Files
pytorch/torch/csrc/autograd/python_function.h

160 lines
5.4 KiB
C++

#pragma once
#include <torch/csrc/python_headers.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/custom_function.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/saved_variable.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/object_ptr.h>
#include <c10/core/DeviceGuard.h>
#include <optional>
#include <memory>
#include <vector>
namespace torch::jit {
struct Graph;
}
namespace torch::autograd {
// A Function which is implemented by a Python object (i.e., a THPFunction).
// Calls to 'apply' are forwarded to the Python method implementation.
struct PyNode : public Node {
PyNode(THPObjectPtr obj) : obj(obj.release()) {}
PyObject* to_py_args(
const variable_list& inputs,
at::OptionalDeviceGuard* device_guard);
variable_list to_variable_list(
const PyObject* r,
const std::vector<bool>& is_variable_input);
variable_list apply(variable_list&& inputs) override;
variable_list defer_to_dynamo(
variable_list&& inputs,
std::optional<PyObject*> compiler);
void release_variables() override;
std::string name() const override;
bool is_traceable() override;
void compiled_args(CompiledNodeArgs& args) override;
variable_list apply_with_saved(
const variable_list& inputs,
SwapSavedVariables& saved) override;
bool compiled_autograd_should_lift() const;
// THPFunction this Function is wrapping. Owning!
PyObject* obj;
// The AutogradCompilerCall::hooks idx corresponding to this node's backward
std::optional<int> _backward_idx;
// The AutogradCompilerCall::hooks idx corresponding to this node's
// backward_state
std::optional<int> _backward_state_idx;
// NOLINTNEXTLINE(bugprone-exception-escape)
~PyNode() override {
// Can't use THPObjectPtr as a field in this class; destructor won't take
// out GIL! When I forgot to do this by hand
// TestAutograd.test_inplace_view_python called me out about it.
// If python is already dead, leak the wrapped python objects
if (Py_IsInitialized()) {
pybind11::gil_scoped_acquire gil;
Py_DECREF(obj);
}
}
};
/**
* Cast an object into a tuple, if it is not a tuple already. Returns true
* if the original object was not a tuple.
*/
inline bool ensure_tuple(THPObjectPtr& obj) {
if (PyTuple_Check(obj.get()))
return false;
PyObject* tuple = PyTuple_New(1);
if (!tuple)
throw python_error();
PyTuple_SET_ITEM(tuple, 0, obj.release());
obj = tuple;
return true;
}
} // namespace torch::autograd
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct THPFunction {
PyObject_HEAD
PyObject* needs_input_grad;
// Python tuple of tensors whose variables we should save. Set
// by Python with 'save_for_backward'. If nullptr, no tensors were
// saved.
PyObject* to_save;
// Python tuple of tensors which are not differentiable. Set by
// Python with 'mark_non_differentiable'. If nullptr, no tensors were
// non-differentiable.
PyObject* non_differentiable;
// Python tuple of tensors which had inplace updates in the forward()
// pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were
// modified inplace.
PyObject* dirty_tensors;
// boolean indicating whether to materialize undefined output grad tensors
// into tensors full of zeros. Set by Python with 'set_materialize_grads'.
// Default is true.
bool materialize_grads;
// boolean indicating whether to materialize output grad tensors
// corresponding to non-differentiable outputs. Normally, someone would
// already get this behavior by switching off materialize_grads,
// but there are certain use cases where that is not feasible:
// https://github.com/pytorch/pytorch/pull/98659#pullrequestreview-1376822560
bool materialize_non_diff_grads;
// This is enabled by compiled autograd as a way to signal to AotAutograd it
// should call the original FX graph rather than compiling.
bool compiled_autograd_tracing;
PyObject* compiled_autograd_backward_state;
std::vector<c10::SymInt> compiled_autograd_symints;
std::vector<torch::autograd::VariableInfo> output_info;
std::vector<torch::autograd::VariableInfo> input_info;
std::vector<torch::autograd::SavedVariable> saved_variables;
// For each input, true if the input is a THPVariable
std::vector<bool> is_variable_input;
char has_freed_buffers;
PyObject* saved_for_forward;
// The actual PyNode (in the autograd graph) that this data was
// saved for. This field may be NULL (because a user can construct
// a THPFunction directly from Python), but when this field is non-NULL,
// it is guaranteed that cdata.lock()->obj == this
//
// In most ordinary use, this field should always be non-NULL; e.g.,
// when we allocate a THPFunction because we are running Node.apply,
// after constructing a THPFunction, we immediately allocate a PyNode
// for it. We can't enforce this directly in the constructor of
// THPFunction though, because there's no way to keep it live long enough
// to save an owning reference to PyNode into the grad_fn of a Variable.
std::weak_ptr<torch::autograd::PyNode> cdata;
};
bool THPFunction_initModule(PyObject* module);
extern PyTypeObject THPFunctionType;
extern PyObject* THPFunctionClass;
extern PyObject* THPGradientEdgeClass;
inline bool THPFunction_Check(PyObject* obj) {
return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType);
}