Files
pytorch/torch/csrc/jit/mobile/train/sequential.cpp
Richard Barnes 6b8e3022f2 Remove c10::optional usages in PyTorch (#139525)
Test Plan: Sandcastle

Reviewed By: swolchok

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139525
Approved by: https://github.com/malfet, https://github.com/Skylion007
2024-11-04 15:35:23 +00:00

45 lines
1.1 KiB
C++

#include <torch/csrc/jit/mobile/train/sequential.h>
#include <torch/types.h>
#include <algorithm>
#include <cstddef>
#include <vector>
namespace torch::jit::mobile {
SequentialSampler::SequentialSampler(size_t size) : size_(size) {}
void SequentialSampler::reset(std::optional<size_t> new_size) {
if (new_size.has_value()) {
size_ = *new_size;
}
index_ = 0;
}
std::optional<std::vector<size_t>> SequentialSampler::next(size_t batch_size) {
const auto remaining_indices = size_ - index_;
if (remaining_indices == 0) {
return std::nullopt;
}
std::vector<size_t> index_batch(std::min(batch_size, remaining_indices));
for (auto& i : index_batch) {
i = index_++;
}
return index_batch;
}
void SequentialSampler::save(serialize::OutputArchive& archive) const {
TORCH_CHECK(
false, "Serialization of SequentialSampler not supported on mobile.");
}
void SequentialSampler::load(serialize::InputArchive& archive) {
TORCH_CHECK(
false, "Serialization of SequentialSampler not supported on mobile.");
}
size_t SequentialSampler::index() const noexcept {
return index_;
}
} // namespace torch::jit::mobile