# cannot be overriden by __torch_function__
|
|
if func in get_ignored_functions():
|
|
msg = ("{}.{} is in the tuple returned by torch._overrides.get_ignored_functions "
|
|
"but still has an explicit override")
|
|
assert func not in get_testing_overrides(), msg.format(namespace, func.__name__)
|
|
continue
|
|
overridable_funcs[namespace].append(func)
|
|
return overridable_funcs
|
|
|
|
@functools.lru_cache(None)
|
|
def _get_tensor_methods() -> Set[Callable]:
|
|
""" Returns a set of the overridable methods on ``torch.Tensor`` """
|
|
overridable_funcs = get_overridable_functions()
|
|
methods = set(overridable_funcs[torch.Tensor])
|
|
return methods
|
|
|
|
def is_tensor_method_or_property(func: Callable) -> bool:
|
|
"""
|
|
Returns True if the function passed in is a handler for a
|
|
method or property belonging to ``torch.Tensor``, as passed
|
|
into ``__torch_function__``.
|
|
|
|
.. note::
|
|
For properties, their ``__get__`` method must be passed in.
|
|
|
|
This may be needed, in particular, for the following reasons:
|
|
|
|
1. Methods/properties sometimes don't contain a `__module__` slot.
|
|
2. They require that the first passed-in argument is an instance
|
|
of ``torch.Tensor``.
|
|
|
|
Examples
|
|
--------
|
|
>>> is_tensor_method_or_property(torch.Tensor.add)
|
|
True
|
|
>>> is_tensor_method_or_property(torch.add)
|
|
False
|
|
"""
|
|
return func in _get_tensor_methods() or func.__name__ == "__get__"
|
|
|
|
def is_tensor_like(inp):
|
|
"""
|
|
Returns ``True`` if the passed-in input is a Tensor-like.
|
|
|
|
Currently, this occurs whenever there's a ``__torch_function__``
|
|
attribute on the type of the input.
|
|
|
|
Examples
|
|
--------
|
|
A subclass of tensor is generally a Tensor-like.
|
|
|
|
>>> class SubTensor(torch.Tensor): ...
|
|
>>> is_tensor_like(SubTensor([0]))
|
|
True
|
|
|
|
Built-in or user types aren't usually Tensor-like.
|
|
|
|
>>> is_tensor_like(6)
|
|
False
|
|
>>> is_tensor_like(None)
|
|
False
|
|
>>> class NotATensor: ...
|
|
>>> is_tensor_like(NotATensor())
|
|
False
|
|
|
|
But, they can be made Tensor-like by implementing __torch_function__.
|
|
|
|
>>> class TensorLike:
|
|
... def __torch_function__(self, func, types, args, kwargs):
|
|
... return -1
|
|
>>> is_tensor_like(TensorLike())
|
|
True
|
|
"""
|
|
return type(inp) is torch.Tensor or hasattr(type(inp), "__torch_function__")
|