Files
pytorch/torch/csrc/jit/passes/onnx/helper.h
Yuanyuan Chen 9fff8155c3 [2/N] Fix clang-tidy readability checks (#164652)
This PR applies clang-tidy readability checks to jit sources and all headers in the code base.
`readability-redundant-inline-specifier` is suppressed because it incurs too many changes. `readability-redundant-inline-specifier` is used to detect redundant inline specifiers on function and variable declarations. There are many in-class method definitions that are marked inline.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164652
Approved by: https://github.com/Skylion007
2025-10-06 01:06:01 +00:00

73 lines
2.0 KiB
C++

#pragma once
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/ir/ir.h>
namespace torch::jit {
// Utility functions for PyTorch to ONNX conversion.
static const int OPSET_VERSION_1 = 1;
static const int OPSET_VERSION_9 = 9;
static const int OPSET_VERSION_10 = 10;
static const int OPSET_VERSION_11 = 11;
static const int OPSET_VERSION_12 = 12;
static const int OPSET_VERSION_13 = 13;
static const int OPSET_VERSION_14 = 14;
static const int OPSET_VERSION_15 = 15;
static const int OPSET_VERSION_16 = 16;
using ValueToParamPairMap = std::map<Value*, std::pair<std::string, IValue>>;
using ParamMap = std::map<std::string, IValue>;
TORCH_API void buildParamsMapFromValueToParamsMap(
const ValueToParamPairMap& valsToParamsMap,
ParamMap& paramsDict);
TORCH_API ValueToParamPairMap
buildValueToParamsMap(Block* b, const ParamMap& paramsDict);
TORCH_API void eraseUnusedValuesFromMap(ValueToParamPairMap& valsToParamsMap);
TORCH_API void eraseUnusedBlockInputs(Block* b);
TORCH_API Node* addNodeToBlock(
Block* block,
Symbol kind,
ArrayRef<Value*> inputs);
TORCH_API Value* addInputToBlock(Block* block);
TORCH_API std::optional<at::ScalarType> ONNXTypeToATenType(int32_t onnx_type);
// Use int return type as no sable way exists to forward declare protobuf enum
TORCH_API int ATenTypeToOnnxType(at::ScalarType at_type);
TORCH_API void ONNXLintGraph(const std::shared_ptr<Graph>& graph);
Node* createONNXUnsqueeze(
Graph* graph,
Node* n_to_insert_before,
Value* input,
int axis,
int opset_version);
Node* createONNXConstant(
Graph* graph,
Node* n_to_insert_before,
at::Tensor value);
bool isValidToTransformToONNXConcatNode(Node* lc_node);
Node* transformToONNXConcatNode(
Graph* graph,
Node* lc_node,
bool need_new_input,
int opset_version);
class ScalarTypeHashFunction {
public:
size_t operator()(const c10::ScalarType& type) const {
return static_cast<size_t>(type);
}
};
} // namespace torch::jit