Files
pytorch/torch/_inductor/codegen/triton.py
Michael Lazos a1c46e5f8f component-level configurable logging for dynamo, inductor, aot (#94858)
Summary:

Adds NNC-like logging that is configured through an env var `TORCH_COMPILE_LOGS`
Examples:
`TORCH_LOGS="dynamo,guards" python script.py` - prints dynamo logs at level INFO with guards of all functions that are compiled

`TORCH_LOGS="+dynamo,guards,graph" python script.py` - prints dynamo logs at level DEBUG with guards and graphs (in tabular) format of all graphs that are compiled

[More examples with full output](https://gist.github.com/mlazos/b17f474457308ce15e88c91721ac1cce)

Implementation:
The implementation parses the log settings from the environment, finds any components (aot, dynamo, inductor) or other loggable objects (guards, graph, etc.) and generates a log_state object. This object contains all of the enabled artifacts, and a qualified log name -> level mapping. _init_logs then adds handlers to the highest level logs (the registered logs), and sets any artifact loggers to level DEBUG if the artifact is enabled.

Note: set_logs is an alternative for manipulating the log_state, but if the environment contains TORCH_LOGS, the environment settings will be prioritized.

Adding a new log:
To add a new log, a dev should add their log name to torch._logging._registrations (there are examples there already).

Adding a new artifact:
To add a new artifact, a dev should add their artifact name to torch._logging._registrations as well.
Additionally, wherever the artifact is logged, `torch._logging.getArtifactLogger(__name__, <artifact_name>)` should be used instead of the standard logging implementation.

[design doc](https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94858
Approved by: https://github.com/ezyang
2023-03-18 04:17:31 +00:00

1873 lines
65 KiB
Python

import collections
import contextlib
import dataclasses
import functools
import itertools
import logging
import math
import operator
from typing import Dict, List, Set
import sympy
import torch
import torch._logging
from ..._dynamo import config as dynamo_config
from .. import config, ir, scheduler
from ..codecache import get_code_path
from ..ir import ReductionHint
from ..optimize_indexing import indexing_dtype_strength_reduction
from ..utils import (
get_fused_kernel_name,
get_kernel_metadata,
instance_descriptor,
next_power_of_2,
sympy_product,
sympy_subs,
sympy_symbol,
)
from ..virtualized import ops, V
from .common import (
CSEVariable,
DeferredLine,
free_symbol_startswith,
IndentedBuffer,
index_prevent_reordering,
Kernel,
OpOverrides,
PythonPrinter,
SizeArg,
TensorArg,
)
log = logging.getLogger(__name__)
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
def signature_of(arg):
from triton.runtime.jit import JITFunction
if isinstance(arg, TensorArg):
tye = JITFunction._type_of(arg.dtype)
if V.graph.is_unspec_arg(arg.buffer):
# had unwrapped 0d tensor as scalar
new_tye = tye.lstrip("*")
if new_tye in ["fp16", "bf16"]:
return "fp32"
else:
return new_tye
else:
return tye
if isinstance(arg, SizeArg):
return JITFunction._key_of(V.graph.sizevars.size_hint(arg.expr))
raise NotImplementedError(f"unhandled {type(arg)}: {arg}")
def config_of(args):
from ..compile_fx import ALIGNMENT
def is_aligned(x):
if isinstance(x, TensorArg):
return x.buffer not in V.graph.unaligned_buffers
if isinstance(x, SizeArg):
return V.graph.sizevars.maybe_guard_multiple_of(x.expr, ALIGNMENT)
raise NotImplementedError(f"unhandled {type(x)}: {x}")
divisible_by_16 = [i for i, arg in enumerate(args) if is_aligned(arg)]
return instance_descriptor(tuple(divisible_by_16), ())
class TritonPrinter(PythonPrinter):
def _print_floor(self, expr):
assert len(expr.args) == 1
return f"tl.libdevice.floor({self.paren(self._print(expr.args[0]))})"
def _print_ceiling(self, expr):
assert len(expr.args) == 1
return f"tl.libdevice.ceil({self.paren(self._print(expr.args[0]))})"
texpr = TritonPrinter().doprint
pexpr = PythonPrinter().doprint
def triton_compute_type(dtype):
triton_type_name = str(dtype).split(".")[-1]
if triton_type_name == "bool":
triton_type_name = "int1"
if triton_type_name in ("float16", "bfloat16"):
# float16 math is done in float32 inside the kernel
triton_type_name = "float32"
return f"tl.{triton_type_name}"
def triton_constant(value):
if value == float("inf"):
return 'float("inf")'
elif value == float("-inf"):
return 'float("-inf")'
elif math.isnan(value):
return 'float("nan")'
return repr(value)
class TritonCSEVariable(CSEVariable):
def __init__(self, name):
super().__init__(name)
# We'll use this to track which masks the variable needs when used for indirect indexing
self.mask_vars: Set[str] = set()
def update_on_args(self, name, args, kwargs):
# When making a variable that is going to be used in indirect indexing
# if a where clause is used it should mean that the result is always a
# valid index, so you shouldn't include any of the dependent variables
# in the resulting load mask
if name == "where":
return
for arg in args:
if isinstance(arg, TritonCSEVariable):
self.mask_vars.update(arg.mask_vars)
class TritonOverrides(OpOverrides):
"""Map element-wise ops to Triton"""
@staticmethod
def to_dtype(x, dtype: torch.dtype):
if dtype == torch.bool:
return f"({x} != 0)"
elif dtype == torch.uint8:
# to work around llvm uint conversion semantics
# that produces 0's for negative values
return f"{x}.to(tl.int8).to(tl.uint8)"
return f"{x}.to({triton_compute_type(dtype)})"
@staticmethod
def constant(value, dtype):
type_ = torch._prims_common.dtype_to_type(dtype)
return triton_constant(type_(value))
@staticmethod
def abs(x):
return f"tl.abs({x})"
@staticmethod
def libdevice_abs(x):
return f"tl.libdevice.abs({x})"
@staticmethod
def exp(x):
return f"tl.exp({x})"
@staticmethod
def libdevice_exp(x):
return f"tl.libdevice.exp({x})"
@staticmethod
def exp2(x):
return f"tl.libdevice.exp2({x})"
@staticmethod
def expm1(x):
return f"tl.libdevice.expm1({x})"
@staticmethod
def sqrt(x):
return f"tl.sqrt({x})"
@staticmethod
def libdevice_sqrt(x):
return f"tl.libdevice.sqrt({x})"
@staticmethod
def relu(x):
return ops.maximum("0", x)
@staticmethod
def minimum(a, b):
return f"tl.where({a} != {a}, {a}, tl.where({a} < {b}, {a}, {b}))"
@staticmethod
def maximum(a, b):
return f"tl.where({a} != {a}, {a}, tl.where({a} > {b}, {a}, {b}))"
@staticmethod
def where(a, b, c):
return f"tl.where({a}, {b}, {c})"
@staticmethod
def cos(x):
return f"tl.cos({x})"
@staticmethod
def libdevice_cos(x):
return f"tl.libdevice.cos({x})"
@staticmethod
def sin(x):
return f"tl.sin({x})"
@staticmethod
def libdevice_sin(x):
return f"tl.libdevice.sin({x})"
@staticmethod
def index_expr(expr, dtype):
return V.kernel.indexing(expr)[0]
@staticmethod
def masked(mask, body, other):
with V.kernel.mask_loads(mask) as new_mask:
result = body()
return ops.where(new_mask, result, triton_constant(other))
@staticmethod
def lgamma(x):
return f"tl.libdevice.lgamma({x})"
@staticmethod
def erf(x):
return f"tl.libdevice.erf({x})"
@staticmethod
def cosh(x):
return f"tl.libdevice.cosh({x})"
@staticmethod
def sinh(x):
return f"tl.libdevice.sinh({x})"
@staticmethod
def acos(x):
return f"tl.libdevice.acos({x})"
@staticmethod
def acosh(x):
return f"tl.libdevice.acosh({x})"
@staticmethod
def asin(x):
return f"tl.libdevice.asin({x})"
@staticmethod
def asinh(x):
return f"tl.libdevice.asinh({x})"
@staticmethod
def atan2(x, y):
return f"tl.libdevice.atan2({x}, {y})"
@staticmethod
def atan(x):
return f"tl.libdevice.atan({x})"
@staticmethod
def atanh(x):
return f"tl.libdevice.atanh({x})"
@staticmethod
def copysign(x, y):
return f"tl.libdevice.copysign({x}, {y})"
@staticmethod
def erfc(x):
return f"tl.libdevice.erfc({x})"
@staticmethod
def hypot(x, y):
return f"tl.libdevice.hypot({x}, {y})"
@staticmethod
def log10(x):
return f"tl.libdevice.log10({x})"
@staticmethod
def nextafter(x, y):
return f"tl.libdevice.nextafter({x}, {y})"
@staticmethod
def logical_and(a, b):
return f"{a} & {b}"
@staticmethod
def logical_or(a, b):
return f"{a} | {b}"
@staticmethod
def rand(seed, offset, _): # _ here to keep the contract identical to CPU rand op
return f"tl.rand({seed}, {offset})"
@staticmethod
def randn(seed, offset, _): # _ here to keep the contract identical to CPU randn op
return f"tl.randn({seed}, {offset})"
@staticmethod
def rsqrt(x):
return f"tl.libdevice.rsqrt({x})"
@staticmethod
def log1p(x):
return f"tl.libdevice.log1p({x})"
@staticmethod
def tan(x):
return f"tl.libdevice.tan({x})"
@staticmethod
def tanh(x):
return f"tl.libdevice.tanh({x})"
@staticmethod
def sigmoid(x):
return f"tl.sigmoid({x})"
@staticmethod
def libdevice_sigmoid(x):
return f"1/(1 + tl.libdevice.exp(-({x})))"
@staticmethod
def signbit(x):
# XX: This is wrong for the value -0.0 in floating point
return f"tl.libdevice.signbit({x}) if ({x}).dtype is tl.float32 else {x} < 0"
@staticmethod
def fmod(a, b):
return f"tl.libdevice.fmod({a}, {b})"
@staticmethod
def pow(a, b):
return f"tl.libdevice.pow({a}, {b})"
@staticmethod
def log(x):
return f"tl.log({x})"
@staticmethod
def libdevice_log(x):
return f"tl.libdevice.log({x})"
@staticmethod
def isinf(x):
return f"tl.libdevice.isinf({x})"
@staticmethod
def isnan(x):
return f"tl.libdevice.isnan({x})"
@staticmethod
def round(x):
return f"tl.libdevice.nearbyint({x})"
@staticmethod
def floor(x):
return f"tl.libdevice.floor({x})"
@staticmethod
def floordiv(a, b):
# See the comment in lowering.div_mode. a and b are integer type.
# Similar to div_floor_kernel_cuda in pytorch core.
# Notice that // in triton behaves as truncdiv instead of floordiv
quot = f"{a} // {b}"
rem = f"{a} % {b}"
return f"tl.where(({a} < 0) != ({b} < 0), tl.where({rem} != 0, {quot} - 1, {quot}), {quot})"
@staticmethod
def trunc(x):
return f"tl.libdevice.trunc({x})"
@staticmethod
def truncdiv(a, b):
# See the comment in lowering.div_mode. a and b are integer type.
# Notice that // in triton behaves as truncdiv instead of floordiv
return f"{a} // {b}"
@staticmethod
def ceil(x):
return f"tl.libdevice.ceil({x})"
@dataclasses.dataclass
class IterationRanges:
"""
Each range tree represents multiple sets of iteration indexing
in a single tiled dimension in the output kernel.
If you have two loops ranges one (4, 3, 2) and another (4, 6),
then the range tree will be:
4 (i0)
3 (i1) 6 (i3)
2 (i2)
Where i0 is shared between both loops, but then the split into
different indexing vars. All loop ranges must iterate over
the same number of elements.
"""
def __init__(
self,
name: str,
var_list: List[sympy.Symbol],
var_ranges: Dict[sympy.Symbol, sympy.Expr],
numel: sympy.Expr,
prefix: str,
*,
kernel: "Kernel",
divisor=sympy.Integer(1),
length=sympy.Integer(1),
):
super().__init__()
self.name = name
self.var_list = var_list
self.var_ranges = var_ranges
self.numel = numel
self.prefix = prefix
self.divisor = divisor
self.length = length
self.kernel = kernel
def is_loop(self):
return self.prefix == "r" and not self.kernel.persistent_reduction
class IterationRangesRoot(IterationRanges):
def __init__(
self,
name: str,
numel: sympy.Expr,
prefix: str,
index: int,
kernel: "Kernel",
pid_cache=None,
):
if pid_cache is None:
pid_cache = {}
super().__init__(
name=name,
var_list=[],
var_ranges={},
numel=numel,
prefix=prefix,
kernel=kernel,
)
self.index = index
# Store all the nodes in one flat list
self.nodes: Dict[sympy.Expr, IterationRangesEntry] = {}
# This is for re-ordering program ID in triton mm template
# pid_cache["tl.program_id(0)"] = pid_m
self.pid_cache: Dict[str, str] = pid_cache
def cache_clear(self):
for node in self.nodes.values():
node.cache_clear()
def lookup(self, divisor, length):
"""
Lookup a given RangeTreeEntry, creating it if needed
"""
if V.graph.sizevars.maybe_guard_equals(divisor * length, self.numel):
expr = ir.FloorDiv(sympy_symbol(f"{self.prefix}index"), divisor)
else:
expr = ir.ModularIndexing(
sympy_symbol(f"{self.prefix}index"), divisor, length
)
if expr not in self.nodes:
node = IterationRangesEntry(
f"{self.prefix}{next(V.kernel.iter_vars_count)}",
divisor,
length,
expr,
self,
)
V.kernel.range_tree_nodes[node.symbol()] = node
self.var_list.append(node.symbol())
self.var_ranges[node.symbol()] = length
self.nodes[expr] = node
return self.nodes[expr]
def construct_entries(self, lengths: List[sympy.Expr]):
divisor = sympy.Integer(1)
itervars = []
for length in reversed(lengths):
itervars.append(self.lookup(divisor, length))
divisor = divisor * length
return list(reversed(itervars))
def construct(self, lengths: List[sympy.Expr]):
return [e.symbol() for e in self.construct_entries(lengths)]
def vars_and_sizes(self, index: sympy.Expr):
"""Figure out vars from this tree used in index"""
nodes = [V.kernel.range_tree_nodes.get(s) for s in index.free_symbols]
nodes = [n for n in nodes if n and n.prefix == self.prefix]
nodes.sort(key=lambda x: V.graph.sizevars.size_hint(x.divisor))
divisor = sympy.Integer(1)
index_vars = []
sizes = []
def add(node):
nonlocal divisor
index_vars.append(node.symbol())
sizes.append(node.length)
divisor = divisor * node.length
for node in nodes:
if not V.graph.sizevars.maybe_guard_equals(node.divisor, divisor):
# fill in unused index var
add(self.lookup(divisor, ir.FloorDiv(node.divisor, divisor)))
divisor = node.divisor
add(node)
if not V.graph.sizevars.maybe_guard_equals(self.numel, divisor):
# fill in unused index var
add(self.lookup(divisor, ir.FloorDiv(self.numel, divisor)))
return list(reversed(index_vars)), list(reversed(sizes))
def ranges_code(self):
size = self.kernel.indexing_size_str(self.index, self.prefix)
return f"tl.arange(0, {self.prefix.upper()}BLOCK){size}"
def pid_cache_lookup(self, key):
if key in self.pid_cache:
return self.pid_cache[key]
return key
def codegen_header(self, code):
x = self.prefix
if self.is_loop():
code.writeline(f"{self.name} = {x}offset + {x}base")
elif x == "r" and self.kernel.persistent_reduction:
# no need to "roffset = "
code.writeline(
f"{self.name} = {self.ranges_code()}",
)
else:
pid = self.pid_cache_lookup(f"tl.program_id({self.index})")
code.writelines(
[
f"{x}offset = {pid} * {x.upper()}BLOCK",
f"{self.name} = {x}offset + {self.ranges_code()}",
]
)
code.writeline(f"{x}mask = {self.name} < {x}numel")
class IterationRangesEntry(IterationRanges):
def __init__(
self,
name: str,
divisor: sympy.Expr,
length: sympy.Expr,
expr: sympy.Expr,
parent: IterationRanges,
):
super().__init__(
name=name,
numel=parent.numel / length,
var_list=parent.var_list,
var_ranges=parent.var_ranges,
prefix=parent.prefix,
divisor=divisor,
length=length,
kernel=parent.kernel,
)
self.parent = parent
self.codegen = functools.lru_cache(None)(self._codegen)
self.expr = expr
def set_name(self, name):
self.codegen = lambda: name
self.codegen.cache_clear = lambda: None
self.name = name
def cache_clear(self):
self.codegen.cache_clear()
def writeline(self, line):
if self.is_loop():
V.kernel.indexing_code.writeline(line)
else:
# lift non-reduction stores outside loop
V.kernel.body.writeline(line)
def _codegen(self):
self.writeline(f"{self.name} = " + texpr(V.kernel.rename_indexing(self.expr)))
return self.name
def precomputed_args(self):
# for dynamic shapes, find parts of indexing expressions that have to be precomputed
precomputed_args = []
if isinstance(self.expr, sympy.Symbol):
return precomputed_args
assert isinstance(self.expr, (ir.FloorDiv, ir.ModularIndexing)), type(self.expr)
for arg in self.expr.args[1:]:
if not isinstance(arg, (sympy.Integer, sympy.Symbol)):
symbols = arg.free_symbols
if len(symbols) > 0 and all(s.name.startswith("s") for s in symbols):
precomputed_args.append(arg)
return precomputed_args
def symbol(self):
return sympy_symbol(self.name)
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
return self.name == other.name
class TritonKernel(Kernel):
overrides = TritonOverrides
sexpr = pexpr
def __init__(
self,
*groups,
mutations=None,
pid_cache=None,
reduction_hint=ReductionHint.DEFAULT,
):
if pid_cache is None:
pid_cache = {}
super().__init__()
self.numels = [V.graph.sizevars.simplify(s) for s in groups]
self.mutations = mutations
self.range_trees = []
self.range_tree_nodes = {}
self.iter_vars_count = itertools.count()
self.inside_reduction = self.numels[-1] != 1
self._load_mask = None
self.body = IndentedBuffer()
self.indexing_code = IndentedBuffer()
self.suffix = IndentedBuffer()
self.outside_loop_vars = set()
self.reduction_hint = reduction_hint
self.persistent_reduction = self.should_use_persistent_reduction()
self.initialize_range_tree(pid_cache)
# define this in a closure to make cache local to object
@functools.lru_cache(None)
def simplify_indexing(index: sympy.Expr):
index = V.graph.sizevars.simplify_with_ranges(index, self.var_ranges())
for tree in self.range_trees:
index = self.combine_contiguous_dims(index, tree)
return index
self.simplify_indexing = simplify_indexing
def should_use_persistent_reduction(self):
"""
Heuristic to set self.persistent_reduction and add guards
if needed.
"""
if not (self.inside_reduction and config.triton.persistent_reductions):
return False
threshold = {
ReductionHint.INNER: 1024,
}.get(self.reduction_hint, 64)
hint = V.graph.sizevars.size_hint(self.numels[-1])
if hint > threshold:
return False
# will need to recompile if we cross a larger power of 2 boundary
V.graph.sizevars.guard_leq(self.numels[-1], next_power_of_2(hint))
return True
def initialize_range_tree(self, pid_cache):
names = ["xindex", "yindex", "zindex"][: len(self.numels) - 1] + ["rindex"]
for i in range(len(self.numels)):
self.range_trees.append(
IterationRangesRoot(
names[i], self.numels[i], names[i][0], i, self, pid_cache
)
)
for tree in self.range_trees:
# reduction indexing goes inside a loop
if not tree.is_loop():
tree.codegen_header(self.body)
if self.inside_reduction and self.range_trees[-1].is_loop():
# workaround for this issue:
# https://gist.github.com/jansel/6527126f781559095c5531f98a4235a7
self.body.writeline(f"rbase = {self.range_trees[-1].ranges_code()}")
def disable_reduction(self):
@contextlib.contextmanager
def ctx():
if self.numels[-1] == 1:
assert not self.inside_reduction
yield
return
if not self.persistent_reduction:
# calling codegen_body() will flush all the pending buffers
# and write out a reduction loop
self.codegen_body()
self.inside_reduction = False
try:
yield
if not self.persistent_reduction:
# flush out any code before opening the next loop
self.codegen_body()
finally:
self.inside_reduction = True
return ctx()
def set_ranges(self, *lengths):
assert len(lengths) == len(self.range_trees)
return [
ranges.construct(length)
for length, ranges in zip(lengths, self.range_trees)
]
@staticmethod
def _split_iteration_ranges(
groups: List[sympy.Expr], lengths: List[List[sympy.Expr]]
):
sv = V.graph.sizevars
new_ranges = [[] for _ in groups]
remaining = [sv.simplify(g) for g in groups]
var_count = itertools.count()
def add_range(i, expr):
expr = sv.simplify(expr)
if not sv.maybe_guard_multiple_of(remaining[i], expr):
raise CantSplit()
# guard on the last item out
sv.maybe_guard_equals(remaining[i], expr)
remaining[i] = ir.FloorDiv(remaining[i], expr)
new_ranges[i].append(expr)
return next(var_count)
def make_combined(size, idx1, idx2):
def getter(flat_vars):
return size * flat_vars[idx1] + flat_vars[idx2]
return getter
return_getters_groups = []
current_group = 0
for length_group in lengths:
return_getters = []
for size in length_group:
if sv.maybe_guard_equals(size, 1):
return_getters.append(lambda _: sympy.Integer(0))
continue
while (
current_group < len(remaining)
and sv.size_hint(remaining[current_group]) == 1
):
# scroll to next group with remaining elements
current_group += 1
if sv.size_hint(size) > sv.size_hint(remaining[current_group]):
# need to break size in two
if not sv.maybe_guard_multiple_of(size, remaining[current_group]):
raise CantSplit()
size1 = remaining[current_group]
size2 = ir.FloorDiv(size, remaining[current_group])
return_getters.append(
make_combined(
size2,
add_range(current_group, size1),
add_range(current_group + 1, size2),
)
)
else:
return_getters.append(
operator.itemgetter(add_range(current_group, size))
)
return_getters_groups.append(return_getters)
assert all(
V.graph.sizevars.size_hint(s) == 1 for s in remaining
), f"failed to set ranges {remaining} {lengths}"
return new_ranges, return_getters_groups
@classmethod
def is_compatible(cls, groups: List[sympy.Expr], lengths: List[List[sympy.Expr]]):
try:
cls._split_iteration_ranges(groups, lengths)
return True
except CantSplit:
return False
def split_and_set_ranges(self, lengths: List[List[sympy.Expr]]):
"""
We may want to fuse `for i0 in s0*s1` into a tiled kernel with groups (s0, s1).
To do this we need to split up the iteration space of i0 into something like:
for i1 in s0:
for i2 in s1:
i0 = i1*s1 + i2
....
This function matches and resplits lengths to the groups of
this kernel to enable tiled + non-tiled fusions.
"""
groups = [rt.numel for rt in self.range_trees]
if not self.inside_reduction:
groups[-1] = sympy.Integer(1)
if len(lengths) == len(self.range_trees) and all(
V.graph.sizevars.simplify(sympy_product(x) - g) == 0
for x, g in zip(lengths, groups)
):
return self.set_ranges(*lengths)
new_ranges, return_getters_groups = self._split_iteration_ranges(
groups, lengths
)
itervars = list(itertools.chain(*self.set_ranges(*new_ranges)))
return [[fn(itervars) for fn in fns] for fns in return_getters_groups]
def is_indirect_indexing(self, index: sympy.Expr):
# tmpX means indirect indexing
return free_symbol_startswith(index, "tmp")
def combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot):
"""
More aggressive simplification to merge contiguous dims
"""
if isinstance(index, (sympy.Integer, sympy.Symbol)):
return index
index_vars, sizes = tree.vars_and_sizes(index)
if len(sizes) <= 1:
return index
new_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
index_vars, sizes, index_prevent_reordering([index], index_vars, sizes)
)
if new_sizes == sizes:
return index
new_index_vars = tree.construct(new_sizes)
new_index = sympy_subs(index, dict(zip(index_vars, reindex(new_index_vars))))
return new_index
def indexing(
self,
index: sympy.Expr,
*,
copy_shape=None,
dense_indexing=False,
override_mask=None,
):
"""
Compute the index and mask to pass to tl.load() or tl.store()
"""
index = self.simplify_indexing(index)
index = sympy_subs(index, V.graph.sizevars.precomputed_replacements)
# if simple replacements didn't get rid of floor/ceil, try full subs
if len(index.atoms(sympy.floor)) or len(index.atoms(sympy.ceiling)):
index = index.subs(V.graph.sizevars.precomputed_replacements)
index_vars = index.free_symbols
index_str = texpr(self.rename_indexing(self.codegen_indexing(index)))
mask_vars: Set[str] = set()
for var in index_vars:
if override_mask:
pass
elif var.name.startswith("tmp"):
# indirect indexing
cse_var = self.cse.varname_map[var.name]
mask_vars.update(cse_var.mask_vars)
elif var.name.startswith(("s", "ps")):
pass
else:
# var is one of xN, yN or rN
assert var.name[0] in "xyr", var.name
mask_vars.add(f"{var.name[0]}mask")
need_dense = (
config.triton.dense_indexing
or dense_indexing
or self._load_mask is not None
) and index != 0
have_dense = True
have_loop_vars = False
dense_mask_vars = set()
for tree in self.range_trees:
if tree.prefix == "r" and not self.inside_reduction:
continue
if index_vars.intersection(tree.var_list):
have_loop_vars = True
have_dense = False
dense_mask_vars.add(f"{tree.prefix}mask")
if (need_dense and not have_dense) or isinstance(index, sympy.Integer):
if copy_shape:
index_str = f"{index_str} + tl.zeros({copy_shape}.shape, tl.int32)"
else:
index_str = f"{index_str} + tl.zeros({self.dense_size_str()}, tl.int32)"
if isinstance(index, sympy.Integer):
return index_str, set(), "None"
else:
mask_vars = dense_mask_vars
elif not have_loop_vars and copy_shape:
mask_vars = dense_mask_vars
index_str = f"{index_str} + tl.zeros({copy_shape}.shape, tl.int32)"
if override_mask:
mask_vars = {override_mask}
if self._load_mask:
mask_vars.add(self._load_mask)
self.filter_masks(mask_vars)
mask_str = " & ".join(sorted(map(str, mask_vars))) if mask_vars else "None"
return index_str, mask_vars, mask_str
def filter_masks(self, mask_vars):
for tree in self.range_trees:
# Masks are superfluous if we only have one element
if V.graph.sizevars.maybe_guard_equals(tree.numel, 1):
mask_vars.discard(f"{tree.prefix}mask")
continue
# Masks are superfluous if numel is a multiple of BLOCK
# (We use the fact that BLOCK is required by triton to be a power of 2)
if tree.prefix.upper() not in config.triton.max_block:
continue
max_block = config.triton.max_block[tree.prefix.upper()]
if V.graph.sizevars.maybe_guard_multiple_of(tree.numel, max_block):
mask_vars.discard(f"{tree.prefix}mask")
def var_ranges(self):
return dict(
itertools.chain.from_iterable(
tree.var_ranges.items() for tree in self.range_trees
)
)
def codegen_indexing(self, expr: sympy.Expr):
expr = V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges())
for sym in sorted(expr.free_symbols, key=str):
if sym in self.range_tree_nodes:
# if indexing expression is complicated, we precompute it on the host side
# and send the result as a kernel argument
replacements = {}
for ps in self.range_tree_nodes[sym].precomputed_args():
replacements[ps] = V.graph.sizevars.lookup_precomputed_size(ps)
if len(replacements) > 0:
self.range_tree_nodes[sym].expr = sympy_subs(
self.range_tree_nodes[sym].expr, replacements
)
self.range_tree_nodes[sym].codegen()
return expr
@contextlib.contextmanager
def mask_loads(self, mask):
"""Context manager to add an additional mask to tl.load/store"""
prior = self._load_mask
if prior:
mask = self.cse.generate(self.compute, f"{mask} & {prior}")
self._load_mask = mask
try:
with self.swap_buffers(self.compute, self.compute):
# TODO(jansel): do we need a reshape here?
yield mask
finally:
self._load_mask = prior
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
indirect_indexing = self.is_indirect_indexing(index)
original_index = index
index, mask_vars, mask = self.indexing(index)
if "rmask" in mask and not self.persistent_reduction:
# This eviction policy heuristic is untested.
# ptillet suggested we should try only doing this for
# the first N-1 loops and not for the final loop.
ep = ", eviction_policy='evict_last'"
else:
ep = ""
# "other" below is a workaround for https://github.com/openai/triton/issues/737
# for bool, even though it's likely subject to the same bug, setting `other` leads
# to LLVM errors so we are skipping it for now
if ("tmp" in mask or "rmask" in mask) and V.graph.get_dtype(name) != torch.bool:
other = ", other=0"
else:
other = ""
append_broadcast = None
if V.graph.is_unspec_arg(name):
line = var
else:
if isinstance(original_index, sympy.Integer):
dense_size = self.dense_size_str()
line = f"tl.load({var} + ({original_index}))"
append_broadcast = dense_size
else:
line = f"tl.load({var} + ({index}), {mask}{ep}{other})"
if V.graph.get_dtype(name) in (torch.float16, torch.bfloat16):
line += ".to(tl.float32)"
if (
self.inside_reduction
and not self.persistent_reduction
and "rmask" not in mask
and "tmp" not in mask
and not indirect_indexing
):
# can lift a common load outside of reduction loop
# One exception is when this is an indirect_load.
result_var = self.cse.generate(
self.body, line, append_broadcast=append_broadcast
)
else:
result_var = self.cse.generate(
self.loads, line, append_broadcast=append_broadcast
)
result_var.mask_vars = mask_vars
if not self.inside_reduction or "rmask" not in mask:
self.outside_loop_vars.add(result_var)
return result_var
def store(self, name, index, value, mode=None):
var = self.args.output(name)
index, mask_vars, mask = self.indexing(index, dense_indexing=True)
if mode is None:
line = f"tl.store({var} + ({index}), {value}, {mask})"
elif mode == "atomic_add":
line = f"tl.atomic_add({var} + ({index}), {value}, {mask})"
else:
raise NotImplementedError(f"store mode={mode}")
self.stores.writeline(name, line)
if not self.inside_reduction:
self.outside_loop_vars.add(value)
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
assert self.inside_reduction
default = triton_constant(ir.Reduction.default_value(reduction_type, src_dtype))
masks = {f"{tree.prefix}mask" for tree in self.range_trees}
self.filter_masks(masks)
masks = sorted(masks)
if self._load_mask:
masks.append(self._load_mask)
sizes = [":" for _ in self.range_trees]
sizes[-1] = "None"
reduction_range_prefix = self.range_trees[-1].prefix
reduction_sizes = ["None" for _ in self.range_trees]
reduction_sizes[-1] = ":"
if reduction_type == "any":
reduction_type = "max"
dim = len(self.range_trees) - 1
result_var = self.cse.newvar()
result_var.mask_vars = {var for var in masks if var[0] != "r"}
if self.persistent_reduction:
cond = " & ".join(masks)
masked_value = self.cse.generate(
self.compute, f"tl.where({cond}, {value}, {default})"
)
result_var = self.cse.generate(
self.compute,
f"tl.{reduction_type}({masked_value}, {dim})[{', '.join(sizes)}]",
)
elif (src_dtype, reduction_type, value) not in self.cse.reduction_cache:
self.cse.reduction_cache[(src_dtype, reduction_type, value)] = result_var
accumulator = f"_{result_var}"
default_value = f" + {default}" if default != 0 else ""
self.body.writeline(
f"{accumulator} = tl.zeros({self.dense_size_str()}, {triton_compute_type(src_dtype)}){default_value}"
)
accumulator_index = None
if reduction_type in {"argmax", "argmin"}:
accumulator_index = f"_{result_var}_index"
self.body.writeline(
f"{accumulator_index} = tl.zeros({self.dense_size_str()}, tl.int64)"
)
updated = value
if reduction_type in {"min", "argmin"}:
masks.append(f"({accumulator} > {value})")
elif reduction_type in {"max", "argmax"}:
masks.append(f"({accumulator} < {value})")
elif reduction_type == "sum":
updated = f"{accumulator} + {value}"
else:
raise NotImplementedError(f"reduction_type {reduction_type}")
cond = " & ".join(masks)
if accumulator_index:
# argmax or argmin
self.compute.writeline(
f"{accumulator_index} = tl.where({cond}, {reduction_range_prefix}index, {accumulator_index})",
)
self.compute.writeline(
f"{accumulator} = tl.where({cond}, {updated}, {accumulator})"
)
if accumulator_index:
# argmax, argmin
self.suffix.writelines(
[
f"{accumulator_index}_reduce = "
f"tl.{reduction_type}({accumulator}, {dim})[{', '.join(sizes)}].to(tl.int32)",
f"{accumulator_index}_mask = tl.arange(0, {reduction_range_prefix.upper()}BLOCK)"
f"[{', '.join(reduction_sizes)}] == {accumulator_index}_reduce",
f"{result_var} = tl.sum("
f"tl.where({accumulator_index}_mask, {accumulator_index}, 0), {dim})[{', '.join(sizes)}]",
]
)
else:
self.suffix.writeline(
f"{result_var} = tl.{reduction_type}({accumulator}, {dim})[{', '.join(sizes)}]"
)
else:
var_name = self.cse.reduction_cache[(src_dtype, reduction_type, value)]
self.suffix.writeline(f"{result_var} = {var_name}")
result_var.mask_vars = var_name.mask_vars
self.inside_reduction = False
index, mask_vars, mask = self.indexing(index)
assert "rmask" not in index
self.inside_reduction = True
self.outside_loop_vars.add(result_var)
self.cse.store_cache[name] = result_var
if name not in V.graph.removed_buffers:
var = self.args.output(name)
self.suffix.writeline(
DeferredLine(name, f"tl.store({var} + {index}, {result_var}, {mask})")
)
def codegen_body(self):
"""
Concat output code from index_code, loads, compute, stores,
suffix into self.body.
For pointwise kernels, this is called just once at the end.
For reduction kernels, this generates a loop over the reduction
axis.
"""
if not (
self.indexing_code
or self.loads
or self.stores
or self.compute
or self.suffix
):
return
if self.inside_reduction and not self.persistent_reduction:
self.body.writeline("for roffset in range(0, rnumel, RBLOCK):")
with self.body.indent():
# last range tree is always reduction
self.range_trees[-1].codegen_header(self.body)
self.body.splice(self.indexing_code)
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
# invalidate any caches that came from inside the reduction loop
self.cse.invalidate(self.outside_loop_vars)
self.range_trees[-1].cache_clear()
else:
self.body.splice(self.indexing_code)
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
self.body.splice(self.suffix)
self.indexing_code.clear()
self.loads.clear()
self.compute.clear()
self.stores.clear()
self.suffix.clear()
def codegen_kernel_benchmark(self):
result = IndentedBuffer()
argdefs, call_args, signature = self.args.python_argdefs()
result.writelines(["", "", "def get_args():"])
with result.indent():
for arg_name in call_args:
buf = V.graph.get_buffer(arg_name)
if buf:
result.writeline(
f"{arg_name} = rand_strided({tuple(buf.get_size())}, {tuple(buf.get_stride())}, device='{buf.get_device()}', dtype={buf.get_dtype()})" # noqa: B950 line too long
)
elif arg_name in V.graph.constants:
# note that random seed is put in V.graph.constants
const_tensor = V.graph.constants[arg_name]
result.writeline(
f"{arg_name} = rand_strided({tuple(const_tensor.size())}, {tuple(const_tensor.stride())}, device='{const_tensor.device}', dtype={const_tensor.dtype})" # noqa: B950 line too long
)
else:
raise KeyError(
f"Don't find the buffer or const tensor for {arg_name}"
)
result.writeline(f"return {', '.join(call_args)},")
result.writelines(["\n", "\n", "def call(args):"])
grid = []
extra_args = []
extra_args_str = None
index = V.graph.scheduler.current_device.index
with result.indent():
result.writeline(f"with torch.cuda._DeviceGuard({index}):")
with result.indent():
result.writeline(
f"torch.cuda.set_device({index})"
) # no-op to ensure context
for tree in self.range_trees:
expr = pexpr(tree.numel)
if tree.prefix != "r" or self.inside_reduction:
extra_args.append(expr)
if tree.prefix != "r":
grid.append(expr)
stream_name = f"stream{index}"
result.writeline(f"{stream_name} = get_cuda_stream({index})")
extra_args_str = ", ".join(map(str, extra_args)) + ", "
result.writeline(
f"triton_.run(*args, {extra_args_str}grid=grid({', '.join(grid)}), stream={stream_name})"
)
# benchmark all configs
result.writelines(["\n", "\n", "def benchmark_all_configs(args):"])
with result.indent():
result.writeline(f"with torch.cuda._DeviceGuard({index}):")
with result.indent():
result.writeline(
f"torch.cuda.set_device({index})"
) # no-op to ensure context
result.writeline(
f"return triton_.benchmark_all_configs(*args, {extra_args_str}grid=grid({', '.join(grid)}))"
)
result.writelines(["\n", "\n", "if __name__ == '__main__':"])
with result.indent():
result.writeline("from torch._inductor.utils import get_num_bytes")
result.writeline("from triton.testing import do_bench")
result.writeline("")
result.writeline("args = get_args()")
result.writeline(
"ms = do_bench(lambda: call(args), rep=40, fast_flush=True)[0]"
)
result.writeline("num_gb = get_num_bytes(*args) / 1e9")
result.writeline("gb_per_s = num_gb / (ms / 1e3)")
result.writeline(
'print(f"{ms:.3f}ms {num_gb:.3f}GB {gb_per_s:.2f}GB/s")'
)
return result
def codegen_kernel(self, name=None):
from triton import next_power_of_2
code = IndentedBuffer()
size_hints = [
next_power_of_2(V.graph.sizevars.size_hint(numel)) for numel in self.numels
]
if self.persistent_reduction:
assert self.inside_reduction
heuristics = "persistent_reduction"
elif self.inside_reduction:
heuristics = "reduction"
else:
size_hints.pop()
heuristics = "pointwise"
if name is None:
code.splice(
f"""
import triton
import triton.language as tl
from torch._inductor.ir import ReductionHint
from torch._inductor.ir import TileHint
from torch._inductor.triton_ops.autotune import {heuristics}
from torch._inductor.utils import instance_descriptor
"""
)
if config.benchmark_kernel:
code.splice(
"""
from torch._dynamo.testing import rand_strided
from torch._C import _cuda_getCurrentRawStream as get_cuda_stream
import torch
from torch._inductor.triton_ops.autotune import grid
"""
)
argdefs, _, signature = self.args.python_argdefs()
# maps actual expression to SizeArg if its in sizevars replacements
for i, arg in enumerate(signature):
if (
isinstance(arg, SizeArg)
and arg.expr in V.graph.sizevars.inv_precomputed_replacements
):
signature[i] = SizeArg(
arg.name, V.graph.sizevars.inv_precomputed_replacements[arg.expr]
)
mutated_args = set()
for mutation in self.mutations:
if mutation in self.args.input_buffers:
mutated_args.add(self.args.input_buffers[mutation])
if mutation in self.args.inplace_buffers:
mutated_args.add(self.args.inplace_buffers[mutation].inner_name)
if mutation in self.args.output_buffers:
mutated_args.add(self.args.output_buffers[mutation])
mutated_args = sorted(mutated_args)
triton_meta = {
"signature": dict(enumerate(map(signature_of, signature))),
"device": V.graph.scheduler.current_device.index,
"constants": {},
"mutated_arg_names": mutated_args,
}
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
sizearg = SizeArg(f"{tree.prefix}numel", tree.numel)
signature.append(sizearg)
triton_meta["signature"][len(argdefs)] = signature_of(sizearg)
argdefs.append(f"{tree.prefix}numel")
# constexpr version causes issues, see
# https://github.com/pytorch/torchdynamo/pull/1362
# triton_meta["constants"][len(argdefs)] = V.graph.sizevars.size_hint(
# tree.numel
# )
# argdefs.append(f"{tree.prefix}numel: tl.constexpr")
triton_meta["configs"] = [config_of(signature)]
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
argdefs.append(f"{tree.prefix.upper()}BLOCK : tl.constexpr")
if self.inside_reduction:
reduction_hint = self.reduction_hint
heuristics_line = f"""
@{heuristics}(
size_hints={size_hints!r},
reduction_hint={reduction_hint},
filename=__file__,
meta={triton_meta!r}
)
@triton.jit
"""
else:
tile_hint = ""
if len(size_hints) == 2:
if len(signature) == 4: # input, output and 2 args
tile_hint = "tile_hint=TileHint.SQUARE,"
else:
tile_hint = "tile_hint=TileHint.DEFAULT,"
heuristics_line = f"""
@{heuristics}(size_hints={size_hints!r}, {tile_hint}filename=__file__, meta={triton_meta!r})
@triton.jit
"""
code.splice(heuristics_line)
code.writeline(f"def {name or 'KERNEL_NAME'}({', '.join(argdefs)}):")
self.codegen_body()
with code.indent():
if not dynamo_config.dynamic_shapes:
self.codegen_static_numels(code)
for old, new in self.args.aliases():
code.writeline(f"{old} = {new}")
code.splice(self.body)
if config.benchmark_kernel:
code.splice(self.codegen_kernel_benchmark())
if name is not None:
return code.getvalue()
return code.getvalue()
def codegen_static_numels(self, code):
"""
We get a small speedup from hard coding numels if they are static.
"""
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
if isinstance(V.graph.sizevars.simplify(tree.numel), sympy.Integer):
code.writeline(
f"{tree.prefix}numel = {V.graph.sizevars.size_hint(tree.numel)}"
)
elif not dynamo_config.dynamic_shapes:
code.writeline(
f"{tree.prefix}numel = {V.graph.sizevars.size_hint(tree.numel)} # dynamic_shapes=False"
)
def indexing_size_str(self, i=None, x=None):
sizes = ["None"] * (len(self.range_trees) - int(self.numels[-1] == 1))
if i is not None:
sizes[i] = ":"
return f"[{', '.join(sizes)}]"
def dense_size_str(self):
sizes = []
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
sizes.append(f"{tree.prefix.upper()}BLOCK")
elif tree.prefix == "r" and tree.numel != 1:
sizes.append("1")
return f"[{', '.join(sizes)}]"
def call_kernel(self, code, name: str):
_, call_args, _ = self.args.python_argdefs()
# dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
for i in range(len(call_args)):
if V.graph.is_unspec_arg(call_args[i]):
call_args[i] = call_args[i] + ".item()"
grid = []
# TODO(jansel): if there are constants, we shouldn't bother passing them as args
for tree in self.range_trees:
if isinstance(tree.numel, (sympy.Integer, sympy.Symbol)):
expr = pexpr(tree.numel)
else:
expr = f"{name}_{tree.prefix}numel"
code.writeline(f"{expr} = {pexpr(tree.numel)}")
if tree.prefix != "r" or self.inside_reduction:
call_args.append(expr)
if tree.prefix != "r":
grid.append(expr)
call_args = ", ".join(call_args)
stream_name = code.write_get_cuda_stream(V.graph.scheduler.current_device.index)
code.writeline(
f"{name}.run({call_args}, grid=grid({', '.join(grid)}), stream={stream_name})"
)
def create_cse_var(self, *args, **kwargs):
return TritonCSEVariable(*args, **kwargs)
class TritonScheduling:
def __init__(self, scheduler):
self.scheduler = scheduler
def group_fn(self, sizes):
return tuple(V.graph.sizevars.simplify(sympy_product(s)) for s in sizes)
def can_fuse(self, node1, node2):
"""
Hook called by Scheduler to determine if the Triton backend
can fuse node1 and node2. These nodes might already be
FusedSchedulerNodes.
"""
_, (numel1, rnumel1) = node1.group
_, (numel2, rnumel2) = node2.group
if node1.is_reduction() and node2.is_reduction():
return numel1 == numel2 and rnumel1 == rnumel2
if not node1.is_reduction() and not node2.is_reduction():
if not (numel1 == numel2 and rnumel1 == rnumel2):
return False
if node1.is_template():
return True # skip checks for compatible tiling
# check for a bad combined tiling
tiling1 = self.select_tiling(node1.get_nodes(), numel1, rnumel1)
tiling2 = self.select_tiling(node2.get_nodes(), numel1, rnumel1)
tiling3 = self.select_tiling(
node1.get_nodes() + node2.get_nodes(), numel1, rnumel1
)
if config.triton.tiling_prevents_pointwise_fusion:
if len(tiling1) > 2:
if len(tiling2) > 2:
return tiling1 == tiling2 == tiling3
else:
return tiling1 == tiling3
elif len(tiling2) > 2:
return tiling2 == tiling3
return True
if not node1.is_reduction() and node2.is_reduction():
assert rnumel1 == 1 and rnumel2 != 1
if numel1 == numel2 * rnumel2:
if not all(
TritonKernel.is_compatible((numel2, rnumel2), n.get_ranges())
for n in node1.get_nodes()
):
return False
if (
config.triton.tiling_prevents_reduction_fusion
and not node1.is_template()
):
return self.select_tiling(node1.get_nodes(), numel1) in (
(numel1, 1),
(numel2, rnumel2, 1),
)
return True
return numel1 == numel2
assert node1.is_reduction() and not node2.is_reduction()
# swap args to hit the case above
return self.can_fuse_horizontal(node2, node1)
can_fuse_vertical = can_fuse
can_fuse_horizontal = can_fuse
def codegen_nodes(self, nodes):
"""
Given a set of pre-fused nodes, generate a Triton kernel.
"""
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
node_schedule = []
current_loop_writes = set()
is_current_reductions = set()
done = set()
def fits_in_main_body(n):
_, (node_numel, node_rnumel) = n.group
return (node_numel == numel and node_rnumel == rnumel) or (
node_numel == numel * rnumel and node_rnumel == 1
)
def fits_outside_reduction(n):
_, (node_numel, node_rnumel) = n.group
return node_numel == numel and node_rnumel == 1 and rnumel != 1
@contextlib.contextmanager
def end_current_reduction_loop():
if current_loop_writes:
# flush out any other runnable nodes to reduce number of loops
for other_node in nodes[index + 1 :]:
if (
node not in done
and fits_in_main_body(other_node)
and not (
current_loop_writes & other_node.recursive_predecessors
)
):
done.add(node)
current_loop_writes.add(node.get_name())
is_current_reductions.add(node.is_reduction())
node_schedule.append(node)
if node_schedule and node_schedule[-1] is EnableReduction:
node_schedule.pop()
else:
node_schedule.append(DisableReduction)
yield
node_schedule.append(EnableReduction)
current_loop_writes.clear()
is_current_reductions.clear()
for index, node in enumerate(nodes):
if node in done:
continue
done.add(node)
def requires_closing_previous_reduction(node, node_schedule):
if rnumel == 1:
return False
if not current_loop_writes & node.recursive_predecessors:
return False
assert node_schedule and not isinstance(
node_schedule[-1], (EnableReduction, DisableReduction)
)
return True in is_current_reductions
if fits_in_main_body(node):
if requires_closing_previous_reduction(node, node_schedule):
with end_current_reduction_loop():
pass # need to start a new reduction loop
current_loop_writes.add(node.get_name())
is_current_reductions.add(node.is_reduction())
node_schedule.append(node)
elif fits_outside_reduction(node):
with end_current_reduction_loop():
node_schedule.append(node)
else:
raise NotImplementedError(
f"unexpected group: ({numel}, {rnumel}) != {node.group[1]}"
)
if schedule_log.isEnabledFor(logging.DEBUG):
schedule_log.debug(f"Schedule:\n {node_schedule}")
return self.codegen_node_schedule(node_schedule, numel, rnumel)
@staticmethod
def reduction_hint(node):
assert node.is_reduction()
if all(
dep.is_contiguous()
for dep in itertools.chain(node.read_writes.reads, node.read_writes.writes)
):
return ReductionHint.INNER
else:
return node.node.data.reduction_hint
def codegen_node_schedule(self, node_schedule, numel, reduction_numel):
tiled_groups = self.select_tiling(node_schedule, numel, reduction_numel)
reductions = list(
filter(
lambda n: n not in (EnableReduction, DisableReduction)
and n.is_reduction(),
node_schedule,
)
)
if len(reductions) > 0:
hints = [self.reduction_hint(n) for n in reductions]
if hints.count(hints[0]) == len(hints):
reduction_hint_val = hints[0]
else:
reduction_hint_val = ReductionHint.DEFAULT
else:
reduction_hint_val = ReductionHint.DEFAULT
mutations = set()
for node in node_schedule:
if hasattr(node, "get_mutations"):
mutations.update(node.get_mutations())
with TritonKernel(
*tiled_groups, reduction_hint=reduction_hint_val, mutations=mutations
) as kernel:
stack = contextlib.ExitStack()
for node in node_schedule:
if node not in (EnableReduction, DisableReduction):
node.mark_run()
for node in node_schedule:
if node is DisableReduction:
stack.enter_context(kernel.disable_reduction())
elif node is EnableReduction:
stack.close()
else:
# TODO - mostly works but needs a couple fixes
if not dynamo_config.dynamic_shapes:
# TODO - use split ranges ?
indexing_dtype_strength_reduction(node._body)
index_vars = kernel.split_and_set_ranges(node.get_ranges())
node.codegen(index_vars)
src_code = kernel.codegen_kernel()
kernel_name = self.define_kernel(src_code, node_schedule)
kernel.call_kernel(V.graph.wrapper_code, kernel_name)
self.scheduler.free_buffers()
def define_kernel(self, src_code, node_schedule):
wrapper = V.graph.wrapper_code
if src_code in wrapper.kernels:
kernel_name = wrapper.kernels[src_code]
else:
fused_name = (
get_fused_kernel_name(node_schedule)
if config.triton.descriptive_names
else ""
)
kernel_name = "_".join(["triton", fused_name, wrapper.next_kernel_suffix()])
wrapper.kernels[src_code] = kernel_name
subs_name = kernel_name if config.triton.unique_kernel_names else "triton_"
src_code = src_code.replace("KERNEL_NAME", subs_name)
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
src_code = src_code.replace("#pragma CMT", "#")
_, _, kernel_path = get_code_path(src_code, "py", extra="")
compile_wrapper = IndentedBuffer()
compile_wrapper.writeline("async_compile.triton('''")
compile_wrapper.splice(src_code, strip=True)
compile_wrapper.writeline("''')")
metadata_comment = f"# kernel path: {kernel_path}"
metadata_comment += "\n" + get_kernel_metadata(node_schedule)
wrapper.define_kernel(
kernel_name, compile_wrapper.getvalue(), metadata_comment
)
return kernel_name
def codegen_template(self, template_node, epilogue_nodes):
"""
Codegen a triton template
"""
_, (numel, rnumel) = template_node.group
assert rnumel == 1
kernel, render = template_node.node.make_kernel_render(template_node.node)
with kernel:
for node in [template_node, *epilogue_nodes]:
node.mark_run()
render() # warmup run to get the args right
for node in epilogue_nodes:
node.codegen(kernel.split_and_set_ranges(node.get_ranges()))
src_code = render()
kernel_name = self.define_kernel(src_code, [template_node, *epilogue_nodes])
kernel.call_kernel(V.graph.wrapper_code, kernel_name)
self.scheduler.free_buffers()
def codegen_sync(self):
V.graph.wrapper_code.writeline("torch.cuda.synchronize()")
@staticmethod
@functools.lru_cache(32)
def candidate_tilings(node):
ranges, reduction_ranges = node.get_ranges()
if len(ranges) <= 1:
return ()
rw = node.pointwise_read_writes()
assert len(rw.range_vars) == len(ranges)
deps = [
dep
for dep in itertools.chain(rw.reads, rw.writes)
if dep.name not in V.graph.removed_buffers
]
write_names = {dep.name for dep in rw.writes}
tilings = []
for dep in deps:
strides = V.graph.sizevars.stride_hints(dep.index, rw.range_vars)
assert len(strides) == len(ranges)
try:
split = strides.index(1) + 1
if split == len(ranges):
continue
if all(s == 0 for s in strides[split:]):
# if this is a broadcasted tensor and all dimensions after split are broadcast,
# this is not a real split
continue
except ValueError:
continue
tiled_groups = (
V.graph.sizevars.simplify(sympy_product(ranges[:split])),
V.graph.sizevars.simplify(sympy_product(ranges[split:])),
)
# score by number of elements
score = V.graph.sizevars.size_hint(
sympy_product(
size for size, stride in zip(ranges, strides) if stride != 0
)
)
if dep.name in write_names:
# ngimel said contiguous writes is more important than reads
score *= 2
if CandidateTiling.is_good_size(tiled_groups[0]):
score *= 2
if CandidateTiling.is_good_size(tiled_groups[1]):
score *= 2
if (
V.graph.sizevars.size_hint(
score - sympy_product(itertools.chain(ranges, reduction_ranges))
)
>= 0
):
tilings.append(CandidateTiling(tiled_groups, score, dep.name))
return tilings
@classmethod
def select_tiling(cls, node_schedule, numel, reduction_numel=sympy.Integer(1)):
"""
Heuristics to decide how to tile kernels.
Currently, we tile based on stride-1 dimensions.
Returns:
`(tile1, tile2, reduction_numel)` s.t. `tile1 * tile2 == numel`
"""
if reduction_numel != 1 or config.triton.max_tiles <= 1:
# TODO(jansel): should we tile reductions?
return (numel, reduction_numel)
seen_names = set()
candidate_tiles = collections.Counter()
for node in EnableReduction.filter(node_schedule):
for tiling in cls.candidate_tilings(node):
if tiling.name in seen_names:
continue
seen_names.add(tiling.name)
candidate_tiles[tiling.tiling] += tiling.score
ranked_tilings = [tiling for tiling, score in candidate_tiles.most_common()]
if config.triton.max_tiles >= 3:
# Add one 3D tiling choice
for i in range(1, len(ranked_tilings)):
a0, a1 = ranked_tilings[0]
b0, b1 = ranked_tilings[i]
if V.graph.sizevars.size_hint(a1 - b1) == 0:
continue
if V.graph.sizevars.size_hint(a1 - b1) < 0:
# swap so a0 is bigger
a0, a1 = ranked_tilings[i]
b0, b1 = ranked_tilings[0]
assert V.graph.sizevars.size_hint(a1 - b1) > 0
if V.graph.sizevars.maybe_guard_multiple_of(a1, b1):
tiling = (a0, ir.FloorDiv(a1, b1), b1)
ranked_tilings = [tiling] + ranked_tilings
break # only 1 choice for now
for tiled_groups in ranked_tilings:
new_groups = (*tiled_groups, reduction_numel)
if all(
TritonKernel.is_compatible(new_groups, node.get_ranges())
for node in node_schedule
if isinstance(node, scheduler.SchedulerNode)
):
return new_groups
return (numel, reduction_numel)
def flush(self):
pass
@dataclasses.dataclass
class CandidateTiling:
tiling: List[sympy.Expr]
score: int # higher is better
name: str = None
@staticmethod
def is_good_size(s):
"""Somewhat arbitrary heuristic used to boost scores for some sizes"""
s = V.graph.sizevars.size_hint(s)
return s >= 32 and (s % 32 == 0)
class DisableReduction:
"""
Marker to invoke `kernel.disable_reduction()`. This closes a
reduction loop and allows for pointwise ops to occur on the output
of a reduction.
"""
class EnableReduction:
"""
Marker to end a DisableReduction block.
"""
@staticmethod
def filter(node_schedule):
"""
Get the nodes from node_schedule skipping those in a
DisableReduction block.
"""
disabled = False
for node in node_schedule:
if node in (EnableReduction, DisableReduction):
# Don't tile stuff outside the main reduction loop
disabled = node is DisableReduction
elif disabled:
pass
else:
yield node
class CantSplit(Exception):
pass