mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/54633 Theres currently no information that could be used to determine what is a parameter during the loading of a mobile module. This prevents named parameters from functioning correctly. This change is a temporary hack to help out federated learning the sole user of this api currently. ghstack-source-id: 124885201 Test Plan: todo Reviewed By: dhruvbird Differential Revision: D27308738 fbshipit-source-id: 0af5d1e8381ab7b7a43b20560941aa070a02e7b8
202 lines
5.9 KiB
C++
202 lines
5.9 KiB
C++
#include <torch/csrc/jit/mobile/module.h>
|
|
|
|
#include <torch/csrc/jit/mobile/interpreter.h>
|
|
#include <torch/csrc/jit/mobile/observer.h>
|
|
#include <torch/csrc/jit/runtime/jit_exception.h>
|
|
#include <exception>
|
|
|
|
#include <ATen/record_function.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
std::ostream& operator<<(std::ostream& out, Instruction inst);
|
|
namespace mobile {
|
|
|
|
void CompilationUnit::register_function(std::unique_ptr<Function> fn) {
|
|
methods_.emplace_back(std::move(fn));
|
|
}
|
|
|
|
Function* CompilationUnit::find_function(const c10::QualifiedName& qn) {
|
|
for (auto& fn : methods_) {
|
|
if (fn->qualname() == qn) {
|
|
return fn.get();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Method Module::get_method(const std::string& name) const {
|
|
if (auto method = find_method(name)) {
|
|
return *method;
|
|
}
|
|
AT_ERROR("Method '", name, "' is not defined.");
|
|
}
|
|
|
|
c10::optional<Method> Module::find_method(const std::string& basename) const {
|
|
for (auto& fn : cu_->methods()) {
|
|
if (fn->name() == basename) {
|
|
return c10::make_optional<Method>(Method(this, fn.get()));
|
|
}
|
|
}
|
|
return c10::nullopt;
|
|
}
|
|
|
|
namespace {
|
|
void set_train_recurse(
|
|
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
|
|
bool on) {
|
|
if (auto slot = obj->type()->findAttributeSlot("training")) {
|
|
obj->setSlot(*slot, on);
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(false, "'training' attribute not found");
|
|
}
|
|
for (const auto& slot : obj->slots()) {
|
|
if (slot.isObject()) {
|
|
set_train_recurse(slot.toObject(), on);
|
|
}
|
|
}
|
|
}
|
|
|
|
void slot_params_recurse(
|
|
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
|
|
std::vector<at::Tensor>* params) {
|
|
for (const auto& slot : obj->slots()) {
|
|
if (slot.isTensor()) {
|
|
params->emplace_back(slot.toTensor());
|
|
} else if (slot.isObject()) {
|
|
slot_params_recurse(slot.toObject(), params);
|
|
}
|
|
}
|
|
}
|
|
|
|
void slot_named_params_recurse(
|
|
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
|
|
std::map<std::string, at::Tensor>* params,
|
|
const std::string& parent_name) {
|
|
auto slots = obj->slots();
|
|
size_t nslots = slots.size();
|
|
for (size_t i = 0; i < nslots; ++i) {
|
|
auto slot = slots[i];
|
|
std::string name =
|
|
parent_name.size() == 0 ? parent_name : parent_name + ".";
|
|
name += obj->type()->getAttributeName(i);
|
|
// TODO: Fix this filter. Requires_grad is not the appropriate
|
|
// filter of a parameter, but is a temporary hack to help probable
|
|
// users of this api. The correct behavior is to filter by the
|
|
// obj->type->is_parameter() but this currently always returns
|
|
// false on mobile.
|
|
if (slot.isTensor() && slot.toTensor().requires_grad()) {
|
|
(*params)[name] = slot.toTensor();
|
|
} else if (slot.isObject()) {
|
|
slot_named_params_recurse(slot.toObject(), params, name);
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
const std::vector<at::Tensor> Module::parameters() const {
|
|
std::vector<at::Tensor> params;
|
|
slot_params_recurse(object_, ¶ms);
|
|
return params;
|
|
}
|
|
|
|
// Returns a mapping for all attributes that requires_grad=True in a module.
|
|
// This behavior differs from full torch script modules. This is a bug,
|
|
// but currently there is no way to correctly label parameters in the
|
|
// loading of a mobile module. TODO
|
|
const std::map<std::string, at::Tensor> Module::named_parameters() const {
|
|
std::map<std::string, at::Tensor> params;
|
|
const std::string name = "";
|
|
slot_named_params_recurse(object_, ¶ms, name);
|
|
return params;
|
|
}
|
|
|
|
std::string Module::get_forward_method_debug_info(size_t pc) const {
|
|
return find_method("forward")->get_module_debug_info(pc);
|
|
}
|
|
|
|
void Module::train(bool on) {
|
|
set_train_recurse(object_, on);
|
|
}
|
|
|
|
bool Module::is_training() const {
|
|
if (auto slot = object_->type()->findAttributeSlot("training")) {
|
|
return object_->getSlot(*slot).toBool();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const std::vector<Method> Module::get_methods() const {
|
|
std::vector<Method> methods;
|
|
for (std::unique_ptr<Function>& fn : cu_->methods()) {
|
|
methods.emplace_back(this, fn.get());
|
|
}
|
|
return methods;
|
|
}
|
|
|
|
Method::Method(const Module* owner, Function* function)
|
|
: owner_(owner), function_(function) {}
|
|
|
|
void Method::run(Stack& stack) const {
|
|
auto observer = torch::observerConfig().getModuleObserver();
|
|
auto instance_key = std::rand();
|
|
/* if the metadata dict doesn't contain "model_name", copy the metadata and
|
|
set the value of "model_name" as name() */
|
|
std::unordered_map<std::string, std::string> copied_metadata =
|
|
owner_->metadata();
|
|
if (owner_->metadata().find("model_name") == owner_->metadata().end()) {
|
|
copied_metadata["model_name"] = owner_->name();
|
|
}
|
|
if (observer) {
|
|
observer->onEnterRunMethod(
|
|
copied_metadata, instance_key, function_->name());
|
|
}
|
|
|
|
auto debug_info = std::make_shared<MobileDebugInfo>();
|
|
std::string name = copied_metadata["model_name"];
|
|
debug_info->setModelName(name);
|
|
debug_info->setMethodName(function_->name());
|
|
at::DebugInfoGuard guard(at::DebugInfoKind::MOBILE_RUNTIME_INFO, debug_info);
|
|
|
|
try {
|
|
stack.insert(stack.begin(), owner_->_ivalue()); // self
|
|
function_->run(stack);
|
|
if (observer) {
|
|
observer->onExitRunMethod(instance_key);
|
|
}
|
|
} catch (c10::Error& error) {
|
|
if (observer) {
|
|
observer->onFailRunMethod(instance_key, error.what());
|
|
}
|
|
TORCH_RETHROW(error);
|
|
} catch (...) {
|
|
auto currentException = std::current_exception();
|
|
try {
|
|
if (!currentException) {
|
|
TORCH_CHECK(false, "Unknown exception");
|
|
} else {
|
|
try {
|
|
std::rethrow_exception(currentException);
|
|
} catch (const std::exception& e) {
|
|
TORCH_CHECK(false, e.what());
|
|
}
|
|
}
|
|
} catch (c10::Error& error) {
|
|
if (observer) {
|
|
observer->onFailRunMethod(instance_key, error.what());
|
|
}
|
|
TORCH_RETHROW(error);
|
|
}
|
|
}
|
|
}
|
|
|
|
c10::IValue Method::operator()(std::vector<c10::IValue> stack) const {
|
|
run(stack);
|
|
TORCH_INTERNAL_ASSERT(!stack.empty());
|
|
return stack.front();
|
|
}
|
|
|
|
} // namespace mobile
|
|
} // namespace jit
|
|
} // namespace torch
|