mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/146963 Approved by: https://github.com/davidberard98
353 lines
11 KiB
C++
353 lines
11 KiB
C++
#include <torch/csrc/jit/mobile/module.h>
|
|
|
|
#include <torch/csrc/jit/backends/backend_exception.h>
|
|
#include <torch/csrc/jit/mobile/interpreter.h>
|
|
#include <torch/csrc/jit/mobile/observer.h>
|
|
#include <torch/csrc/jit/mobile/type_parser.h>
|
|
#include <torch/csrc/jit/runtime/jit_exception.h>
|
|
|
|
#include <ATen/record_function.h>
|
|
#include <c10/util/ScopeExit.h>
|
|
#include <c10/util/irange.h>
|
|
|
|
namespace torch::jit {
|
|
|
|
namespace mobile {
|
|
|
|
void CompilationUnit::register_function(std::unique_ptr<Function> fn) {
|
|
methods_.emplace_back(std::move(fn));
|
|
}
|
|
|
|
const Function* CompilationUnit::find_function(
|
|
const c10::QualifiedName& qn) const {
|
|
for (auto& fn : methods_) {
|
|
if (fn->qualname() == qn) {
|
|
return fn.get();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Function* CompilationUnit::find_function(const c10::QualifiedName& qn) {
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
return const_cast<Function*>(
|
|
static_cast<const CompilationUnit*>(this)->find_function(qn));
|
|
}
|
|
|
|
Method Module::get_method(const std::string& name) const {
|
|
if (auto method = find_method(name)) {
|
|
return *method;
|
|
}
|
|
TORCH_CHECK(false, "Method '", name, "' is not defined.");
|
|
}
|
|
|
|
bool Module::compareMethodSchemas(
|
|
const std::string& name_1,
|
|
const std::string& name_2) {
|
|
std::optional<c10::FunctionSchema> schema_1, schema_2;
|
|
for (const auto& fn : cu_->methods()) {
|
|
if (fn->name() == name_1) {
|
|
schema_1 = fn->getSchema();
|
|
}
|
|
if (fn->name() == name_2) {
|
|
schema_2 = fn->getSchema();
|
|
}
|
|
}
|
|
if (schema_1.has_value() && schema_2.has_value()) {
|
|
return (schema_1 == schema_2);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Module::unsafeRemoveMethod(const std::string& basename) {
|
|
int64_t i = 0;
|
|
for (; i < static_cast<int64_t>(cu_->methods().size()); ++i) {
|
|
if ((cu_->methods()[i])->name() == basename) {
|
|
break;
|
|
}
|
|
}
|
|
object_->type()->unsafeRemoveMethod(basename);
|
|
cu_->unsafeRemoveFunction(i);
|
|
}
|
|
|
|
void Module::unsafeCopyMethod(
|
|
const std::string& new_method_name,
|
|
const Function& to_be_copied) {
|
|
TORCH_CHECK(
|
|
!find_method(new_method_name).has_value(),
|
|
"Trying to replace existing method.");
|
|
const c10::QualifiedName& tobe_copied_name = to_be_copied.qualname();
|
|
c10::QualifiedName qualified_method_name(
|
|
tobe_copied_name.prefix(), new_method_name);
|
|
std::unique_ptr<Function> new_fn = std::make_unique<Function>(
|
|
qualified_method_name, to_be_copied.get_code(), to_be_copied.getSchema());
|
|
object_->type()->addMethod(new_fn.get());
|
|
cu_->register_function(std::move(new_fn));
|
|
}
|
|
|
|
std::optional<Method> Module::find_method(const std::string& basename) const {
|
|
for (const auto& fn : cu_->methods()) {
|
|
if (fn->name() == basename) {
|
|
return Method(this, fn.get());
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
namespace {
|
|
// For JIT, there is a private function to get all modules by iteration in
|
|
// struct slot_iterator_impl (jit/api/module.h). The following function use
|
|
// recursion to mimic the logic without allocating extra memory to get module
|
|
// list and set training attribute directly.
|
|
void set_train_recurse(
|
|
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
|
|
bool on) {
|
|
if (auto slot = obj->type()->findAttributeSlot("training")) {
|
|
obj->setSlot(*slot, on);
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(
|
|
false,
|
|
"'training' attribute not found. Did you accidentally "
|
|
"call .eval() before saving your model?");
|
|
}
|
|
for (const auto& slot : obj->slots()) {
|
|
// slots is a list of IValue. Continue setting training attribute only
|
|
// if the slot is an object and a module.
|
|
if (slot.isObject() && slot.toObjectRef().type()->is_module()) {
|
|
set_train_recurse(slot.toObject(), on);
|
|
}
|
|
}
|
|
}
|
|
|
|
void slot_params_recurse(
|
|
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
|
|
std::vector<at::Tensor>* params) {
|
|
for (const auto& slot : obj->slots()) {
|
|
if (slot.isTensor()) {
|
|
params->emplace_back(slot.toTensor());
|
|
} else if (slot.isObject()) {
|
|
slot_params_recurse(slot.toObject(), params);
|
|
}
|
|
}
|
|
}
|
|
|
|
void slot_named_params_recurse(
|
|
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
|
|
std::map<std::string, at::Tensor>* params,
|
|
const std::string& parent_name) {
|
|
auto slots = obj->slots();
|
|
size_t nslots = slots.size();
|
|
for (const auto i : c10::irange(nslots)) {
|
|
const auto& slot = slots[i];
|
|
std::string name = parent_name.empty() ? parent_name : parent_name + ".";
|
|
name += obj->type()->getAttributeName(i);
|
|
// TODO: Fix this filter. Requires_grad is not the appropriate
|
|
// filter of a parameter, but is a temporary hack to help probable
|
|
// users of this api. The correct behavior is to filter by the
|
|
// obj->type->is_parameter() but this currently always returns
|
|
// false on mobile.
|
|
if (slot.isTensor() && slot.toTensor().requires_grad()) {
|
|
(*params)[name] = slot.toTensor();
|
|
} else if (slot.isObject()) {
|
|
slot_named_params_recurse(slot.toObject(), params, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
|
|
std::string getTopModuleTypeName(const Module& m) {
|
|
std::string name;
|
|
if (m._ivalue()->type() && m._ivalue()->type()->name()) {
|
|
name = m._ivalue()->type()->name().value().name();
|
|
}
|
|
return name;
|
|
}
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
const std::vector<at::Tensor> Module::parameters() const {
|
|
std::vector<at::Tensor> params;
|
|
slot_params_recurse(object_, ¶ms);
|
|
return params;
|
|
}
|
|
|
|
// Returns a mapping for all attributes that requires_grad=True in a module.
|
|
// This behavior differs from full torch script modules. This is a bug,
|
|
// but currently there is no way to correctly label parameters in the
|
|
// loading of a mobile module. TODO
|
|
const std::map<std::string, at::Tensor> Module::named_parameters() const {
|
|
std::map<std::string, at::Tensor> params;
|
|
const std::string name;
|
|
slot_named_params_recurse(object_, ¶ms, name);
|
|
return params;
|
|
}
|
|
|
|
std::string Module::getModuleHierarchy(const int64_t debug_handle) const {
|
|
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
|
|
return getDebugTable().getModuleHierarchyInfo(
|
|
debug_handle, getTopModuleTypeName(*this));
|
|
#else
|
|
return "";
|
|
#endif
|
|
}
|
|
|
|
std::string Module::getCallStack(const int64_t debug_handle) const {
|
|
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
|
|
return getDebugTable().getSourceDebugString(
|
|
debug_handle, getTopModuleTypeName(*this));
|
|
#else
|
|
return "";
|
|
#endif
|
|
}
|
|
|
|
// We will continue to support this API for now as this is being relied upon
|
|
// for profiling.
|
|
// We really need to change this part, so in the next step for profiling support
|
|
// for delegates, the first thing will be to rewrite how profiling is done
|
|
// for lite interpreter.
|
|
std::string Module::get_forward_method_debug_info(int64_t debug_handle) const {
|
|
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
|
|
return getDebugTable().getModuleHierarchyInfo(
|
|
debug_handle, getTopModuleTypeName(*this));
|
|
#else
|
|
return "";
|
|
#endif
|
|
}
|
|
|
|
void Module::train(bool on) {
|
|
set_train_recurse(object_, on);
|
|
}
|
|
|
|
bool Module::is_training() const {
|
|
if (auto slot = object_->type()->findAttributeSlot("training")) {
|
|
return object_->getSlot(*slot).toBool();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const std::vector<Method> Module::get_methods() const {
|
|
std::vector<Method> methods;
|
|
for (std::unique_ptr<Function>& fn : cu_->methods()) {
|
|
methods.emplace_back(this, fn.get());
|
|
}
|
|
return methods;
|
|
}
|
|
|
|
Method::Method(const Module* owner, Function* function)
|
|
: owner_(owner), function_(function) {}
|
|
|
|
void Method::run(Stack& stack) const {
|
|
auto observer = torch::observerConfig().getModuleObserver();
|
|
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
|
|
auto instance_key = std::rand();
|
|
/* if the metadata dict doesn't contain "model_name", copy the metadata and
|
|
set the value of "model_name" as name() */
|
|
std::unordered_map<std::string, std::string> copied_metadata =
|
|
owner_->getMetadata();
|
|
|
|
if (observer) {
|
|
observer->onEnterRunMethod(instance_key);
|
|
}
|
|
|
|
auto debug_info = std::make_shared<MobileDebugInfo>();
|
|
std::string name = copied_metadata["model_name"];
|
|
debug_info->setModelName(name);
|
|
debug_info->setMethodName(function_->name());
|
|
at::DebugInfoGuard guard(at::DebugInfoKind::MOBILE_RUNTIME_INFO, debug_info);
|
|
|
|
std::string error_message;
|
|
auto failure_guard = c10::make_scope_exit([&]() {
|
|
if (!observer) {
|
|
return;
|
|
}
|
|
|
|
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
|
|
if (error_message.empty()) {
|
|
error_message = owner_->getDebugTable().getSourceDebugString(
|
|
function_->getExceptionDebugHandles(), getTopModuleTypeName(*owner_));
|
|
}
|
|
#endif
|
|
|
|
observer->onFailRunMethod(
|
|
copied_metadata,
|
|
function_->name(),
|
|
instance_key,
|
|
error_message.empty() ? "Unknown exception" : error_message.c_str());
|
|
});
|
|
|
|
try {
|
|
stack.insert(stack.begin(), owner_->_ivalue()); // self
|
|
function_->run(stack);
|
|
if (observer) {
|
|
observer->onExitRunMethod(
|
|
copied_metadata, function_->name(), instance_key);
|
|
}
|
|
failure_guard.release();
|
|
// This exception must be caught first as it derived from c10::Error
|
|
} catch (c10::BackendRuntimeException& e) {
|
|
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
|
|
for (auto handle : function_->getExceptionDebugHandles()) {
|
|
e.pushDebugHandle(handle);
|
|
}
|
|
// symbolicate all handles
|
|
auto debug_string = owner_->getDebugTable().getSourceDebugString(
|
|
e.getDebugHandles(), getTopModuleTypeName(*owner_));
|
|
e.add_context(debug_string);
|
|
#endif
|
|
error_message = e.what();
|
|
TORCH_RETHROW(e);
|
|
} catch (c10::Error& error) {
|
|
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
|
|
auto debug_string = owner_->getDebugTable().getSourceDebugString(
|
|
function_->getExceptionDebugHandles(), getTopModuleTypeName(*owner_));
|
|
error.add_context(debug_string);
|
|
#endif
|
|
error_message = error.what();
|
|
TORCH_RETHROW(error);
|
|
}
|
|
}
|
|
|
|
c10::IValue Method::operator()(std::vector<c10::IValue> stack) const {
|
|
run(stack);
|
|
TORCH_INTERNAL_ASSERT(!stack.empty());
|
|
return stack.front();
|
|
}
|
|
|
|
static std::optional<std::string> print_type(const c10::Type& t) {
|
|
auto namedType = t.cast<c10::NamedType>();
|
|
if (namedType && namedType->name()) {
|
|
return namedType->name().value().qualifiedName();
|
|
}
|
|
if (auto dyn = t.castRaw<c10::DynamicType>()) {
|
|
return dyn->fallback()->annotation_str();
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
TORCH_API ModuleInfo get_module_info(const mobile::Module& module) {
|
|
ModuleInfo minfo;
|
|
minfo.operator_version = module.min_operator_version();
|
|
minfo.bytecode_version = module.bytecode_version();
|
|
std::vector<std::string> type_name_list;
|
|
for (const auto& func_ptr : module.compilation_unit().methods()) {
|
|
const auto& function = *func_ptr;
|
|
for (const auto i : c10::irange(function.get_code().op_names_.size())) {
|
|
const auto& op = function.get_code().op_names_[i];
|
|
minfo.opname_to_num_args[mobile::operator_str(op)] =
|
|
function.get_code().operator_input_sizes_[i];
|
|
}
|
|
for (const c10::TypePtr& tp : function.get_code().types_) {
|
|
type_name_list.push_back(tp->annotation_str(print_type));
|
|
}
|
|
minfo.function_names.insert(function.qualname().qualifiedName());
|
|
}
|
|
c10::TypeParser parser(type_name_list);
|
|
parser.parseList();
|
|
minfo.type_names = parser.getContainedTypes();
|
|
return minfo;
|
|
}
|
|
|
|
} // namespace mobile
|
|
} // namespace torch::jit
|