mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-03 15:35:04 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23891 This adds an initial set of testing coverage for quantization that checks if the modules can be scripted. Testing for tracing and serialization is forthcoming Test Plan: Imported from OSS Differential Revision: D16698045 Pulled By: jamesr66a fbshipit-source-id: 96d80d938b816220af72359165a7b96d998a30c9
354 lines
13 KiB
Python
354 lines
13 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import unittest
|
|
import torch
|
|
import torch.nn.quantized as nnq
|
|
from torch.quantization import \
|
|
quantize, prepare, convert, prepare_qat, quantize_qat, fuse_modules
|
|
|
|
from common_utils import run_tests, TEST_WITH_UBSAN
|
|
from common_quantization import QuantizationTestCase, SingleLayerLinearModel, \
|
|
SkipQuantModel, QuantStubModel, \
|
|
ModForFusion, ManualLinearQATModel, ManualConvLinearQATModel, test_only_eval_fn, test_only_train_fn
|
|
|
|
from common_quantization import AnnotatedTwoLayerLinearModel, AnnotatedNestedModel, \
|
|
AnnotatedSubNestedModel, AnnotatedCustomConfigNestedModel
|
|
|
|
@unittest.skipIf(TEST_WITH_UBSAN or not torch.fbgemm_is_cpu_supported(),
|
|
'Quantization requires FBGEMM. FBGEMM does not play'
|
|
' well with UBSAN at the moment, so we skip the test if'
|
|
' we are in a UBSAN environment.')
|
|
class PostTrainingQuantTest(QuantizationTestCase):
|
|
def test_single_layer(self):
|
|
r"""Quantize SingleLayerLinearModel which has one Linear module, make sure it is swapped
|
|
to nnq.Linear which is the quantized version of the module
|
|
"""
|
|
model = SingleLayerLinearModel()
|
|
model = prepare(model)
|
|
# Check if observers and quant/dequant nodes are inserted
|
|
self.checkNoPrepModules(model)
|
|
self.checkHasPrepModules(model.fc1)
|
|
self.checkObservers(model)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkNoPrepModules(model)
|
|
self.checkHasPrepModules(model.fc1)
|
|
self.checkWrappedQuantizedLinear(model.fc1)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(SingleLayerLinearModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
def test_two_layers(self):
|
|
r"""TwoLayerLinearModel has two Linear modules but we only quantize the second one
|
|
`fc2`, and `fc1`is not quantized
|
|
"""
|
|
model = AnnotatedTwoLayerLinearModel()
|
|
model = prepare(model)
|
|
|
|
self.checkNoPrepModules(model)
|
|
self.checkObservers(model)
|
|
self.checkNoPrepModules(model.fc1)
|
|
self.checkHasPrepModules(model.fc2)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkNoPrepModules(model)
|
|
self.checkNoPrepModules(model.fc1)
|
|
self.checkHasPrepModules(model.fc2)
|
|
self.assertEqual(type(model.fc1), torch.nn.Linear)
|
|
self.checkWrappedQuantizedLinear(model.fc2)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(AnnotatedTwoLayerLinearModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
def test_nested1(self):
|
|
r"""Test quantization for nested model, top level 'fc3' and
|
|
'fc1' of submodule 'sub2', 'sub2.fc2' is not quantized
|
|
"""
|
|
model = AnnotatedNestedModel()
|
|
|
|
def checkPrepModules(model, before_calib=False):
|
|
if before_calib:
|
|
self.checkObservers(model)
|
|
self.checkNoPrepModules(model)
|
|
self.checkNoPrepModules(model.sub1)
|
|
self.checkNoPrepModules(model.sub1.fc)
|
|
self.checkNoPrepModules(model.sub1.relu)
|
|
self.checkNoPrepModules(model.sub2)
|
|
self.checkHasPrepModules(model.sub2.fc1)
|
|
self.checkNoPrepModules(model.sub2.fc2)
|
|
self.checkHasPrepModules(model.fc3)
|
|
|
|
model = prepare(model)
|
|
checkPrepModules(model, True)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
checkPrepModules(model)
|
|
self.checkLinear(model.sub1.fc)
|
|
self.checkWrappedQuantizedLinear(model.fc3)
|
|
self.checkWrappedQuantizedLinear(model.sub2.fc1)
|
|
self.checkLinear(model.sub2.fc2)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(AnnotatedNestedModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
|
|
def test_nested2(self):
|
|
model = AnnotatedSubNestedModel()
|
|
model = prepare(model)
|
|
|
|
def checkPrepModules(model, before_calib=False):
|
|
if before_calib:
|
|
self.checkObservers(model)
|
|
self.checkNoPrepModules(model)
|
|
self.checkNoPrepModules(model.sub1)
|
|
self.checkNoPrepModules(model.sub1.fc)
|
|
self.checkNoPrepModules(model.sub1.relu)
|
|
self.checkHasPrepModules(model.sub2)
|
|
self.checkNoPrepModules(model.sub2.module.fc1)
|
|
self.checkNoPrepModules(model.sub2.module.fc2)
|
|
self.checkHasPrepModules(model.fc3)
|
|
|
|
checkPrepModules(model, True)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
checkPrepModules(model)
|
|
self.checkLinear(model.sub1.fc)
|
|
self.assertEqual(type(model.sub1.relu), torch.nn.ReLU)
|
|
self.checkQuantizedLinear(model.sub2.module.fc1)
|
|
self.checkQuantizedLinear(model.sub2.module.fc2)
|
|
self.checkWrappedQuantizedLinear(model.fc3)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(AnnotatedSubNestedModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
def test_nested3(self):
|
|
r"""More complicated nested test case with child qconfig overrides
|
|
parent qconfig
|
|
"""
|
|
model = AnnotatedCustomConfigNestedModel()
|
|
model = prepare(model)
|
|
|
|
def checkPrepModules(model, before_calib=False):
|
|
if before_calib:
|
|
self.checkObservers(model)
|
|
self.checkNoPrepModules(model)
|
|
self.checkNoPrepModules(model.sub1)
|
|
self.checkNoPrepModules(model.sub1.fc)
|
|
self.checkNoPrepModules(model.sub1.relu)
|
|
self.checkNoPrepModules(model.sub2)
|
|
self.checkHasPrepModules(model.sub2.fc1)
|
|
self.checkHasPrepModules(model.sub2.fc2)
|
|
self.checkHasPrepModules(model.fc3)
|
|
|
|
checkPrepModules(model, True)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
checkPrepModules(model)
|
|
self.checkWrappedQuantizedLinear(model.sub2.fc1)
|
|
self.checkWrappedQuantizedLinear(model.sub2.fc2)
|
|
self.checkWrappedQuantizedLinear(model.fc3)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(AnnotatedCustomConfigNestedModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
def test_skip_quant(self):
|
|
r"""The case when we want to skip quantizing some layers
|
|
"""
|
|
|
|
model = SkipQuantModel()
|
|
prepare(model)
|
|
self.checkObservers(model)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.checkLinear(model.fc)
|
|
self.checkQuantDequant(model.sub)
|
|
self.checkQuantizedLinear(model.sub.module.fc1)
|
|
self.checkQuantizedLinear(model.sub.module.fc2)
|
|
self.assertEqual(type(model.sub.module.relu), nnq.ReLU)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(SkipQuantModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
|
|
def test_manual(self):
|
|
r"""User inserts QuantStub and DeQuantStub in model code
|
|
and call the quantization utility functions.
|
|
"""
|
|
model = QuantStubModel()
|
|
# propagate the qconfig of parents to children, model is changed
|
|
# inplace
|
|
prepare(model)
|
|
self.checkObservers(model)
|
|
|
|
test_only_eval_fn(model, self.calib_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.fc), nnq.Linear)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
# test one line API
|
|
model = quantize(QuantStubModel(), test_only_eval_fn, self.calib_data)
|
|
checkQuantized(model)
|
|
|
|
@unittest.skipIf(TEST_WITH_UBSAN or not torch.fbgemm_is_cpu_supported(),
|
|
'Quantization requires FBGEMM. FBGEMM does not play'
|
|
' well with UBSAN at the moment, so we skip the test if'
|
|
' we are in a UBSAN environment.')
|
|
class QuantizationAwareTrainingTest(QuantizationTestCase):
|
|
def test_manual(self):
|
|
model = ManualLinearQATModel()
|
|
model = prepare_qat(model)
|
|
self.checkObservers(model)
|
|
test_only_train_fn(model, self.train_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.fc1), nnq.Linear)
|
|
self.assertEqual(type(model.fc2), nnq.Linear)
|
|
test_only_eval_fn(model, self.calib_data)
|
|
self.checkScriptable(model, self.calib_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
model = quantize_qat(ManualLinearQATModel(), test_only_train_fn, self.train_data)
|
|
checkQuantized(model)
|
|
|
|
def test_eval_only_fake_quant(self):
|
|
r"""Using FakeQuant in evaluation only mode,
|
|
this is useful for estimating accuracy loss when we quantize the
|
|
network
|
|
"""
|
|
model = ManualLinearQATModel()
|
|
|
|
model = prepare_qat(model)
|
|
self.checkObservers(model)
|
|
|
|
model.eval()
|
|
test_only_eval_fn(model, self.calib_data)
|
|
|
|
def test_conv_linear(self):
|
|
model = ManualConvLinearQATModel()
|
|
|
|
model = prepare_qat(model)
|
|
self.checkObservers(model)
|
|
|
|
test_only_train_fn(model, self.img_data)
|
|
convert(model)
|
|
|
|
def checkQuantized(model):
|
|
self.assertEqual(type(model.conv), nnq.Conv2d)
|
|
self.assertEqual(type(model.fc1), nnq.Linear)
|
|
self.assertEqual(type(model.fc2), nnq.Linear)
|
|
test_only_eval_fn(model, self.img_data)
|
|
self.checkScriptable(model, self.img_data)
|
|
|
|
checkQuantized(model)
|
|
|
|
model = ManualConvLinearQATModel()
|
|
model = quantize_qat(model, test_only_train_fn, self.img_data)
|
|
checkQuantized(model)
|
|
|
|
|
|
class FusionTest(QuantizationTestCase):
|
|
def test_fuse_module_train(self):
|
|
import torch.nn._intrinsic.modules.fused as torch_fused
|
|
testMod = ModForFusion()
|
|
testMod.train()
|
|
fuse_modules(testMod, [['conv1', 'bn1', 'relu1'],
|
|
['sub1.conv', 'sub1.bn']])
|
|
self.assertEqual(type(testMod.conv1), torch_fused.ConvBnReLU2d,
|
|
"Fused Conv + BN + Relu first layer")
|
|
self.assertEqual(type(testMod.bn1), torch.nn.Identity,
|
|
"Fused Conv + BN + Relu (skipped BN)")
|
|
self.assertEqual(type(testMod.relu1), torch.nn.Identity,
|
|
"Fused Conv + BN + Relu (skipped Relu)")
|
|
|
|
self.assertEqual(type(testMod.sub1.conv), torch_fused.ConvBn2d,
|
|
"Fused submodule Conv + BN")
|
|
self.assertEqual(type(testMod.sub1.bn), torch.nn.Identity,
|
|
"Fused submodule Conv + BN (skipped BN)")
|
|
self.assertEqual(type(testMod.sub2.conv), torch.nn.Conv2d,
|
|
"Non-fused submodule Conv")
|
|
self.assertEqual(type(testMod.sub2.bn), torch.nn.BatchNorm2d,
|
|
"Non-fused submodule BN")
|
|
|
|
def test_fuse_module_eval(self):
|
|
import torch.nn._intrinsic.modules.fused as torch_fused
|
|
testMod = ModForFusion()
|
|
testMod.eval()
|
|
fuse_modules(testMod, [['conv1', 'bn1', 'relu1'] ,
|
|
['sub1.conv', 'sub1.bn']])
|
|
self.assertEqual(type(testMod.conv1), torch_fused.ConvReLU2d,
|
|
"Fused Conv + BN + Relu first layer (BN is folded)")
|
|
self.assertEqual(type(testMod.conv1[0]), torch.nn.Conv2d,
|
|
"Fused Conv + BN + Relu (Conv + folded BN only)")
|
|
self.assertEqual(type(testMod.conv1[1]), torch.nn.ReLU,
|
|
"Fused Conv + BN + Relu second layer (Relu only)")
|
|
self.assertEqual(type(testMod.bn1), torch.nn.Identity,
|
|
"Fused Conv + BN + Relu second layer (Skipped BN)")
|
|
self.assertEqual(type(testMod.relu1), torch.nn.Identity,
|
|
"Fused Conv + BN + Relu second layer (Skipped Relu)")
|
|
|
|
self.assertEqual(type(testMod.sub1.conv), torch.nn.Conv2d,
|
|
"Fused submodule Conv + folded BN")
|
|
self.assertEqual(type(testMod.sub1.bn), torch.nn.Identity,
|
|
"Fused submodule (skipped BN)")
|
|
self.assertEqual(type(testMod.sub2.conv), torch.nn.Conv2d,
|
|
"Non-fused submodule Conv")
|
|
self.assertEqual(type(testMod.sub2.bn), torch.nn.BatchNorm2d,
|
|
"Non-fused submodule BN")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|