Files
pytorch/aten/src/ATen/native/nested/NestedTensorMatmul.cpp

332 lines
14 KiB
C++

#include <ATen/native/nested/NestedTensorMath.h>
#include <ATen/native/nested/NestedTensorUtils.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#include <ATen/NestedTensorImpl.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorIndexing.h>
#include <ATen/TensorOperators.h>
#include <ATen/TensorUtils.h>
#include <ATen/core/Tensor.h>
#include <ATen/core/grad_mode.h>
#include <ATen/native/layer_norm.h>
namespace at::native {
Tensor bmm_nested(const Tensor& self, const Tensor& mat2) {
TORCH_CHECK(self.dim() == 3, "batch1 must be a 3D tensor");
TORCH_CHECK(mat2.dim() == 3, "batch2 must be a 3D tensor");
int64_t ntensors = self.is_nested() ? get_nested_tensor_impl(self)->size(0) : self.size(0);
int64_t ntensors2 = mat2.is_nested() ? get_nested_tensor_impl(mat2)->size(0) : mat2.size(0);
TORCH_CHECK(ntensors == ntensors2,
"Expected size for the 1st dimension of batch2 tensor to be: ", ntensors,
" but got: ", ntensors2, ".");
const Tensor& self_buffer = self.is_nested() ? get_nested_tensor_impl(self)->get_unsafe_storage_as_tensor() : self;
const Tensor& mat2_buffer = mat2.is_nested() ? get_nested_tensor_impl(mat2)->get_unsafe_storage_as_tensor() : mat2;
// create a contiguous output
int64_t out_numel = 0;
const Tensor& self_sizemat = self.is_nested() ?
get_nested_tensor_impl(self)->get_nested_sizes() : get_nested_tensor_impl(mat2)->get_nested_sizes();
Tensor out_sizemat = self_sizemat.new_empty(self_sizemat.sizes());
int64_t* out_sizemat_ptr = out_sizemat.data_ptr<int64_t>();
for (int64_t i = 0; i < ntensors; i++) {
const IntArrayRef& self_shape = get_size_for_index(self, i);
const IntArrayRef& mat2_shape = get_size_for_index(mat2, i);
const int64_t& self_size0 = self_shape[0], & self_size1 = self_shape[1],
& mat2_size0 = mat2_shape[0], & mat2_size1 = mat2_shape[1];
TORCH_CHECK(self_size1 == mat2_size0,
i, "-th nested matrices in batch cannot be multiplied (",
self_size0, "x", self_size1, " and ",
mat2_size0, "x", mat2_size1, ")");
out_sizemat_ptr[0] = self_size0;
out_sizemat_ptr[1] = mat2_size1;
out_sizemat_ptr += 2;
out_numel += self_size0 * mat2_size1;
}
Tensor out_buffer = self.is_nested() ? self_buffer.new_empty(out_numel) : mat2_buffer.new_empty(out_numel);
Tensor output = wrap_buffer(out_buffer, out_sizemat);
// call tensor mm
// TODO: `padding nested tensor -> bmm -> remove padding` may be more efficient
// until we have specialized nested tensor bmm kernel
// useful resource: `aten/src/ATen/native/cpu/LinearAlgebra.cpp/bmm_out_or_baddbmm_`
// `aten/src/ATen/native/cuda/Blas.cpp/baddbmm_out_cuda_impl`
std::vector<Tensor> output_unbind = output.unbind();
for (int64_t i = 0; i < ntensors; i++) {
at::mm_out(output_unbind[i],
self_buffer.as_strided(get_size_for_index(self, i), get_stride_for_index(self, i), get_offset_for_index(self, i)),
mat2_buffer.as_strided(get_size_for_index(mat2, i), get_stride_for_index(mat2, i), get_offset_for_index(mat2, i)));
}
return output;
}
static Tensor matmul_with_bmm_nested(const Tensor& self, const Tensor& mat2) {
// Tensor self = self_.contiguous();
// Tensor mat2 = mat2_.contiguous();
// self [N, n_heads, *, head_dim]
// mat2 [N, n_heads, head_dim, *]
const auto self_ptr = get_nested_tensor_impl(self);
const auto mat2_ptr = get_nested_tensor_impl(mat2);
// metadata for self
std::vector<IntArrayRef> self_sizes = NestedTensor_get_sizes(self_ptr);
std::vector<IntArrayRef> self_strides = NestedTensor_get_strides(self_ptr);
int64_t* self_offsets_ptr =
self_ptr->get_storage_offsets().data_ptr<int64_t>();
auto opt = self_ptr->get_nested_sizes().options();
// metadata for mat2
std::vector<IntArrayRef> mat2_sizes = NestedTensor_get_sizes(mat2_ptr);
std::vector<IntArrayRef> mat2_strides = NestedTensor_get_strides(mat2_ptr);
int64_t* mat2_offsets_ptr =
mat2_ptr->get_storage_offsets().data_ptr<int64_t>();
auto opt2 = mat2_ptr->get_nested_sizes().options();
int64_t N = static_cast<int64_t>(self_sizes.size());
int64_t n_heads = self_sizes[0][0];
// viewed metadata for self
auto self_new_sizes = at::empty({N * n_heads, 2}, opt);
int64_t* self_new_sizes_ptr = self_new_sizes.mutable_data_ptr<int64_t>();
auto self_new_strides = at::empty({N * n_heads, 2}, opt);
int64_t* self_new_strides_ptr = self_new_strides.mutable_data_ptr<int64_t>();
auto self_new_offsets = at::empty({N * n_heads}, opt);
int64_t* self_new_offsets_ptr = self_new_offsets.mutable_data_ptr<int64_t>();
// viewed metadata for mat2
auto mat2_new_sizes = at::empty({N * n_heads, 2}, opt2);
int64_t* mat2_new_sizes_ptr = mat2_new_sizes.mutable_data_ptr<int64_t>();
auto mat2_new_strides = at::empty({N * n_heads, 2}, opt2);
int64_t* mat2_new_strides_ptr = mat2_new_strides.mutable_data_ptr<int64_t>();
auto mat2_new_offsets = at::empty({N * n_heads}, opt);
int64_t* mat2_new_offsets_ptr = mat2_new_offsets.mutable_data_ptr<int64_t>();
for (int64_t i = 0; i < N; i++) {
const IntArrayRef& self_size_i = self_sizes[i];
const IntArrayRef& self_stride_i = self_strides[i];
int64_t self_offset = self_offsets_ptr[i];
const IntArrayRef& mat2_size_i = mat2_sizes[i];
const IntArrayRef& mat2_stride_i = mat2_strides[i];
int64_t mat2_offset = mat2_offsets_ptr[i];
for (int64_t j = 0; j < n_heads; j++) {
auto idx = (i * n_heads + j) * 2;
self_new_sizes_ptr[idx] = self_size_i[1];
self_new_sizes_ptr[idx + 1] = self_size_i[2];
self_new_strides_ptr[idx] = self_stride_i[1];
self_new_strides_ptr[idx + 1] = self_stride_i[2];
auto offset_idx = i * n_heads + j;
self_new_offsets_ptr[offset_idx] = self_offset;
self_offset += self_stride_i[0];
mat2_new_sizes_ptr[idx] = mat2_size_i[1];
mat2_new_sizes_ptr[idx + 1] = mat2_size_i[2];
mat2_new_strides_ptr[idx] = mat2_stride_i[1];
mat2_new_strides_ptr[idx + 1] = mat2_stride_i[2];
mat2_new_offsets_ptr[offset_idx] = mat2_offset;
mat2_offset += mat2_stride_i[0];
}
}
// view self as [N * n_heads, *, head_dim] (collapse first 2 dims)
auto viewed_self = create_nested_view_tensor(
self, self_new_sizes, self_new_strides, self_new_offsets);
// view mat2 as [N * n_heads, head_dim, *] (collapse first 2_dims)
auto viewed_mat2 = create_nested_view_tensor(
mat2, mat2_new_sizes, mat2_new_strides, mat2_new_offsets);
// output [N * n_heads, *, *]
auto bmm_output = at::bmm(viewed_self, viewed_mat2);
// generate metadata for viewing output as [N, n_heads, *, *]
// output of bmm should be contiguous so stride calculations should hold
auto out_new_sizes = at::empty({N, 3}, opt);
auto out_new_strides = at::empty({N, 3}, opt);
auto out_new_offsets = at::empty({N}, opt);
int64_t* out_new_offsets_ptr = out_new_offsets.mutable_data_ptr<int64_t>();
int64_t* out_new_sizes_ptr = out_new_sizes.data_ptr<int64_t>();
int64_t* out_new_strides_ptr = out_new_strides.data_ptr<int64_t>();
int64_t out_offset = 0;
for (int64_t i = 0; i < N; i++) {
out_new_offsets_ptr[i] = out_offset;
const IntArrayRef& self_size_i = self_sizes[i];
const IntArrayRef& mat2_size_i = mat2_sizes[i];
auto idx = i * 3;
out_new_sizes_ptr[idx] = n_heads;
out_new_sizes_ptr[idx + 1] = self_size_i[1];
out_new_sizes_ptr[idx + 2] = mat2_size_i[2];
out_new_strides_ptr[idx] = self_size_i[1] * mat2_size_i[2];
out_new_strides_ptr[idx + 1] = mat2_size_i[2];
out_new_strides_ptr[idx + 2] = 1;
out_offset += n_heads * (self_size_i[1] * mat2_size_i[2]);
}
auto viewed_out = create_nested_view_tensor(
bmm_output, out_new_sizes, out_new_strides, out_new_offsets);
return viewed_out;
}
// nt: NT of shape (B, *, C, D)
// other: dense tensor of shape (D, E)
// output: NT of shape (B, *, C, E)
static Tensor matmul_nested_with_broadcasted_dense(
const Tensor& nt,
const Tensor& other) {
// View nt buffer as 3D jagged for matmul
auto* nt_impl = get_nested_tensor_impl(nt);
auto jagged = nt_impl->get_buffer().view({-1, nt.size(2), nt.size(3)});
auto new_buffer = at::matmul(jagged, other);
// Wrap result into nested tensor
const auto E = other.size(-1);
const auto component_dim = nt.dim() - 1;
auto new_sizes = nt_impl->get_nested_sizes().clone();
auto new_sizes_ptr = new_sizes.data_ptr<int64_t>();
for (const auto i : c10::irange(nt.size(0))) {
new_sizes_ptr[i * component_dim + 2] = E;
}
return at::detail::make_tensor<NestedTensorImpl>(
new_buffer.view(-1), new_sizes);
}
// Note [nested tensor matmul]
// This is really a generalized batched matmul dedicated to nested tensors,
// where `self` and `mat2` have same number (>= 3) of dimensions.
// The last 2 dimensions will be considered as matrix dimensions,
// so they should be matrix-multiplicable.
// The leading dimensions are considered as batch dimensions,
// and since nested tensor does not support broadcasting for now,
// for each batch dimension `self` and `mat2` must have same size.
// TODO: Should make full matmul semantics support some day
Tensor matmul_nested(const Tensor& self, const Tensor& mat2) {
// special case of NT (B, *, C, D) with broadcasted dense (D, E)
if (self.is_nested() && self.is_contiguous() && !mat2.is_nested() &&
self.dim() == 4 && mat2.dim() == 2 &&
get_nested_tensor_impl(self)->opt_size(2).has_value() &&
get_nested_tensor_impl(self)->opt_size(3).has_value() &&
self.size(3) == mat2.size(0)) {
return matmul_nested_with_broadcasted_dense(self, mat2);
}
if (self.is_nested() && !mat2.is_nested()) {
AT_ERROR(
"Expected both to be nested, but got a nested self and non-nested other");
} else if (!self.is_nested() && mat2.is_nested()) {
AT_ERROR(
"Expected both to be nested, but got a non-nested self and nested other");
}
// to_padded_tensor only supports contiguous inputs
auto self_contig = self.contiguous();
auto mat2_contig = mat2.contiguous();
// dispatcher should have guaranteed that at least one is nested
const auto self_ptr = get_nested_tensor_impl(self_contig);
const auto mat2_ptr = get_nested_tensor_impl(mat2_contig);
int64_t self_dim = self_ptr->dim(), mat2_dim = mat2_ptr->dim();
TORCH_CHECK(
self_dim >= 3,
"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: ",
self_dim);
TORCH_CHECK(
mat2_dim >= 3,
"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: ",
mat2_dim);
TORCH_CHECK(
self_dim == mat2_dim, "matmul: both inputs must have the same rank");
int64_t ntensors = self_ptr->size(0), ntensors2 = mat2_ptr->size(0);
TORCH_CHECK(
ntensors == ntensors2,
"matmul: Expected size for the 1st dimension of 2nd input tensor to be: ",
ntensors,
" but got: ",
ntensors2,
".");
// Ensure batch dimensions have the same sizes (no broadcasting).
const auto& self_sizes = self_ptr->get_nested_sizes();
const auto& mat2_sizes = mat2_ptr->get_nested_sizes();
const auto& self_batch_sizes = self_sizes.narrow(1, 0, self_dim - 3);
const auto& mat2_batch_sizes = mat2_sizes.narrow(1, 0, mat2_dim - 3);
TORCH_CHECK(
at::equal(self_batch_sizes, mat2_batch_sizes),
"matmul: For nested tensors, batch dimensions must have the same sizes, ",
"no broadcasting is currently performed. Got batch shapes for self ",
self_batch_sizes,
" and batch shapes for mat2 ",
mat2_batch_sizes);
// Ensure last dim of self and second last dim of mat2 have the same size
const auto& self_dim_size = self_sizes.select(1, -1);
const auto& mat2_dim_size = mat2_sizes.select(1, -2);
TORCH_CHECK(
at::equal(self_dim_size, mat2_dim_size),
"matmul: Nested tensors cannot be matrix multiplied, last dimension of self has sizes",
self_dim_size,
"second last dimension of mat2 has sizes",
mat2_dim_size);
// use bmm inference-only fast path for [N, n_heads, *, head_dim] [N, n_heads,
// head_dim, *]
if (self.is_cuda() && self_dim == 4 && self.is_contiguous() &&
mat2_dim == 4 && mat2.is_contiguous() &&
!(GradMode::is_enabled() &&
(self.requires_grad() || mat2.requires_grad()))) {
const auto& self_opt_head_dim = self_ptr->opt_size(1);
const auto& mat2_opt_head_dim = mat2_ptr->opt_size(1);
if (self_opt_head_dim.has_value() && mat2_opt_head_dim.has_value() &&
self_opt_head_dim.value() == mat2_opt_head_dim.value()) {
return matmul_with_bmm_nested(self, mat2);
}
}
// Construct output size from input sizes
Tensor output_sizes = self_sizes.clone();
// The last entry in every row of output_sizes should be last column of
// mat2_sizes
output_sizes.index_put_(
{at::indexing::Slice(), -1}, mat2_sizes.select(1, -1).clone());
auto self_padded = self_contig.to_padded_tensor(0.);
auto mat2_padded = mat2_contig.to_padded_tensor(0.);
auto output_padded = at::matmul(self_padded, mat2_padded);
auto output_nested = nested_from_padded_generic(output_padded, output_sizes);
return output_nested;
}
Tensor& matmul_out_nested(
const Tensor& tensor1,
const Tensor& tensor2,
Tensor& result) {
// TODO: this is a very quick and dirty implementation
// should improve it to avoid the intermediate memory usage
Tensor function_result = at::matmul(tensor1, tensor2);
auto function_result_ptr = get_nested_tensor_impl(function_result);
// TODO: this is to reproduce function_result_ptr->opt_sizes_
// if an accessor is provided in the future, can replace this
std::vector<int64_t> sizes;
for (int64_t i = 0; i < function_result_ptr->dim(); i++) {
std::optional<int64_t> opt_size = function_result_ptr->opt_size(i);
if (opt_size.has_value()) {
sizes.push_back(*opt_size);
} else {
sizes.push_back(-1);
}
}
result.reshape(sizes);
result.copy_(function_result);
return result;
}
} // namespace at::native