mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Shortens `string_view_starts_with` to `starts_with`. Adds some missing headers. Isolates `c10_string_view` to use with `get_fully_qualified_name`. Test Plan: Sandcastle Reviewed By: ezyang Differential Revision: D64833558 Pull Request resolved: https://github.com/pytorch/pytorch/pull/139635 Approved by: https://github.com/Skylion007, https://github.com/ezyang
946 lines
32 KiB
C++
946 lines
32 KiB
C++
#ifdef FLATBUFFERS_VERSION_MAJOR
|
|
#error "flatbuffer_loader.h must not include any flatbuffers headers"
|
|
#endif // FLATBUFFERS_VERSION_MAJOR
|
|
|
|
#include <array>
|
|
#include <istream>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/core/dynamic_type.h>
|
|
#include <ATen/core/ivalue.h>
|
|
#include <ATen/core/qualified_name.h>
|
|
#include <c10/core/CPUAllocator.h>
|
|
#include <c10/core/impl/alloc_cpu.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/ScopeExit.h>
|
|
#include <caffe2/serialize/inline_container.h>
|
|
#include <torch/csrc/jit/mobile/file_format.h>
|
|
#include <torch/csrc/jit/mobile/flatbuffer_loader.h>
|
|
#include <torch/csrc/jit/mobile/function.h>
|
|
#include <torch/csrc/jit/mobile/import.h>
|
|
#include <torch/csrc/jit/mobile/interpreter.h>
|
|
#include <torch/csrc/jit/mobile/module.h>
|
|
#include <torch/csrc/jit/mobile/observer.h>
|
|
#include <torch/csrc/jit/mobile/type_parser.h>
|
|
#include <torch/csrc/jit/runtime/instruction.h>
|
|
#include <torch/csrc/jit/serialization/export_bytecode.h>
|
|
#include <torch/csrc/jit/serialization/import_export_constants.h>
|
|
#include <torch/csrc/jit/serialization/import_read.h>
|
|
#include <torch/custom_class.h>
|
|
#include <optional>
|
|
|
|
#ifndef DISABLE_UPGRADER
|
|
#include <torch/csrc/jit/mobile/parse_bytecode.h>
|
|
#include <torch/csrc/jit/mobile/upgrader_mobile.h>
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
#include <malloc.h>
|
|
#else
|
|
#include <cstdlib>
|
|
#endif
|
|
|
|
#if defined(FB_XPLAT_BUILD) || defined(FBCODE_CAFFE2)
|
|
#include <torch/csrc/jit/serialization/mobile_bytecode_generated_fbsource.h> // NOLINT
|
|
namespace flatbuffers = flatbuffers_fbsource;
|
|
#define FLATBUFFERS_MAX_ALIGNMENT FLATBUFFERS_FBSOURCE_MAX_ALIGNMENT
|
|
#else
|
|
#include <torch/csrc/jit/serialization/mobile_bytecode_generated.h> // NOLINT
|
|
#endif
|
|
|
|
namespace torch::jit {
|
|
|
|
// Our own alignment requirement does not need to be exactly the same as what
|
|
// flatbuffers supports, but what flatbuffers supports needs to satisfy our
|
|
// requirement.
|
|
static_assert(
|
|
kFlatbufferDataAlignmentBytes <= FLATBUFFERS_MAX_ALIGNMENT,
|
|
"Sizes must be compatible");
|
|
static_assert(
|
|
(kFlatbufferDataAlignmentBytes & ~(kFlatbufferDataAlignmentBytes - 1)) ==
|
|
kFlatbufferDataAlignmentBytes,
|
|
"Must be a power of 2");
|
|
|
|
namespace {
|
|
|
|
static constexpr std::string_view kCustomClassPrefix =
|
|
"__torch__.torch.classes";
|
|
static constexpr std::string_view kTorchPrefix = "__torch__";
|
|
static constexpr std::string_view kJitPrefix = "torch.jit";
|
|
|
|
class FlatbufferLoader final {
|
|
public:
|
|
FlatbufferLoader();
|
|
|
|
typedef IValue (
|
|
*IValueParser)(FlatbufferLoader&, const mobile::serialization::IValue&);
|
|
void registerIValueParser(
|
|
mobile::serialization::IValueUnion ivalue_type,
|
|
IValueParser parser);
|
|
mobile::Module parseModule(mobile::serialization::Module* module, char* end);
|
|
|
|
void extractJitSourceAndConstants(
|
|
ExtraFilesMap* jit_sources,
|
|
std::vector<IValue>* constants);
|
|
|
|
using TypeResolver = TypePtr (*)(
|
|
const std::string& type_str,
|
|
const std::shared_ptr<CompilationUnit>& cu);
|
|
|
|
void internal_registerTypeResolver(TypeResolver type_resolver);
|
|
|
|
IValue& getIValue(uint32_t pos) {
|
|
TORCH_CHECK(pos < all_ivalues_.size());
|
|
return all_ivalues_[pos];
|
|
}
|
|
|
|
mobile::Function* getFunction(uint32_t pos) {
|
|
return all_functions_[pos];
|
|
}
|
|
|
|
ClassTypePtr getType(uint32_t pos) {
|
|
TORCH_CHECK(pos < all_types_.size());
|
|
return all_types_[pos];
|
|
}
|
|
|
|
c10::Storage getStorage(uint32_t index);
|
|
TypePtr getOrCreateTypeAnnotations(const flatbuffers::String* offset);
|
|
ClassTypePtr getOrCreateClassTypeForObject(
|
|
const mobile::serialization::Object* object);
|
|
|
|
const mobile::serialization::Module* getCurrentFlatbufferInput() {
|
|
return module_;
|
|
}
|
|
|
|
void setShouldCopyTensorMemory(bool should_copy_tensor_memory) {
|
|
should_copy_tensor_memory_ = should_copy_tensor_memory;
|
|
}
|
|
|
|
std::shared_ptr<mobile::CompilationUnit> mcu_;
|
|
std::shared_ptr<CompilationUnit> cu_;
|
|
|
|
private:
|
|
IValue parseIValue(const mobile::serialization::IValue* ivalue);
|
|
std::unique_ptr<mobile::Function> parseFunction(
|
|
const mobile::serialization::Function* method);
|
|
void parseAndPopulate(
|
|
uint32_t i,
|
|
const mobile::serialization::IValue* ivalue);
|
|
|
|
std::unordered_map<uint32_t, mobile::Function*> all_functions_;
|
|
std::vector<ClassTypePtr> all_types_;
|
|
std::unordered_set<uint32_t> initialized_types_;
|
|
std::unordered_map<const flatbuffers::String*, TypePtr> type_annotations_;
|
|
std::vector<bool> storage_loaded_;
|
|
std::vector<c10::Storage> storages_;
|
|
std::vector<IValue> all_ivalues_;
|
|
std::array<
|
|
IValueParser,
|
|
static_cast<uint8_t>(mobile::serialization::IValueUnion::MAX) + 1>
|
|
ivalue_parsers_;
|
|
TypeResolver type_resolver_ = nullptr;
|
|
mobile::serialization::Module* module_ = nullptr;
|
|
bool module_parsed_ = false;
|
|
bool should_copy_tensor_memory_ = false;
|
|
// 0 -> mobile_ivalue_size_ elements are from the mobile module.
|
|
uint32_t mobile_ivalue_size_ = 0;
|
|
};
|
|
|
|
IValue parseList(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseTensor(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseTuple(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseDict(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseObject(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseIntList(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseDoubleList(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseBoolList(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseBasic(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
IValue parseEnum(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue);
|
|
|
|
TypePtr resolveType(
|
|
const std::string& type_string,
|
|
const std::shared_ptr<CompilationUnit>& cu) {
|
|
TypePtr type;
|
|
std::string_view type_str(type_string);
|
|
if (c10::starts_with(type_str, kCustomClassPrefix)) {
|
|
type = getCustomClass(type_string);
|
|
TORCH_CHECK(
|
|
type, "The implementation of class ", type_string, " cannot be found.");
|
|
} else if (
|
|
c10::starts_with(type_str, kTorchPrefix) ||
|
|
c10::starts_with(type_str, kJitPrefix)) {
|
|
c10::QualifiedName qn(type_string);
|
|
if (cu->get_class(qn) == nullptr) {
|
|
auto classtype = ClassType::create(qn, cu, true);
|
|
cu->register_type(classtype);
|
|
type = classtype;
|
|
} else {
|
|
type = cu->get_class(qn);
|
|
}
|
|
} else {
|
|
type = c10::parseType(type_string);
|
|
}
|
|
return type;
|
|
}
|
|
|
|
FlatbufferLoader::FlatbufferLoader()
|
|
: mcu_(std::make_shared<mobile::CompilationUnit>()),
|
|
cu_(std::make_shared<CompilationUnit>()),
|
|
ivalue_parsers_{nullptr} {
|
|
registerIValueParser(mobile::serialization::IValueUnion::NONE, &parseBasic);
|
|
registerIValueParser(mobile::serialization::IValueUnion::Int, &parseBasic);
|
|
registerIValueParser(mobile::serialization::IValueUnion::Bool, &parseBasic);
|
|
registerIValueParser(mobile::serialization::IValueUnion::Double, &parseBasic);
|
|
registerIValueParser(
|
|
mobile::serialization::IValueUnion::ComplexDouble, &parseBasic);
|
|
registerIValueParser(
|
|
mobile::serialization::IValueUnion::TensorMetadata, &parseTensor);
|
|
registerIValueParser(mobile::serialization::IValueUnion::String, &parseBasic);
|
|
registerIValueParser(mobile::serialization::IValueUnion::List, &parseList);
|
|
registerIValueParser(
|
|
mobile::serialization::IValueUnion::IntList, &parseIntList);
|
|
registerIValueParser(
|
|
mobile::serialization::IValueUnion::DoubleList, &parseDoubleList);
|
|
registerIValueParser(
|
|
mobile::serialization::IValueUnion::BoolList, &parseBoolList);
|
|
registerIValueParser(mobile::serialization::IValueUnion::Tuple, &parseTuple);
|
|
registerIValueParser(mobile::serialization::IValueUnion::Dict, &parseDict);
|
|
registerIValueParser(
|
|
mobile::serialization::IValueUnion::Object, &parseObject);
|
|
registerIValueParser(mobile::serialization::IValueUnion::Device, &parseBasic);
|
|
registerIValueParser(
|
|
mobile::serialization::IValueUnion::EnumValue, &parseEnum);
|
|
internal_registerTypeResolver(&resolveType);
|
|
}
|
|
|
|
void FlatbufferLoader::registerIValueParser(
|
|
mobile::serialization::IValueUnion ivalue_type,
|
|
IValueParser parser) {
|
|
ivalue_parsers_[static_cast<uint8_t>(ivalue_type)] = parser;
|
|
}
|
|
|
|
void FlatbufferLoader::internal_registerTypeResolver(
|
|
TypeResolver type_resolver) {
|
|
type_resolver_ = type_resolver;
|
|
}
|
|
|
|
void parseExtraFilesFromVector(
|
|
const flatbuffers::Vector<flatbuffers::Offset<
|
|
torch::jit::mobile::serialization::ExtraFile>>* files,
|
|
ExtraFilesMap* extra_files) {
|
|
for (uint32_t i = 0; i < files->size(); ++i) {
|
|
const auto* extra_file = files->Get(i);
|
|
(*extra_files)[extra_file->name()->str()] = extra_file->content()->str();
|
|
}
|
|
}
|
|
|
|
void parseExtraFiles(
|
|
mobile::serialization::Module* module,
|
|
ExtraFilesMap& extra_files) {
|
|
auto extra_files_offsets = module->extra_files();
|
|
parseExtraFilesFromVector(extra_files_offsets, &extra_files);
|
|
}
|
|
|
|
void FlatbufferLoader::parseAndPopulate(
|
|
uint32_t i,
|
|
const mobile::serialization::IValue* ivalue) {
|
|
if (const auto* func = ivalue->val_as_Function()) {
|
|
auto func_ptr = parseFunction(func);
|
|
all_functions_[i] = func_ptr.get();
|
|
mcu_->register_function(std::move(func_ptr));
|
|
} else {
|
|
all_ivalues_[i] = parseIValue(ivalue);
|
|
}
|
|
}
|
|
|
|
mobile::Module FlatbufferLoader::parseModule(
|
|
mobile::serialization::Module* module,
|
|
char* end) {
|
|
module_ = module;
|
|
all_ivalues_.clear();
|
|
all_types_.clear();
|
|
storages_.clear();
|
|
storage_loaded_.clear();
|
|
module_parsed_ = false;
|
|
|
|
const auto* ivalues = module->ivalues();
|
|
TORCH_CHECK(
|
|
ivalues && module->object_types(),
|
|
"Parsing flatbuffer module: Corrupted ivalues/object_types field");
|
|
TORCH_CHECK(
|
|
reinterpret_cast<const char*>(ivalues) < end, "Corrupted ivalues field");
|
|
TORCH_CHECK(
|
|
module->storage_data_size() >= 0,
|
|
"Parsing flatbuffer module: illegal storage_data_size: ",
|
|
module->storage_data_size(),
|
|
", expected to be non negative");
|
|
all_ivalues_.resize(ivalues->size());
|
|
all_types_.resize(module->object_types()->size());
|
|
storages_.resize(module->storage_data_size());
|
|
storage_loaded_.resize(module->storage_data_size(), false);
|
|
|
|
mobile_ivalue_size_ = module_->mobile_ivalue_size();
|
|
if (mobile_ivalue_size_ == 0 || mobile_ivalue_size_ > ivalues->size()) {
|
|
mobile_ivalue_size_ = ivalues->size();
|
|
}
|
|
|
|
for (uint32_t i = 0; i < mobile_ivalue_size_; i++) {
|
|
const auto* ival = ivalues->Get(i);
|
|
TORCH_CHECK(
|
|
reinterpret_cast<const char*>(ival) < end, "Corrupted ivalue item")
|
|
parseAndPopulate(i, ival);
|
|
}
|
|
IValue& module_ivalue = getIValue(module->state_obj());
|
|
|
|
// register functions
|
|
for (const auto& f : all_functions_) {
|
|
uint32_t class_index =
|
|
ivalues->Get(f.first)->val_as_Function()->class_type();
|
|
ClassTypePtr class_type = all_types_[class_index];
|
|
class_type->addMethod(f.second);
|
|
}
|
|
|
|
module_parsed_ = true;
|
|
auto m = mobile::Module(module_ivalue.toObject(), mcu_);
|
|
m.set_min_operator_version(module->operator_version());
|
|
m.set_bytecode_version(module->bytecode_version());
|
|
return m;
|
|
}
|
|
|
|
void appendUpgraderFunctions(mobile::Function* function) {
|
|
#ifndef DISABLE_UPGRADER
|
|
for (auto& byteCodeFunctionWithOperator : getUpgraderBytecodeList()) {
|
|
function->append_function(byteCodeFunctionWithOperator.function);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
std::unique_ptr<mobile::Function> FlatbufferLoader::parseFunction(
|
|
const mobile::serialization::Function* method) {
|
|
auto function = std::make_unique<mobile::Function>(
|
|
c10::QualifiedName(method->qn()->str()));
|
|
// TODO(qihan) add debug handle
|
|
// const auto* debug_handle = method->debug_info()->debug_handle();
|
|
for (const auto* inst : *method->instructions()) {
|
|
function->append_instruction(
|
|
static_cast<OpCode>(inst->op()), inst->x(), inst->n());
|
|
}
|
|
|
|
for (uint32_t i : *method->constants()) {
|
|
function->append_constant(getIValue(i));
|
|
}
|
|
|
|
appendUpgraderFunctions(function.get());
|
|
// 2. Decides if upgrader is needed
|
|
const uint32_t operator_version = module_->operator_version();
|
|
bool use_upgrader =
|
|
(operator_version < caffe2::serialize::kProducedFileFormatVersion);
|
|
|
|
for (const auto* op : *method->operators()) {
|
|
std::optional<int> num_args = std::nullopt;
|
|
if (op->num_args_serialized() > -1) {
|
|
num_args = op->num_args_serialized();
|
|
}
|
|
|
|
function->append_operator(
|
|
op->name()->str(), op->overload_name()->str(), num_args);
|
|
}
|
|
|
|
function->initialize_operators(true);
|
|
|
|
for (const auto i : *method->type_annotations()) {
|
|
function->append_type(getOrCreateTypeAnnotations(i));
|
|
}
|
|
|
|
// 3. If upgrader is needed, change change the OP instrunction to CALL
|
|
// instruction (In next PR, use_upgrader will be parsed to parseInstruction
|
|
// function and do the actual change)
|
|
if (use_upgrader) {
|
|
#ifndef DISABLE_UPGRADER
|
|
applyUpgrader(function.get(), operator_version);
|
|
#endif
|
|
}
|
|
|
|
function->set_register_size(method->register_size());
|
|
if (method->schema()) {
|
|
try {
|
|
auto parseArgList = [this](const auto* args_fb) {
|
|
std::vector<c10::Argument> args;
|
|
for (const auto* arg_tb : *args_fb) {
|
|
IValue default_value = getIValue(arg_tb->default_value());
|
|
TypePtr type_ptr = getOrCreateTypeAnnotations(arg_tb->type());
|
|
auto arg = c10::Argument(
|
|
arg_tb->name()->str(),
|
|
std::move(type_ptr),
|
|
std::nullopt /*N*/,
|
|
std::move(default_value));
|
|
args.emplace_back(std::move(arg));
|
|
}
|
|
return args;
|
|
};
|
|
c10::FunctionSchema schema(
|
|
method->qn()->str(),
|
|
"" /*overload_name*/,
|
|
parseArgList(method->schema()->arguments()),
|
|
parseArgList(method->schema()->returns()),
|
|
false /*is_varargs*/,
|
|
false /*is_varret*/);
|
|
|
|
function->setSchema(std::move(schema));
|
|
} catch (const c10::Error& e) {
|
|
}
|
|
}
|
|
return function;
|
|
}
|
|
|
|
IValue parseEnum(
|
|
FlatbufferLoader& loader,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const auto* enum_val = ivalue.val_as_EnumValue();
|
|
auto enum_type = loader.getOrCreateTypeAnnotations(enum_val->type_name())
|
|
->cast<c10::EnumType>();
|
|
AT_ASSERT(
|
|
enum_type,
|
|
"Enum with type: " + enum_val->type_name()->str() + " not found.");
|
|
IValue val = loader.getIValue(enum_val->value());
|
|
for (const auto& p : enum_type->enumNamesValues()) {
|
|
if (p.second == val) {
|
|
auto enum_holder = c10::make_intrusive<at::ivalue::EnumHolder>(
|
|
enum_type, p.first, p.second);
|
|
return IValue(std::move(enum_holder));
|
|
}
|
|
}
|
|
AT_ASSERT(
|
|
false, "Enum with type: " + enum_val->type_name()->str() + " not found.");
|
|
}
|
|
|
|
IValue parseBasic(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
switch (ivalue.val_type()) {
|
|
case mobile::serialization::IValueUnion::NONE:
|
|
return {};
|
|
case mobile::serialization::IValueUnion::Int:
|
|
return ivalue.val_as_Int()->int_val();
|
|
case mobile::serialization::IValueUnion::Bool:
|
|
return ivalue.val_as_Bool()->bool_val();
|
|
case mobile::serialization::IValueUnion::Double:
|
|
return ivalue.val_as_Double()->double_val();
|
|
case mobile::serialization::IValueUnion::ComplexDouble: {
|
|
const auto* comp = ivalue.val_as_ComplexDouble();
|
|
return c10::complex<double>(comp->real(), comp->imag());
|
|
}
|
|
case mobile::serialization::IValueUnion::String:
|
|
return ivalue.val_as_String()->data()->str();
|
|
case mobile::serialization::IValueUnion::Device: {
|
|
return c10::Device(ivalue.val_as_Device()->str()->str());
|
|
}
|
|
default:
|
|
return {};
|
|
}
|
|
}
|
|
|
|
at::Tensor parseTensorFromMetadata(
|
|
FlatbufferLoader* loader,
|
|
const mobile::serialization::TensorMetadata* tensor_md) {
|
|
auto type = static_cast<at::ScalarType>(tensor_md->scalar_type());
|
|
auto options = at::device(at::kCPU).dtype(type);
|
|
at::Tensor tensor;
|
|
if (tensor_md->quantized_schema() != nullptr) {
|
|
// is quantized
|
|
const auto* schema = tensor_md->quantized_schema();
|
|
auto qscheme_type = static_cast<at::QScheme>(schema->qscheme());
|
|
switch (qscheme_type) {
|
|
case at::kPerTensorAffine: {
|
|
tensor = at::_empty_affine_quantized(
|
|
{0}, options, schema->scale(), schema->zero_point());
|
|
} break;
|
|
case at::kPerChannelAffineFloatQParams:
|
|
case at::kPerChannelAffine: {
|
|
at::Tensor scales = parseTensorFromMetadata(loader, schema->scales());
|
|
at::Tensor zero_points =
|
|
parseTensorFromMetadata(loader, schema->zero_points());
|
|
tensor = at::_empty_per_channel_affine_quantized(
|
|
{0}, scales, zero_points, schema->axis(), options);
|
|
} break;
|
|
default:
|
|
TORCH_CHECK(
|
|
false,
|
|
"Unsupported tensor quantization type in serialization ",
|
|
toString(qscheme_type));
|
|
break;
|
|
}
|
|
} else {
|
|
tensor = at::empty({0}, options);
|
|
}
|
|
at::TensorImpl* impl = tensor.unsafeGetTensorImpl();
|
|
|
|
c10::Storage storage;
|
|
storage = loader->getStorage(tensor_md->storage_location_index());
|
|
impl->set_storage_keep_dtype(storage);
|
|
impl->set_storage_offset(tensor_md->storage_offset());
|
|
|
|
std::vector<int64_t> size{
|
|
tensor_md->sizes()->begin(), tensor_md->sizes()->end()};
|
|
std::vector<int64_t> stride{
|
|
tensor_md->strides()->begin(), tensor_md->strides()->end()};
|
|
impl->set_sizes_and_strides(size, stride);
|
|
#ifndef MIN_EDGE_RUNTIME
|
|
tensor = autograd::make_variable(tensor, tensor_md->requires_grad());
|
|
#endif
|
|
return tensor;
|
|
}
|
|
|
|
IValue parseTensor(
|
|
FlatbufferLoader& loader,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const mobile::serialization::TensorMetadata* tensor_md =
|
|
ivalue.val_as_TensorMetadata();
|
|
return parseTensorFromMetadata(&loader, tensor_md);
|
|
}
|
|
|
|
IValue parseList(
|
|
FlatbufferLoader& loader,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const mobile::serialization::List* list = ivalue.val_as_List();
|
|
auto res = c10::impl::GenericList(AnyType::get());
|
|
for (auto i : *list->items()) {
|
|
res.emplace_back(loader.getIValue(i));
|
|
}
|
|
auto type = loader.getOrCreateTypeAnnotations(list->annotation_str());
|
|
res.unsafeSetElementType(type->containedType(0));
|
|
return res;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
std::vector<T> parseListNative(const U* list) {
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(list != nullptr);
|
|
return {list->items()->begin(), list->items()->end()};
|
|
}
|
|
|
|
IValue parseIntList(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const auto& list = ivalue.val_as_IntList();
|
|
return parseListNative<int64_t>(list);
|
|
}
|
|
|
|
IValue parseDoubleList(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const auto& list = ivalue.val_as_DoubleList();
|
|
return parseListNative<double>(list);
|
|
}
|
|
|
|
IValue parseBoolList(
|
|
FlatbufferLoader&,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const auto& list = ivalue.val_as_BoolList();
|
|
std::vector<uint8_t> res = parseListNative<uint8_t>(list);
|
|
c10::List<bool> boollist;
|
|
for (auto x : res) {
|
|
boollist.push_back(x);
|
|
}
|
|
return boollist;
|
|
}
|
|
|
|
IValue parseTuple(
|
|
FlatbufferLoader& loader,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const auto& tuple = ivalue.val_as_Tuple();
|
|
const auto items = tuple->items();
|
|
std::vector<IValue> res;
|
|
res.reserve(items->size());
|
|
for (auto i : *items) {
|
|
res.emplace_back(loader.getIValue(i));
|
|
}
|
|
return c10::ivalue::Tuple::create(std::move(res));
|
|
}
|
|
|
|
IValue parseDict(
|
|
FlatbufferLoader& loader,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const auto* dict = ivalue.val_as_Dict();
|
|
auto result = c10::impl::GenericDict(AnyType::get(), AnyType::get());
|
|
const auto* keys = dict->keys();
|
|
const auto* values = dict->values();
|
|
for (size_t i = 0; i < keys->size(); ++i) {
|
|
uint32_t key = keys->Get(i);
|
|
uint32_t val = values->Get(i);
|
|
result.insert_or_assign(loader.getIValue(key), loader.getIValue(val));
|
|
}
|
|
auto type = loader.getOrCreateTypeAnnotations(dict->annotation_str());
|
|
result.unsafeSetKeyType(type->containedType(0));
|
|
result.unsafeSetValueType(type->containedType(1));
|
|
return result;
|
|
}
|
|
|
|
ClassTypePtr FlatbufferLoader::getOrCreateClassTypeForObject(
|
|
const mobile::serialization::Object* object) {
|
|
auto cls = getType(object->type_index());
|
|
const mobile::serialization::ObjectType* obj_type =
|
|
module_->object_types()->Get(object->type_index());
|
|
if (cls == nullptr) {
|
|
std::string_view qn_str(
|
|
obj_type->type_name()->c_str(), obj_type->type_name()->size());
|
|
if (c10::starts_with(qn_str, kTorchPrefix) ||
|
|
c10::starts_with(qn_str, kJitPrefix)) {
|
|
c10::QualifiedName qn(obj_type->type_name()->str());
|
|
cls = cu_->get_class(qn);
|
|
if (cls == nullptr) {
|
|
cls = ClassType::create(qn, cu_, true);
|
|
cu_->register_type(cls);
|
|
}
|
|
} else {
|
|
cls = c10::parseType(std::string(qn_str))->cast<ClassType>();
|
|
}
|
|
TORCH_CHECK(object->type_index() < all_ivalues_.size());
|
|
all_types_[object->type_index()] = cls;
|
|
|
|
if (obj_type->type() == mobile::serialization::TypeType::CLASS_WITH_FIELD) {
|
|
for (uint32_t i = 0; i < object->attrs()->size(); i++) {
|
|
IValue val = getIValue(object->attrs()->Get(i));
|
|
// Need to use concrete object's field's type to set type of field.
|
|
cls->addAttribute(
|
|
obj_type->attr_names()->Get(i)->str(),
|
|
val.type<c10::DynamicType>());
|
|
}
|
|
}
|
|
initialized_types_.insert(object->type_index());
|
|
}
|
|
return cls;
|
|
}
|
|
|
|
IValue parseObject(
|
|
FlatbufferLoader& loader,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const mobile::serialization::Object* object = ivalue.val_as_Object();
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(object != nullptr);
|
|
const auto* cur_input = loader.getCurrentFlatbufferInput();
|
|
const mobile::serialization::ObjectType* obj_type =
|
|
cur_input->object_types()->Get(object->type_index());
|
|
auto cls = loader.getOrCreateClassTypeForObject(object);
|
|
Stack stack;
|
|
switch (obj_type->type()) {
|
|
case mobile::serialization::TypeType::CLASS_WITH_FIELD: {
|
|
auto obj = c10::ivalue::Object::create(
|
|
at::StrongTypePtr(loader.cu_, cls), object->attrs()->size());
|
|
for (uint32_t i = 0; i < object->attrs()->size(); i++) {
|
|
IValue val = loader.getIValue(object->attrs()->Get(i));
|
|
obj->setSlot(i, std::move(val));
|
|
}
|
|
return obj;
|
|
}
|
|
case mobile::serialization::TypeType::CLASS_WITH_SETSTATE: {
|
|
IValue input = loader.getIValue(object->state());
|
|
mobile::Function* setstate = loader.getFunction(object->setstate_func());
|
|
auto obj =
|
|
c10::ivalue::Object::create(at::StrongTypePtr(loader.cu_, cls), 0);
|
|
stack.emplace_back(obj);
|
|
stack.emplace_back(std::move(input));
|
|
setstate->run(stack);
|
|
return obj;
|
|
}
|
|
case mobile::serialization::TypeType::CUSTOM_CLASS: {
|
|
auto custom_class_type =
|
|
torch::jit::getCustomClass(cls->name()->qualifiedName());
|
|
IValue input = loader.getIValue(object->state());
|
|
auto obj = c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(nullptr, custom_class_type), 1);
|
|
stack.emplace_back(obj);
|
|
stack.emplace_back(std::move(input));
|
|
custom_class_type->getMethod("__setstate__").run(stack);
|
|
return obj;
|
|
}
|
|
default:
|
|
AT_ASSERT(false, "need to be object");
|
|
}
|
|
}
|
|
|
|
IValue FlatbufferLoader::parseIValue(
|
|
const mobile::serialization::IValue* ivalue) {
|
|
return ivalue_parsers_[static_cast<uint32_t>(ivalue->val_type())](
|
|
*this, *ivalue);
|
|
}
|
|
|
|
void deleteNothing2(void*);
|
|
void deleteNothing2(void*) {}
|
|
|
|
c10::Storage FlatbufferLoader::getStorage(uint32_t index) {
|
|
TORCH_CHECK(index < storage_loaded_.size());
|
|
TORCH_CHECK(index < storages_.size());
|
|
if (!storage_loaded_[index]) {
|
|
auto* storage = module_->storage_data()->GetMutableObject(index);
|
|
size_t size = storage->data()->size();
|
|
|
|
at::DataPtr data;
|
|
if (should_copy_tensor_memory_) {
|
|
auto* allocator = at::GetCPUAllocator();
|
|
data = allocator->allocate(size);
|
|
memcpy(data.get(), storage->data()->data(), size);
|
|
} else {
|
|
void* ptr = static_cast<void*>(storage->mutable_data()->data());
|
|
data = at::DataPtr(ptr, ptr, deleteNothing2, DeviceType::CPU);
|
|
}
|
|
storages_[index] =
|
|
c10::Storage(c10::Storage::use_byte_size_t(), size, std::move(data));
|
|
storage_loaded_[index] = true;
|
|
}
|
|
return storages_[index];
|
|
}
|
|
|
|
TypePtr FlatbufferLoader::getOrCreateTypeAnnotations(
|
|
const flatbuffers::String* offset) {
|
|
auto iter = type_annotations_.find(offset);
|
|
if (iter != type_annotations_.end()) {
|
|
return iter->second;
|
|
}
|
|
TypePtr type = type_resolver_(offset->str(), cu_);
|
|
type_annotations_[offset] = type;
|
|
return type;
|
|
}
|
|
|
|
void FlatbufferLoader::extractJitSourceAndConstants(
|
|
ExtraFilesMap* jit_sources,
|
|
std::vector<IValue>* constants) {
|
|
AT_ASSERT(
|
|
module_parsed_,
|
|
"Need to first parse a flatbuffer file before extracting jit_sources");
|
|
|
|
const auto* ivalues = module_->ivalues();
|
|
for (uint32_t i = mobile_ivalue_size_; i < ivalues->size(); i++) {
|
|
const auto* ival = ivalues->Get(i);
|
|
parseAndPopulate(i, ival);
|
|
}
|
|
// register functions
|
|
for (const auto& f : all_functions_) {
|
|
if (f.first >= mobile_ivalue_size_) {
|
|
uint32_t class_index =
|
|
ivalues->Get(f.first)->val_as_Function()->class_type();
|
|
ClassTypePtr class_type = all_types_[class_index];
|
|
class_type->addMethod(f.second);
|
|
}
|
|
}
|
|
const auto* jit_constants = module_->jit_constants();
|
|
for (const auto i : c10::irange(jit_constants->size())) {
|
|
constants->emplace_back(getIValue(jit_constants->Get(i)));
|
|
}
|
|
parseExtraFilesFromVector(module_->jit_sources(), jit_sources);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
mobile::Module parse_and_initialize_mobile_module(
|
|
void* data,
|
|
size_t size,
|
|
std::optional<at::Device>,
|
|
ExtraFilesMap* extra_files,
|
|
bool should_copy_tensor_memory) {
|
|
// TODO(T128189662): If not copying, enforce that data is aligned to
|
|
// kFlatbufferDataAlignmentBytes, and add unit tests.
|
|
|
|
// Validate Flatbuffer module before parsing.
|
|
flatbuffers::Verifier verifier(reinterpret_cast<uint8_t*>(data), size);
|
|
TORCH_CHECK(
|
|
mobile::serialization::VerifyModuleBuffer(verifier),
|
|
"Malformed Flatbuffer module");
|
|
|
|
FlatbufferLoader loader;
|
|
loader.setShouldCopyTensorMemory(should_copy_tensor_memory);
|
|
|
|
// Flatbuffer doesn't seem to have a way to provide the buffer size when
|
|
// interacting with the buffer.
|
|
auto* flatbuffer_module = mobile::serialization::GetMutableModule(data);
|
|
auto* end = static_cast<char*>(data) + size;
|
|
mobile::Module m = loader.parseModule(flatbuffer_module, end);
|
|
if (extra_files != nullptr) {
|
|
parseExtraFiles(flatbuffer_module, *extra_files);
|
|
}
|
|
return m;
|
|
}
|
|
|
|
mobile::Module parse_and_initialize_mobile_module(
|
|
std::shared_ptr<char> data,
|
|
size_t size,
|
|
std::optional<at::Device> device,
|
|
ExtraFilesMap* extra_files) {
|
|
mobile::Module m = parse_and_initialize_mobile_module(
|
|
data.get(),
|
|
size,
|
|
device,
|
|
extra_files,
|
|
/*should_copy_tensor_memory=*/false);
|
|
m.set_delete_memory(std::move(data));
|
|
return m;
|
|
}
|
|
|
|
mobile::Module parse_and_initialize_mobile_module_for_jit(
|
|
void* data,
|
|
size_t size,
|
|
ExtraFilesMap& jit_sources,
|
|
std::vector<IValue>& jit_constants,
|
|
std::optional<at::Device>,
|
|
ExtraFilesMap* extra_files) {
|
|
TORCH_CHECK(
|
|
mobile::serialization::ModuleBufferHasIdentifier(data), "Format error");
|
|
// TODO(T128189662): Enforce that data is aligned to
|
|
// kFlatbufferDataAlignmentBytes, and add unit tests.
|
|
|
|
// Validate Flatbuffer module before parsing.
|
|
flatbuffers::Verifier verifier(reinterpret_cast<uint8_t*>(data), size);
|
|
TORCH_CHECK(
|
|
mobile::serialization::VerifyModuleBuffer(verifier),
|
|
"Malformed Flatbuffer module");
|
|
|
|
FlatbufferLoader loader;
|
|
auto* flatbuffer_module = mobile::serialization::GetMutableModule(data);
|
|
auto* end = static_cast<char*>(data) + size;
|
|
mobile::Module m = loader.parseModule(flatbuffer_module, end);
|
|
if (extra_files != nullptr) {
|
|
parseExtraFiles(flatbuffer_module, *extra_files);
|
|
}
|
|
|
|
loader.extractJitSourceAndConstants(&jit_sources, &jit_constants);
|
|
return m;
|
|
}
|
|
|
|
mobile::Module load_mobile_module_from_file(
|
|
const std::string& filename,
|
|
std::optional<c10::Device> device,
|
|
ExtraFilesMap* extra_files) {
|
|
auto [data, size] = get_file_content(filename.c_str());
|
|
return parse_and_initialize_mobile_module(
|
|
std::move(data), size, device, extra_files);
|
|
}
|
|
|
|
uint64_t get_bytecode_version(std::istream& in) {
|
|
auto [data, size] = get_stream_content(in);
|
|
return get_bytecode_version_from_bytes(data.get());
|
|
}
|
|
|
|
uint64_t get_bytecode_version(const std::string& filename) {
|
|
auto [data, size] = get_file_content(filename.c_str());
|
|
return get_bytecode_version_from_bytes(data.get());
|
|
}
|
|
|
|
uint64_t get_bytecode_version_from_bytes(char* flatbuffer_content) {
|
|
TORCH_CHECK(
|
|
mobile::serialization::ModuleBufferHasIdentifier(flatbuffer_content),
|
|
"Format error");
|
|
auto* flatbuffer_module =
|
|
mobile::serialization::GetMutableModule(flatbuffer_content);
|
|
return flatbuffer_module->bytecode_version();
|
|
}
|
|
|
|
mobile::ModuleInfo get_module_info_from_flatbuffer(char* flatbuffer_content) {
|
|
auto* ff_module = mobile::serialization::GetMutableModule(flatbuffer_content);
|
|
mobile::ModuleInfo minfo;
|
|
minfo.operator_version = ff_module->operator_version();
|
|
minfo.bytecode_version = ff_module->bytecode_version();
|
|
|
|
uint32_t mobile_ivalue_size = ff_module->mobile_ivalue_size();
|
|
if (mobile_ivalue_size == 0) {
|
|
mobile_ivalue_size = ff_module->ivalues()->size();
|
|
}
|
|
|
|
std::vector<std::string> type_name_list;
|
|
for (uint32_t i = 0; i < mobile_ivalue_size; i++) {
|
|
const auto* ival = ff_module->ivalues()->Get(i);
|
|
if (const auto* func = ival->val_as_Function()) {
|
|
minfo.function_names.insert(func->qn()->str());
|
|
for (const auto* op : *func->operators()) {
|
|
at::OperatorName opname(op->name()->str(), op->overload_name()->str());
|
|
minfo.opname_to_num_args[mobile::operator_str(opname)] =
|
|
op->num_args_serialized();
|
|
}
|
|
for (const auto* type_ann : *func->type_annotations()) {
|
|
type_name_list.push_back(type_ann->str());
|
|
}
|
|
}
|
|
}
|
|
c10::TypeParser parser(type_name_list);
|
|
parser.parseList();
|
|
minfo.type_names = parser.getContainedTypes();
|
|
return minfo;
|
|
}
|
|
|
|
mobile::Module load_mobile_module_from_stream_with_copy(
|
|
std::istream& in,
|
|
std::optional<at::Device> device,
|
|
ExtraFilesMap* extra_files) {
|
|
auto [data, size] = get_stream_content(in);
|
|
return parse_and_initialize_mobile_module(
|
|
std::move(data), size, device, extra_files);
|
|
}
|
|
|
|
mobile::Module parse_flatbuffer_no_object(
|
|
std::shared_ptr<char> data,
|
|
size_t size,
|
|
std::optional<at::Device> device) {
|
|
(void)device;
|
|
(void)size;
|
|
|
|
// Validate Flatbuffer module before parsing.
|
|
flatbuffers::Verifier verifier(reinterpret_cast<uint8_t*>(data.get()), size);
|
|
TORCH_CHECK(
|
|
mobile::serialization::VerifyModuleBuffer(verifier),
|
|
"Malformed Flatbuffer module");
|
|
|
|
auto* flatbuffer_module = mobile::serialization::GetMutableModule(data.get());
|
|
FlatbufferLoader loader;
|
|
// replace parserObject with to handle only class with field case
|
|
// function.
|
|
loader.registerIValueParser(
|
|
mobile::serialization::IValueUnion::Object,
|
|
+[](FlatbufferLoader& loader,
|
|
const mobile::serialization::IValue& ivalue) {
|
|
const mobile::serialization::Object* object = ivalue.val_as_Object();
|
|
auto cls = loader.getOrCreateClassTypeForObject(object);
|
|
auto obj = c10::ivalue::Object::create(
|
|
at::StrongTypePtr(loader.cu_, cls), object->attrs()->size());
|
|
for (uint32_t i = 0; i < object->attrs()->size(); i++) {
|
|
IValue val = loader.getIValue(object->attrs()->Get(i));
|
|
obj->setSlot(i, std::move(val));
|
|
}
|
|
return static_cast<c10::IValue>(obj);
|
|
});
|
|
|
|
auto* end = data.get() + size;
|
|
mobile::Module m = loader.parseModule(flatbuffer_module, end);
|
|
m.set_delete_memory(std::move(data));
|
|
return m;
|
|
}
|
|
|
|
bool register_flatbuffer_loader() {
|
|
return true;
|
|
}
|
|
|
|
} // namespace torch::jit
|