Files
pytorch/torch/_tensor_docs.py
2017-01-17 21:44:12 -05:00

1406 lines
24 KiB
Python

"""Adds docstrings to Tensor functions"""
import torch._C
from torch._C import _add_docstr as add_docstr
add_docstr(torch._C.FloatTensorBase.abs,
"""
abs(out=None) -> Tensor
See :func:`torch.abs`
""")
add_docstr(torch._C.FloatTensorBase.abs_,
"""
abs_(out=None) -> Tensor
In-place version of :meth:`~Tensor.abs`
""")
add_docstr(torch._C.FloatTensorBase.acos,
"""
acos(out=None) -> Tensor
See :func:`torch.acos`
""")
add_docstr(torch._C.FloatTensorBase.acos_,
"""
acos_(out=None) -> Tensor
In-place version of :meth:`~Tensor.acos`
""")
add_docstr(torch._C.FloatTensorBase.add,
"""
add(value, out=None)
See :func:`torch.add`
""")
add_docstr(torch._C.FloatTensorBase.add_,
"""
add_(value, out=None)
In-place version of :meth:`~Tensor.add`
""")
add_docstr(torch._C.FloatTensorBase.addbmm,
"""
addbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor
See :func:`torch.addbmm`
""")
add_docstr(torch._C.FloatTensorBase.addbmm_,
"""
addbmm_(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor
In-place version of :meth:`~Tensor.addbmm`
""")
add_docstr(torch._C.FloatTensorBase.addcdiv,
"""
addcdiv(value=1, tensor1, tensor2, out=None) -> Tensor
See :func:`torch.addcdiv`
""")
add_docstr(torch._C.FloatTensorBase.addcdiv_,
"""
addcdiv_(value=1, tensor1, tensor2, out=None) -> Tensor
In-place version of :meth:`~Tensor.addcdiv`
""")
add_docstr(torch._C.FloatTensorBase.addcmul,
"""
addcmul(value=1, tensor1, tensor2, out=None) -> Tensor
See :func:`torch.addcmul`
""")
add_docstr(torch._C.FloatTensorBase.addcmul_,
"""
addcmul_(value=1, tensor1, tensor2, out=None) -> Tensor
In-place version of :meth:`~Tensor.addcmul`
""")
add_docstr(torch._C.FloatTensorBase.addmm,
"""
addmm(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor
See :func:`torch.addmm`
""")
add_docstr(torch._C.FloatTensorBase.addmm_,
"""
addmm_(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor
In-place version of :meth:`~Tensor.addmm`
""")
add_docstr(torch._C.FloatTensorBase.addmv,
"""
addmv(beta=1, tensor, alpha=1, mat, vec, out=None) -> Tensor
See :func:`torch.addmv`
""")
add_docstr(torch._C.FloatTensorBase.addmv_,
"""
addmv_(beta=1, tensor, alpha=1, mat, vec, out=None) -> Tensor
In-place version of :meth:`~Tensor.addmv`
""")
add_docstr(torch._C.FloatTensorBase.addr,
"""
addr(beta=1, alpha=1, vec1, vec2, out=None) -> Tensor
See :func:`torch.addr`
""")
add_docstr(torch._C.FloatTensorBase.addr_,
"""
addr_(beta=1, alpha=1, vec1, vec2, out=None) -> Tensor
In-place version of :meth:`~Tensor.addr`
""")
add_docstr(torch._C.FloatTensorBase.apply_,
"""
apply_(callable) -> Tensor
Applies the function :attr:`callable` to each element in the tensor, replacing
each element with the value returned by :attr:`callable`.
""")
add_docstr(torch._C.FloatTensorBase.asin,
"""
asin(out=None) -> Tensor
See :func:`torch.asin`
""")
add_docstr(torch._C.FloatTensorBase.asin_,
"""
asin_(out=None) -> Tensor
In-place version of :meth:`~Tensor.asin`
""")
add_docstr(torch._C.FloatTensorBase.atan,
"""
atan(out=None) -> Tensor
See :func:`torch.atan`
""")
add_docstr(torch._C.FloatTensorBase.atan2,
"""
atan2(other, out=None) -> Tensor
See :func:`torch.atan2`
""")
add_docstr(torch._C.FloatTensorBase.atan2_,
"""
atan2_(other, out=None) -> Tensor
In-place version of :meth:`~Tensor.atan2`
""")
add_docstr(torch._C.FloatTensorBase.atan_,
"""
atan_(out=None) -> Tensor
In-place version of :meth:`~Tensor.atan`
""")
add_docstr(torch._C.FloatTensorBase.baddbmm,
"""
baddbmm(beta=1, alpha=1, batch1, batch2, out=None) -> Tensor
See :func:`torch.baddbmm`
""")
add_docstr(torch._C.FloatTensorBase.baddbmm_,
"""
baddbmm_(beta=1, alpha=1, batch1, batch2, out=None) -> Tensor
In-place version of :meth:`~Tensor.baddbmm`
""")
add_docstr(torch._C.FloatTensorBase.bernoulli,
"""
bernoulli(out=None) -> Tensor
See :func:`torch.bernoulli`
""")
add_docstr(torch._C.FloatTensorBase.bernoulli_,
"""
bernoulli_(out=None) -> Tensor
In-place version of :meth:`~Tensor.bernoulli`
""")
add_docstr(torch._C.FloatTensorBase.bmm,
"""
bmm(batch2, out=None) -> Tensor
See :func:`torch.bmm`
""")
add_docstr(torch._C.FloatTensorBase.cauchy_,
"""
cauchy_(generator=None, median=0, sigma=1) -> Tensor
Fills the tensor with numbers drawn from the Cauchy distribution:
.. math::
P(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - median)^2 + \sigma^2}
""")
add_docstr(torch._C.FloatTensorBase.ceil,
"""
ceil(out=None) -> Tensor
See :func:`torch.ceil`
""")
add_docstr(torch._C.FloatTensorBase.ceil_,
"""
ceil_(out=None) -> Tensor
In-place version of :meth:`~Tensor.ceil`
""")
add_docstr(torch._C.FloatTensorBase.clamp,
"""
clamp(min, max, out=None) -> Tensor
See :func:`torch.clamp`
""")
add_docstr(torch._C.FloatTensorBase.clamp_,
"""
clamp_(min, max, out=None) -> Tensor
In-place version of :meth:`~Tensor.clamp`
""")
add_docstr(torch._C.FloatTensorBase.clone,
"""
clone() -> Tensor
Returns a copy of the tensor. The copy has the same size and data type as the
original tensor.
""")
add_docstr(torch._C.FloatTensorBase.contiguous,
"""
contiguous() -> Tensor
Returns a contiguous Tensor containing the same data as this tensor. If this
tensor is contiguous, this function returns the original tensor.
""")
add_docstr(torch._C.FloatTensorBase.copy_,
"""
copy_(src, async=False) -> Tensor
Copies the elements from :attr:`src` into this tensor and returns this tensor.
The source tensor should have the same number of elements as this tensor. It
may be of a different data type or reside on a different device.
Args:
src (Tensor): Source tensor to copy
async (bool): If True and this copy is between CPU and GPU, then the copy
may occur asynchronously with respect to the host. For other
copies, this argument has no effect.
""")
add_docstr(torch._C.FloatTensorBase.cos,
"""
cos(out=None) -> Tensor
See :func:`torch.cos`
""")
add_docstr(torch._C.FloatTensorBase.cos_,
"""
cos_(out=None) -> Tensor
In-place version of :meth:`~Tensor.cos`
""")
add_docstr(torch._C.FloatTensorBase.cosh,
"""
cosh(out=None) -> Tensor
See :func:`torch.cosh`
""")
add_docstr(torch._C.FloatTensorBase.cosh_,
"""
cosh_(out=None) -> Tensor
In-place version of :meth:`~Tensor.cosh`
""")
add_docstr(torch._C.FloatTensorBase.cross,
"""
cross(other, dim=-1, out=None) -> Tensor
See :func:`torch.cross`
""")
add_docstr(torch._C.FloatTensorBase.cumprod,
"""
cumprod(dim, out=None) -> Tensor
See :func:`torch.cumprod`
""")
add_docstr(torch._C.FloatTensorBase.cumsum,
"""
cumsum(dim, out=None) -> Tensor
See :func:`torch.cumsum`
""")
add_docstr(torch._C.FloatTensorBase.data_ptr,
"""
data_ptr() -> int
Returns the address of the first element of this tensor.
""")
add_docstr(torch._C.FloatTensorBase.diag,
"""
diag(diagonal=0, out=None) -> Tensor
See :func:`torch.diag`
""")
add_docstr(torch._C.FloatTensorBase.dim,
"""
dim() -> int
Returns the number of dimensions of this tensor.
""")
add_docstr(torch._C.FloatTensorBase.dist,
"""
dist(other, p=2, out=None) -> Tensor
See :func:`torch.dist`
""")
add_docstr(torch._C.FloatTensorBase.div,
"""
div(value, out=None)
See :func:`torch.div`
""")
add_docstr(torch._C.FloatTensorBase.div_,
"""
div_(value, out=None)
In-place version of :meth:`~Tensor.div`
""")
add_docstr(torch._C.FloatTensorBase.dot,
"""
dot(tensor2) -> float
See :func:`torch.dot`
""")
add_docstr(torch._C.FloatTensorBase.eig,
"""
eig(eigenvectors=False, out=None) -> (Tensor, Tensor)
See :func:`torch.eig`
""")
add_docstr(torch._C.FloatTensorBase.element_size,
"""
element_size() -> int
Returns the size in bytes of an individual element.
Example:
>>> torch.FloatTensor().element_size()
4
>>> torch.ByteTensor().element_size()
1
""")
add_docstr(torch._C.FloatTensorBase.eq,
"""
eq(other, out=None) -> Tensor
See :func:`torch.eq`
""")
add_docstr(torch._C.FloatTensorBase.eq_,
"""
eq_(other, out=None) -> Tensor
In-place version of :meth:`~Tensor.eq`
""")
add_docstr(torch._C.FloatTensorBase.equal,
"""
equal(other) -> bool
See :func:`torch.equal`
""")
add_docstr(torch._C.FloatTensorBase.exp,
"""
exp(out=None) -> Tensor
See :func:`torch.exp`
""")
add_docstr(torch._C.FloatTensorBase.exp_,
"""
exp_(out=None) -> Tensor
In-place version of :meth:`~Tensor.exp`
""")
add_docstr(torch._C.FloatTensorBase.exponential_,
"""
exponential_(generator=None, lambd=1) -> Tensor
Fills this tensor with elements drawn from the exponential distribution:
.. math::
P(x) = \lambda e^{-\lambda x}
""")
add_docstr(torch._C.FloatTensorBase.fill_,
"""
fill_(value) -> Tensor
Fills this tensor with the specified value.
""")
add_docstr(torch._C.FloatTensorBase.floor,
"""
floor(out=None) -> Tensor
See :func:`torch.floor`
""")
add_docstr(torch._C.FloatTensorBase.floor_,
"""
floor_(out=None) -> Tensor
In-place version of :meth:`~Tensor.floor`
""")
add_docstr(torch._C.FloatTensorBase.fmod,
"""
fmod(divisor, out=None) -> Tensor
See :func:`torch.fmod`
""")
add_docstr(torch._C.FloatTensorBase.fmod_,
"""
fmod_(divisor, out=None) -> Tensor
In-place version of :meth:`~Tensor.fmod`
""")
add_docstr(torch._C.FloatTensorBase.frac,
"""
frac(out=None) -> Tensor
See :func:`torch.frac`
""")
add_docstr(torch._C.FloatTensorBase.frac_,
"""
frac_(out=None) -> Tensor
In-place version of :meth:`~Tensor.frac`
""")
add_docstr(torch._C.FloatTensorBase.gather,
"""
gather(dim, index, out=None) -> Tensor
See :func:`torch.gather`
""")
add_docstr(torch._C.FloatTensorBase.ge,
"""
ge(other, out=None) -> Tensor
See :func:`torch.ge`
""")
add_docstr(torch._C.FloatTensorBase.ge_,
"""
ge_(other, out=None) -> Tensor
In-place version of :meth:`~Tensor.ge`
""")
add_docstr(torch._C.FloatTensorBase.gels,
"""
gels(A, out=None) -> Tensor
See :func:`torch.gels`
""")
add_docstr(torch._C.FloatTensorBase.geometric_,
"""
geometric_(generator=None, p) -> Tensor
Fills this tensor with elements drawn from the geometric distribution:
.. math::
P(X=k) = (1 - p)^{k - 1} p
""")
add_docstr(torch._C.FloatTensorBase.geqrf,
"""
geqrf() -> (Tensor, Tensor)
See :func:`torch.geqrf`
""")
add_docstr(torch._C.FloatTensorBase.ger,
"""
ger(vec2) -> Tensor
See :func:`torch.ger`
""")
add_docstr(torch._C.FloatTensorBase.gesv,
"""
gesv(A) -> Tensor, Tensor
See :func:`torch.gesv`
""")
add_docstr(torch._C.FloatTensorBase.gt,
"""
gt(other, out=None) -> Tensor
See :func:`torch.gt`
""")
add_docstr(torch._C.FloatTensorBase.gt_,
"""
gt_(other, out=None) -> Tensor
In-place version of :meth:`~Tensor.gt`
""")
add_docstr(torch._C.FloatTensorBase.histc,
"""
histc(bins=100, min=0, max=0, out=None) -> Tensor
See :func:`torch.histc`
""")
add_docstr(torch._C.FloatTensorBase.index,
"""
index(m) -> Tensor
Selects elements from this tensor using a binary mask or along a given
dimension. The expression ``tensor.index(m)`` is equivalent to ``tensor[m]``.
Args:
m (int or ByteTensor or slice): The dimension or mask used to select elements
""")
add_docstr(torch._C.FloatTensorBase.index_add_,
"""
index_add_(dim, index, tensor) -> Tensor
Accumulate the elements of tensor into the original tensor by adding to the
indices in the order given in index. The shape of tensor must exactly match the
elements indexed or an error will be raised.
Args:
dim (int): Dimension along which to index
index (LongTensor): Indices to select from tensor
tensor (Tensor): Tensor containing values to add
Example:
>>> x = torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
>>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> index = torch.LongTensor([0, 2, 1])
>>> x.index_add_(0, index, t)
>>> x
2 3 4
8 9 10
5 6 7
[torch.FloatTensor of size 3x3]
""")
add_docstr(torch._C.FloatTensorBase.index_copy_,
"""
index_copy_(dim, index, tensor) -> Tensor
Copies the elements of tensor into the original tensor by selecting the
indices in the order given in index. The shape of tensor must exactly match the
elements indexed or an error will be raised.
Args:
dim (int): Dimension along which to index
index (LongTensor): Indices to select from tensor
tensor (Tensor): Tensor containing values to copy
Example:
>>> x = torch.Tensor(3, 3)
>>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> index = torch.LongTensor([0, 2, 1])
>>> x.index_copy_(0, index, t)
>>> x
1 2 3
7 8 9
4 5 6
[torch.FloatTensor of size 3x3]
""")
add_docstr(torch._C.FloatTensorBase.index_fill_,
"""
index_fill_(dim, index, tensor) -> Tensor
Fills the elements of the original tensor with value :attr:`val` by selecting
the indices in the order given in index.
Args:
dim (int): Dimension along which to index
index (LongTensor): Indices
val (float): Value to fill
Example:
>>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> index = torch.LongTensor([0, 2])
>>> x.index_fill_(1, index, -1)
>>> x
-1 2 -1
-1 5 -1
-1 8 -1
[torch.FloatTensor of size 3x3]
""")
add_docstr(torch._C.FloatTensorBase.index_select,
"""
index_select(dim, index, out=None) -> Tensor
See :func:`torch.index_select`
""")
add_docstr(torch._C.FloatTensorBase.inverse,
"""
inverse() -> Tensor
See :func:`torch.inverse`
""")
add_docstr(torch._C.FloatTensorBase.is_contiguous,
"""
is_contiguous() -> bool
Returns True if this tensor is contiguous in memory in C order.
""")
add_docstr(torch._C.FloatTensorBase.is_set_to,
"""
""")
add_docstr(torch._C.FloatTensorBase.kthvalue,
"""
kthvalue(k, dim=None, out=None) -> (Tensor, LongTensor)
See :func:`torch.kthvalue`
""")
add_docstr(torch._C.FloatTensorBase.le,
"""
le(other, out=None) -> Tensor
See :func:`torch.le`
""")
add_docstr(torch._C.FloatTensorBase.le_,
"""
le_(other, out=None) -> Tensor
In-place version of :meth:`~Tensor.le`
""")
add_docstr(torch._C.FloatTensorBase.lerp,
"""
lerp(start, end, weight, out=None)
See :func:`torch.lerp`
""")
add_docstr(torch._C.FloatTensorBase.lerp_,
"""
lerp_(start, end, weight, out=None)
In-place version of :meth:`~Tensor.lerp`
""")
add_docstr(torch._C.FloatTensorBase.log,
"""
log(out=None) -> Tensor
See :func:`torch.log`
""")
add_docstr(torch._C.FloatTensorBase.log1p,
"""
log1p(out=None) -> Tensor
See :func:`torch.log1p`
""")
add_docstr(torch._C.FloatTensorBase.log1p_,
"""
log1p_(out=None) -> Tensor
In-place version of :meth:`~Tensor.log1p`
""")
add_docstr(torch._C.FloatTensorBase.log_,
"""
log_(out=None) -> Tensor
In-place version of :meth:`~Tensor.log`
""")
add_docstr(torch._C.FloatTensorBase.log_normal_,
"""
""")
add_docstr(torch._C.FloatTensorBase.lt,
"""
lt(other, out=None) -> Tensor
See :func:`torch.lt`
""")
add_docstr(torch._C.FloatTensorBase.lt_,
"""
lt_(other, out=None) -> Tensor
In-place version of :meth:`~Tensor.lt`
""")
add_docstr(torch._C.FloatTensorBase.map2_,
"""
""")
add_docstr(torch._C.FloatTensorBase.map_,
"""
""")
add_docstr(torch._C.FloatTensorBase.masked_copy_,
"""
""")
add_docstr(torch._C.FloatTensorBase.masked_fill_,
"""
""")
add_docstr(torch._C.FloatTensorBase.masked_select,
"""
masked_select(mask, out=None) -> Tensor
See :func:`torch.masked_select`
""")
add_docstr(torch._C.FloatTensorBase.max,
"""
max() -> float
See :func:`torch.max`
""")
add_docstr(torch._C.FloatTensorBase.mean,
"""
mean() -> float
See :func:`torch.mean`
""")
add_docstr(torch._C.FloatTensorBase.median,
"""
median(dim=-1, values=None, indices=None) -> (Tensor, LongTensor)
See :func:`torch.median`
""")
add_docstr(torch._C.FloatTensorBase.min,
"""
min() -> float
See :func:`torch.min`
""")
add_docstr(torch._C.FloatTensorBase.mm,
"""
mm(mat2, out=None) -> Tensor
See :func:`torch.mm`
""")
add_docstr(torch._C.FloatTensorBase.mode,
"""
mode(dim=-1, values=None, indices=None) -> (Tensor, LongTensor)
See :func:`torch.mode`
""")
add_docstr(torch._C.FloatTensorBase.mul,
"""
mul(value, out=None)
See :func:`torch.mul`
""")
add_docstr(torch._C.FloatTensorBase.mul_,
"""
mul_(value, out=None)
In-place version of :meth:`~Tensor.mul`
""")
add_docstr(torch._C.FloatTensorBase.multinomial,
"""
See :func:`torch.multinomial`
""")
add_docstr(torch._C.FloatTensorBase.mv,
"""
mv(vec, out=None) -> Tensor
See :func:`torch.mv`
""")
add_docstr(torch._C.FloatTensorBase.narrow,
"""
""")
add_docstr(torch._C.FloatTensorBase.ndimension,
"""
""")
add_docstr(torch._C.FloatTensorBase.ne,
"""
ne(other, out=None) -> Tensor
See :func:`torch.ne`
""")
add_docstr(torch._C.FloatTensorBase.ne_,
"""
ne_(other, out=None) -> Tensor
In-place version of :meth:`~Tensor.ne`
""")
add_docstr(torch._C.FloatTensorBase.neg,
"""
neg(out=None) -> Tensor
See :func:`torch.neg`
""")
add_docstr(torch._C.FloatTensorBase.neg_,
"""
neg_(out=None) -> Tensor
In-place version of :meth:`~Tensor.neg`
""")
add_docstr(torch._C.FloatTensorBase.nelement,
"""
""")
add_docstr(torch._C.FloatTensorBase.nonzero,
"""
nonzero(out=None) -> LongTensor
See :func:`torch.nonzero`
""")
add_docstr(torch._C.FloatTensorBase.norm,
"""
norm(p=2) -> float
See :func:`torch.norm`
""")
add_docstr(torch._C.FloatTensorBase.normal_,
"""
""")
add_docstr(torch._C.FloatTensorBase.numel,
"""
numel() -> int
See :func:`torch.numel`
""")
add_docstr(torch._C.FloatTensorBase.numpy,
"""
""")
add_docstr(torch._C.FloatTensorBase.ones_,
"""
""")
add_docstr(torch._C.FloatTensorBase.orgqr,
"""
See :func:`torch.orgqr`
""")
add_docstr(torch._C.FloatTensorBase.ormqr,
"""
See :func:`torch.ormqr`
""")
add_docstr(torch._C.FloatTensorBase.potrf,
"""
See :func:`torch.potrf`
""")
add_docstr(torch._C.FloatTensorBase.potri,
"""
See :func:`torch.potri`
""")
add_docstr(torch._C.FloatTensorBase.potrs,
"""
See :func:`torch.potrs`
""")
add_docstr(torch._C.FloatTensorBase.pow,
"""
pow(exponent, out=None)
See :func:`torch.pow`
""")
add_docstr(torch._C.FloatTensorBase.pow_,
"""
pow_(exponent, out=None)
In-place version of :meth:`~Tensor.pow`
""")
add_docstr(torch._C.FloatTensorBase.prod,
"""
prod() -> float
See :func:`torch.prod`
""")
add_docstr(torch._C.FloatTensorBase.pstrf,
"""
See :func:`torch.pstrf`
""")
add_docstr(torch._C.FloatTensorBase.qr,
"""
See :func:`torch.qr`
""")
add_docstr(torch._C.FloatTensorBase.random_,
"""
""")
add_docstr(torch._C.FloatTensorBase.reciprocal,
"""
reciprocal(out=None) -> Tensor
See :func:`torch.reciprocal`
""")
add_docstr(torch._C.FloatTensorBase.reciprocal_,
"""
reciprocal_(out=None) -> Tensor
In-place version of :meth:`~Tensor.reciprocal`
""")
add_docstr(torch._C.FloatTensorBase.remainder,
"""
remainder(divisor, out=None) -> Tensor
See :func:`torch.remainder`
""")
add_docstr(torch._C.FloatTensorBase.remainder_,
"""
remainder_(divisor, out=None) -> Tensor
In-place version of :meth:`~Tensor.remainder`
""")
add_docstr(torch._C.FloatTensorBase.renorm,
"""
renorm(p, dim, maxnorm, out=None) -> Tensor
See :func:`torch.renorm`
""")
add_docstr(torch._C.FloatTensorBase.renorm_,
"""
renorm_(p, dim, maxnorm, out=None) -> Tensor
In-place version of :meth:`~Tensor.renorm`
""")
add_docstr(torch._C.FloatTensorBase.resize_,
"""
""")
add_docstr(torch._C.FloatTensorBase.resize_as_,
"""
""")
add_docstr(torch._C.FloatTensorBase.round,
"""
round(out=None) -> Tensor
See :func:`torch.round`
""")
add_docstr(torch._C.FloatTensorBase.round_,
"""
round_(out=None) -> Tensor
In-place version of :meth:`~Tensor.round`
""")
add_docstr(torch._C.FloatTensorBase.rsqrt,
"""
rsqrt(out=None) -> Tensor
See :func:`torch.rsqrt`
""")
add_docstr(torch._C.FloatTensorBase.rsqrt_,
"""
rsqrt_(out=None) -> Tensor
In-place version of :meth:`~Tensor.rsqrt`
""")
add_docstr(torch._C.FloatTensorBase.scatter_,
"""
""")
add_docstr(torch._C.FloatTensorBase.select,
"""
""")
add_docstr(torch._C.FloatTensorBase.set_,
"""
""")
add_docstr(torch._C.FloatTensorBase.set_index,
"""
""")
add_docstr(torch._C.FloatTensorBase.sigmoid,
"""
sigmoid(out=None) -> Tensor
See :func:`torch.sigmoid`
""")
add_docstr(torch._C.FloatTensorBase.sigmoid_,
"""
sigmoid_(out=None) -> Tensor
In-place version of :meth:`~Tensor.sigmoid`
""")
add_docstr(torch._C.FloatTensorBase.sign,
"""
sign(out=None) -> Tensor
See :func:`torch.sign`
""")
add_docstr(torch._C.FloatTensorBase.sign_,
"""
sign_(out=None) -> Tensor
In-place version of :meth:`~Tensor.sign`
""")
add_docstr(torch._C.FloatTensorBase.sin,
"""
sin(out=None) -> Tensor
See :func:`torch.sin`
""")
add_docstr(torch._C.FloatTensorBase.sin_,
"""
sin_(out=None) -> Tensor
In-place version of :meth:`~Tensor.sin`
""")
add_docstr(torch._C.FloatTensorBase.sinh,
"""
sinh(out=None) -> Tensor
See :func:`torch.sinh`
""")
add_docstr(torch._C.FloatTensorBase.sinh_,
"""
sinh_(out=None) -> Tensor
In-place version of :meth:`~Tensor.sinh`
""")
add_docstr(torch._C.FloatTensorBase.size,
"""
""")
add_docstr(torch._C.FloatTensorBase.sort,
"""
sort(dim=None, descending=False, out=None) -> (Tensor, LongTensor)
See :func:`torch.sort`
""")
add_docstr(torch._C.FloatTensorBase.sqrt,
"""
sqrt(out=None) -> Tensor
See :func:`torch.sqrt`
""")
add_docstr(torch._C.FloatTensorBase.sqrt_,
"""
sqrt_(out=None) -> Tensor
In-place version of :meth:`~Tensor.sqrt`
""")
add_docstr(torch._C.FloatTensorBase.squeeze,
"""
squeeze(dim=None, out=None)
See :func:`torch.squeeze`
""")
add_docstr(torch._C.FloatTensorBase.squeeze_,
"""
squeeze_(dim=None, out=None)
In-place version of :meth:`~Tensor.squeeze`
""")
add_docstr(torch._C.FloatTensorBase.std,
"""
std() -> float
See :func:`torch.std`
""")
add_docstr(torch._C.FloatTensorBase.storage,
"""
""")
add_docstr(torch._C.FloatTensorBase.storage_offset,
"""
""")
add_docstr(torch._C.FloatTensorBase.stride,
"""
stride() -> tuple
Returns the stride of the tensor.
""")
add_docstr(torch._C.FloatTensorBase.sub,
"""
""")
add_docstr(torch._C.FloatTensorBase.sub_,
"""
sub_(x) -> Tensor
In-place version of :meth:`~Tensor.sub`
""")
add_docstr(torch._C.FloatTensorBase.sum,
"""
sum(dim=None) -> float
See :func:`torch.sum`
""")
add_docstr(torch._C.FloatTensorBase.svd,
"""
svd(some=True) -> (Tensor, Tensor, Tensor)
See :func:`torch.svd`
""")
add_docstr(torch._C.FloatTensorBase.symeig,
"""
symeig(eigenvectors=False, upper=True) -> (Tensor, Tensor)
See :func:`torch.symeig`
""")
add_docstr(torch._C.FloatTensorBase.t,
"""
t(out=None) -> Tensor
See :func:`torch.t`
""")
add_docstr(torch._C.FloatTensorBase.t_,
"""
t_(out=None) -> Tensor
In-place version of :meth:`~Tensor.t`
""")
add_docstr(torch._C.FloatTensorBase.tan,
"""
tan(out=None) -> Tensor
See :func:`torch.tan`
""")
add_docstr(torch._C.FloatTensorBase.tan_,
"""
tan_(out=None) -> Tensor
In-place version of :meth:`~Tensor.tan`
""")
add_docstr(torch._C.FloatTensorBase.tanh,
"""
tanh(out=None) -> Tensor
See :func:`torch.tanh`
""")
add_docstr(torch._C.FloatTensorBase.tanh_,
"""
tanh_(out=None) -> Tensor
In-place version of :meth:`~Tensor.tanh`
""")
add_docstr(torch._C.FloatTensorBase.topk,
"""
topk(k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)
See :func:`torch.topk`
""")
add_docstr(torch._C.FloatTensorBase.trace,
"""
trace() -> float
See :func:`torch.trace`
""")
add_docstr(torch._C.FloatTensorBase.transpose,
"""
transpose(dim0, dim1, out=None) -> Tensor
See :func:`torch.transpose`
""")
add_docstr(torch._C.FloatTensorBase.transpose_,
"""
transpose_(dim0, dim1, out=None) -> Tensor
In-place version of :meth:`~Tensor.transpose`
""")
add_docstr(torch._C.FloatTensorBase.tril,
"""
tril(k=0, out=None) -> Tensor
See :func:`torch.tril`
""")
add_docstr(torch._C.FloatTensorBase.tril_,
"""
tril_(k=0, out=None) -> Tensor
In-place version of :meth:`~Tensor.tril`
""")
add_docstr(torch._C.FloatTensorBase.triu,
"""
triu(k=0, out=None) -> Tensor
See :func:`torch.triu`
""")
add_docstr(torch._C.FloatTensorBase.triu_,
"""
triu_(k=0, out=None) -> Tensor
In-place version of :meth:`~Tensor.triu`
""")
add_docstr(torch._C.FloatTensorBase.trtrs,
"""
trtrs(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)
See :func:`torch.trtrs`
""")
add_docstr(torch._C.FloatTensorBase.trunc,
"""
trunc(out=None) -> Tensor
See :func:`torch.trunc`
""")
add_docstr(torch._C.FloatTensorBase.trunc_,
"""
trunc_(out=None) -> Tensor
In-place version of :meth:`~Tensor.trunc`
""")
add_docstr(torch._C.FloatTensorBase.unfold,
"""
unfold(dim, size, step) -> Tensor
See :func:`torch.unfold`
""")
add_docstr(torch._C.FloatTensorBase.uniform_,
"""
uniform_(from=0, to=1) -> Tensor
Fills this tensor with numbers sampled from the uniform distribution:
.. math:
P(x) = \dfrac{1}{to - from}
""")
add_docstr(torch._C.FloatTensorBase.var,
"""
var() -> float
See :func:`torch.var`
""")
add_docstr(torch._C.FloatTensorBase.zero_,
"""
zero_()
Fills this tensor with zeros.
""")