mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11943 See title Reviewed By: ezyang Differential Revision: D9992645 fbshipit-source-id: e8f80d6ea762971513e5e8072975ceea53e1f11a
92 lines
2.5 KiB
C++
92 lines
2.5 KiB
C++
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "caffe2/core/context_gpu.h"
|
|
#include "caffe2/operators/batch_matmul_op.h"
|
|
|
|
namespace caffe2 {
|
|
namespace {
|
|
|
|
class BatchMatMulOpGPUTest : public testing::Test {
|
|
protected:
|
|
void SetUp() override {
|
|
if (!HasCudaGPU()) {
|
|
return;
|
|
}
|
|
option_.set_device_type(PROTO_CUDA);
|
|
cuda_context_ = make_unique<CUDAContext>(option_);
|
|
def_.set_name("test");
|
|
def_.set_type("BatchMatMul");
|
|
def_.add_input("A");
|
|
def_.add_input("B");
|
|
def_.add_output("Y");
|
|
def_.mutable_device_option()->set_device_type(PROTO_CUDA);
|
|
}
|
|
|
|
void AddConstInput(
|
|
const std::vector<int64_t>& dims,
|
|
const float value,
|
|
const string& name) {
|
|
Blob* blob = ws_.CreateBlob(name);
|
|
auto* tensor = blob->GetMutableTensor(CUDA);
|
|
tensor->Resize(dims);
|
|
math::Set<float, CUDAContext>(
|
|
tensor->size(),
|
|
value,
|
|
tensor->template mutable_data<float>(),
|
|
cuda_context_.get());
|
|
}
|
|
|
|
void VerifyOutput(const std::vector<int64_t>& dims, const float value) const {
|
|
const Blob* Y_blob = ws_.GetBlob("Y");
|
|
ASSERT_NE(nullptr, Y_blob);
|
|
const auto& Y = Y_blob->Get<Tensor>();
|
|
Tensor Y_cpu(Y, CPU);
|
|
const auto& Y_dims = Y_cpu.dims();
|
|
ASSERT_EQ(dims.size(), Y_dims.size());
|
|
for (std::size_t i = 0; i < dims.size(); ++i) {
|
|
ASSERT_EQ(dims[i], Y_dims[i]);
|
|
}
|
|
for (int i = 0; i < Y_cpu.size(); ++i) {
|
|
EXPECT_FLOAT_EQ(value, Y_cpu.data<float>()[i]);
|
|
}
|
|
}
|
|
|
|
DeviceOption option_;
|
|
std::unique_ptr<CUDAContext> cuda_context_;
|
|
Workspace ws_;
|
|
OperatorDef def_;
|
|
};
|
|
|
|
TEST_F(BatchMatMulOpGPUTest, BatchMatMulOpGPUNormalTest) {
|
|
if (!HasCudaGPU()) {
|
|
return;
|
|
}
|
|
AddConstInput(std::vector<int64_t>{3, 5, 10}, 1.0f, "A");
|
|
AddConstInput(std::vector<int64_t>{3, 10, 6}, 1.0f, "B");
|
|
std::unique_ptr<OperatorBase> op(CreateOperator(def_, &ws_));
|
|
ASSERT_NE(nullptr, op);
|
|
ASSERT_TRUE(op->Run());
|
|
VerifyOutput(std::vector<int64_t>{3, 5, 6}, 10.0f);
|
|
}
|
|
|
|
TEST_F(BatchMatMulOpGPUTest, BatchMatMulOpGPUBroadcastTest) {
|
|
if (!HasCudaGPU()) {
|
|
return;
|
|
}
|
|
auto* arg = def_.add_arg();
|
|
arg->set_name("broadcast");
|
|
arg->set_i(1);
|
|
AddConstInput(std::vector<int64_t>{3, 5, 10}, 1.0f, "A");
|
|
AddConstInput(std::vector<int64_t>{2, 3, 10, 6}, 1.0f, "B");
|
|
std::unique_ptr<OperatorBase> op(CreateOperator(def_, &ws_));
|
|
ASSERT_NE(nullptr, op);
|
|
ASSERT_TRUE(op->Run());
|
|
VerifyOutput(std::vector<int64_t>{2, 3, 5, 6}, 10.0f);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace caffe2
|