mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11943 See title Reviewed By: ezyang Differential Revision: D9992645 fbshipit-source-id: e8f80d6ea762971513e5e8072975ceea53e1f11a
146 lines
4.5 KiB
C++
146 lines
4.5 KiB
C++
#ifndef CAFFE2_OPERATORS_BATCH_GATHER_OPS_H_
|
|
#define CAFFE2_OPERATORS_BATCH_GATHER_OPS_H_
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/operator.h"
|
|
#include "caffe2/utils/math.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <class Context>
|
|
class BatchGatherOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
USE_SIMPLE_CTOR_DTOR(BatchGatherOp)
|
|
|
|
bool RunOnDevice() override {
|
|
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
|
|
this, this->template Input<Tensor>(INDICES, CPU));
|
|
}
|
|
|
|
template <typename TInd>
|
|
bool DoRunWithType() {
|
|
auto& data = Input(DATA);
|
|
auto& indices = Input(INDICES);
|
|
auto* output = Output(0);
|
|
|
|
CAFFE_ENFORCE_GE(data.ndim(), 2, "DATA should be at least 2-D");
|
|
|
|
vector<int64_t> shape;
|
|
shape.push_back(data.dim(0));
|
|
shape.insert(shape.end(), indices.dims().begin(), indices.dims().end());
|
|
shape.insert(shape.end(), data.dims().begin() + 2, data.dims().end());
|
|
output->Resize(shape);
|
|
|
|
auto block_size = data.size_from_dim(2);
|
|
auto block_bytesize = block_size * data.meta().itemsize();
|
|
auto N = indices.size();
|
|
auto data_batch_bytesize = data.size_from_dim(1) * data.meta().itemsize();
|
|
auto gathered_batch_bytesize =
|
|
N * data.size_from_dim(2) * data.meta().itemsize();
|
|
const TInd* idxs = indices.template data<TInd>();
|
|
auto src_base = static_cast<const char*>(data.raw_data());
|
|
auto out = static_cast<char*>(output->raw_mutable_data(data.meta()));
|
|
|
|
for (auto batch = 0; batch < data.dim(0); ++batch) {
|
|
for (auto i = 0; i < N; ++i) {
|
|
auto idx = idxs[i];
|
|
CAFFE_ENFORCE(
|
|
0 <= idx && idx < data.dim(1),
|
|
"INDICES element is out of DATA bounds, id=",
|
|
idx,
|
|
" data_dim=",
|
|
data.dim(1));
|
|
auto src =
|
|
src_base + idx * block_bytesize + batch * data_batch_bytesize;
|
|
auto dst = out + i * block_bytesize + batch * gathered_batch_bytesize;
|
|
context_.CopyItemsSameDevice(data.meta(), block_size, src, dst);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
INPUT_TAGS(DATA, INDICES);
|
|
};
|
|
|
|
template <class Context>
|
|
class BatchGatherGradientOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
USE_SIMPLE_CTOR_DTOR(BatchGatherGradientOp);
|
|
|
|
bool RunOnDevice() override {
|
|
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
|
|
this, this->template Input<Tensor>(INDICES, CPU));
|
|
}
|
|
|
|
template <typename TInd>
|
|
bool DoRunWithType() {
|
|
return DispatchHelper<
|
|
TensorTypes2<float, GenericTensorImplementation>,
|
|
TInd>::call(this, Input(DATA));
|
|
}
|
|
|
|
template <typename TInd, typename TData>
|
|
bool DoRunWithType2() {
|
|
auto& data = Input(DATA);
|
|
auto& indices = Input(INDICES);
|
|
auto& grad = Input(GRAD);
|
|
auto* output = Output(0);
|
|
|
|
CAFFE_ENFORCE_GE(data.ndim(), 2, "DATA should be at least 2-D");
|
|
CAFFE_ENFORCE_EQ(
|
|
data.dim(0), grad.dim(0), "batch sizes should be the same");
|
|
|
|
output->ResizeLike(data);
|
|
TData* out_data = output->template mutable_data<TData>();
|
|
if (data.size() <= 0) {
|
|
return true;
|
|
}
|
|
|
|
memset(out_data, 0, output->nbytes());
|
|
|
|
const TData* grad_data = grad.template data<TData>();
|
|
|
|
auto block_size = data.size_from_dim(2);
|
|
auto N = indices.size();
|
|
auto data_batch_size = data.size_from_dim(1);
|
|
auto gathered_batch_size = N * data.size_from_dim(2);
|
|
const TInd* idxs = indices.template data<TInd>();
|
|
|
|
for (auto batch = 0; batch < grad.dim(0); ++batch) {
|
|
for (auto i = 0; i < N; ++i) {
|
|
auto idx = idxs[i];
|
|
CAFFE_ENFORCE(
|
|
0 <= idx && idx < data.dim(1),
|
|
"INDICES element is out of DATA bounds, id=",
|
|
idx,
|
|
" data_dim=",
|
|
data.dim(1));
|
|
math::Add(
|
|
block_size,
|
|
out_data + idx * block_size + batch * data_batch_size,
|
|
grad_data + i * block_size + batch * gathered_batch_size,
|
|
out_data + idx * block_size + batch * data_batch_size,
|
|
&context_);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename TInd>
|
|
bool DoRunWithOtherType2() {
|
|
CAFFE_THROW(
|
|
"BatchGatherGradient is not implemented on tensor of type ",
|
|
Input(DATA).meta().name(),
|
|
"Consider adding it a type in the list DispatchHelper or implementing "
|
|
"a generic version (which won't work for duplicated indices though)");
|
|
}
|
|
|
|
INPUT_TAGS(DATA, INDICES, GRAD);
|
|
};
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_OPERATORS_BATCH_GATHER_OPS_H_
|