mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
To avoid outage on HUD, I plan to migrate perf stats to dynamoDB as follows: 1. Upload perf stats to both Rockset and dynamoDB 2. Copy all the existing content from Rockset to dynamoDB 3. Create new Rockset tables to map to dynamoDB 4. Switch HUD to use the new Rockset tables (temporarily) 5. Delete the existing tables This depends on https://github.com/pytorch-labs/pytorch-gha-infra/pull/422 ### Testing ``` python3 -m tools.stats.upload_dynamo_perf_stats --workflow-run-id 9770217910 --workflow-run-attempt 1 --repo "pytorch/pytorch" --head-branch "gh/shunting314/162/head" --rockset-collection torch_dynamo_perf_stats --rockset-workspace inductor --dynamodb-table torchci-dynamo-perf-stats --match-filename "^inductor_" ... Writing 1607 documents to DynamoDB torchci-dynamo-perf-stats ``` And confirm the same number of documents is on the table  Pull Request resolved: https://github.com/pytorch/pytorch/pull/129544 Approved by: https://github.com/clee2000
261 lines
7.6 KiB
Python
261 lines
7.6 KiB
Python
from __future__ import annotations
|
|
|
|
import gzip
|
|
import io
|
|
import json
|
|
import os
|
|
import zipfile
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
import boto3 # type: ignore[import]
|
|
import requests
|
|
import rockset # type: ignore[import]
|
|
|
|
|
|
PYTORCH_REPO = "https://api.github.com/repos/pytorch/pytorch"
|
|
S3_RESOURCE = boto3.resource("s3")
|
|
|
|
# NB: In CI, a flaky test is usually retried 3 times, then the test file would be rerun
|
|
# 2 more times
|
|
MAX_RETRY_IN_NON_DISABLED_MODE = 3 * 3
|
|
# NB: Rockset has an upper limit of 5000 documents in one request
|
|
BATCH_SIZE = 5000
|
|
|
|
|
|
def _get_request_headers() -> dict[str, str]:
|
|
return {
|
|
"Accept": "application/vnd.github.v3+json",
|
|
"Authorization": "token " + os.environ["GITHUB_TOKEN"],
|
|
}
|
|
|
|
|
|
def _get_artifact_urls(prefix: str, workflow_run_id: int) -> dict[Path, str]:
|
|
"""Get all workflow artifacts with 'test-report' in the name."""
|
|
response = requests.get(
|
|
f"{PYTORCH_REPO}/actions/runs/{workflow_run_id}/artifacts?per_page=100",
|
|
headers=_get_request_headers(),
|
|
)
|
|
artifacts = response.json()["artifacts"]
|
|
while "next" in response.links.keys():
|
|
response = requests.get(
|
|
response.links["next"]["url"], headers=_get_request_headers()
|
|
)
|
|
artifacts.extend(response.json()["artifacts"])
|
|
|
|
artifact_urls = {}
|
|
for artifact in artifacts:
|
|
if artifact["name"].startswith(prefix):
|
|
artifact_urls[Path(artifact["name"])] = artifact["archive_download_url"]
|
|
return artifact_urls
|
|
|
|
|
|
def _download_artifact(
|
|
artifact_name: Path, artifact_url: str, workflow_run_attempt: int
|
|
) -> Path:
|
|
# [Artifact run attempt]
|
|
# All artifacts on a workflow share a single namespace. However, we can
|
|
# re-run a workflow and produce a new set of artifacts. To avoid name
|
|
# collisions, we add `-runattempt1<run #>-` somewhere in the artifact name.
|
|
#
|
|
# This code parses out the run attempt number from the artifact name. If it
|
|
# doesn't match the one specified on the command line, skip it.
|
|
atoms = str(artifact_name).split("-")
|
|
for atom in atoms:
|
|
if atom.startswith("runattempt"):
|
|
found_run_attempt = int(atom[len("runattempt") :])
|
|
if workflow_run_attempt != found_run_attempt:
|
|
print(
|
|
f"Skipping {artifact_name} as it is an invalid run attempt. "
|
|
f"Expected {workflow_run_attempt}, found {found_run_attempt}."
|
|
)
|
|
|
|
print(f"Downloading {artifact_name}")
|
|
|
|
response = requests.get(artifact_url, headers=_get_request_headers())
|
|
with open(artifact_name, "wb") as f:
|
|
f.write(response.content)
|
|
return artifact_name
|
|
|
|
|
|
def download_s3_artifacts(
|
|
prefix: str, workflow_run_id: int, workflow_run_attempt: int
|
|
) -> list[Path]:
|
|
bucket = S3_RESOURCE.Bucket("gha-artifacts")
|
|
objs = bucket.objects.filter(
|
|
Prefix=f"pytorch/pytorch/{workflow_run_id}/{workflow_run_attempt}/artifact/{prefix}"
|
|
)
|
|
|
|
found_one = False
|
|
paths = []
|
|
for obj in objs:
|
|
found_one = True
|
|
p = Path(Path(obj.key).name)
|
|
print(f"Downloading {p}")
|
|
with open(p, "wb") as f:
|
|
f.write(obj.get()["Body"].read())
|
|
paths.append(p)
|
|
|
|
if not found_one:
|
|
print(
|
|
"::warning title=s3 artifacts not found::"
|
|
"Didn't find any test reports in s3, there might be a bug!"
|
|
)
|
|
return paths
|
|
|
|
|
|
def download_gha_artifacts(
|
|
prefix: str, workflow_run_id: int, workflow_run_attempt: int
|
|
) -> list[Path]:
|
|
artifact_urls = _get_artifact_urls(prefix, workflow_run_id)
|
|
paths = []
|
|
for name, url in artifact_urls.items():
|
|
paths.append(_download_artifact(Path(name), url, workflow_run_attempt))
|
|
return paths
|
|
|
|
|
|
def upload_to_rockset(
|
|
collection: str,
|
|
docs: list[Any],
|
|
workspace: str = "commons",
|
|
client: Any = None,
|
|
) -> None:
|
|
if not client:
|
|
client = rockset.RocksetClient(
|
|
host="api.usw2a1.rockset.com", api_key=os.environ["ROCKSET_API_KEY"]
|
|
)
|
|
|
|
index = 0
|
|
while index < len(docs):
|
|
from_index = index
|
|
to_index = min(from_index + BATCH_SIZE, len(docs))
|
|
print(f"Writing {to_index - from_index} documents to Rockset")
|
|
|
|
client.Documents.add_documents(
|
|
collection=collection,
|
|
data=docs[from_index:to_index],
|
|
workspace=workspace,
|
|
)
|
|
index += BATCH_SIZE
|
|
|
|
print("Done!")
|
|
|
|
|
|
def upload_to_dynamodb(
|
|
dynamodb_table: str,
|
|
repo: str,
|
|
docs: List[Any],
|
|
generate_partition_key: Optional[Callable[[str, Dict[str, Any]], str]],
|
|
) -> None:
|
|
print(f"Writing {len(docs)} documents to DynamoDB {dynamodb_table}")
|
|
# https://boto3.amazonaws.com/v1/documentation/api/latest/guide/dynamodb.html#batch-writing
|
|
with boto3.resource("dynamodb").Table(dynamodb_table).batch_writer() as batch:
|
|
for doc in docs:
|
|
if generate_partition_key:
|
|
doc["dynamoKey"] = generate_partition_key(repo, doc)
|
|
batch.put_item(Item=doc)
|
|
|
|
|
|
def upload_to_s3(
|
|
bucket_name: str,
|
|
key: str,
|
|
docs: list[dict[str, Any]],
|
|
) -> None:
|
|
print(f"Writing {len(docs)} documents to S3")
|
|
body = io.StringIO()
|
|
for doc in docs:
|
|
json.dump(doc, body)
|
|
body.write("\n")
|
|
|
|
S3_RESOURCE.Object(
|
|
f"{bucket_name}",
|
|
f"{key}",
|
|
).put(
|
|
Body=gzip.compress(body.getvalue().encode()),
|
|
ContentEncoding="gzip",
|
|
ContentType="application/json",
|
|
)
|
|
print("Done!")
|
|
|
|
|
|
def read_from_s3(
|
|
bucket_name: str,
|
|
key: str,
|
|
) -> list[dict[str, Any]]:
|
|
print(f"Reading from s3://{bucket_name}/{key}")
|
|
body = (
|
|
S3_RESOURCE.Object(
|
|
f"{bucket_name}",
|
|
f"{key}",
|
|
)
|
|
.get()["Body"]
|
|
.read()
|
|
)
|
|
results = gzip.decompress(body).decode().split("\n")
|
|
return [json.loads(result) for result in results if result]
|
|
|
|
|
|
def upload_workflow_stats_to_s3(
|
|
workflow_run_id: int,
|
|
workflow_run_attempt: int,
|
|
collection: str,
|
|
docs: list[dict[str, Any]],
|
|
) -> None:
|
|
bucket_name = "ossci-raw-job-status"
|
|
key = f"{collection}/{workflow_run_id}/{workflow_run_attempt}"
|
|
upload_to_s3(bucket_name, key, docs)
|
|
|
|
|
|
def upload_file_to_s3(
|
|
file_name: str,
|
|
bucket: str,
|
|
key: str,
|
|
) -> None:
|
|
"""
|
|
Upload a local file to S3
|
|
"""
|
|
print(f"Upload {file_name} to s3://{bucket}/{key}")
|
|
boto3.client("s3").upload_file(
|
|
file_name,
|
|
bucket,
|
|
key,
|
|
)
|
|
|
|
|
|
def unzip(p: Path) -> None:
|
|
"""Unzip the provided zipfile to a similarly-named directory.
|
|
|
|
Returns None if `p` is not a zipfile.
|
|
|
|
Looks like: /tmp/test-reports.zip -> /tmp/unzipped-test-reports/
|
|
"""
|
|
assert p.is_file()
|
|
unzipped_dir = p.with_name("unzipped-" + p.stem)
|
|
print(f"Extracting {p} to {unzipped_dir}")
|
|
|
|
with zipfile.ZipFile(p, "r") as zip:
|
|
zip.extractall(unzipped_dir)
|
|
|
|
|
|
def is_rerun_disabled_tests(tests: dict[str, dict[str, int]]) -> bool:
|
|
"""
|
|
Check if the test report is coming from rerun_disabled_tests workflow where
|
|
each test is run multiple times
|
|
"""
|
|
return all(
|
|
t.get("num_green", 0) + t.get("num_red", 0) > MAX_RETRY_IN_NON_DISABLED_MODE
|
|
for t in tests.values()
|
|
)
|
|
|
|
|
|
def get_job_id(report: Path) -> int | None:
|
|
# [Job id in artifacts]
|
|
# Retrieve the job id from the report path. In our GHA workflows, we append
|
|
# the job id to the end of the report name, so `report` looks like:
|
|
# unzipped-test-reports-foo_5596745227/test/test-reports/foo/TEST-foo.xml
|
|
# and we want to get `5596745227` out of it.
|
|
try:
|
|
return int(report.parts[0].rpartition("_")[2])
|
|
except ValueError:
|
|
return None
|