mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/32289 This has been fixed upstream as of Python 3.8.2. I think the easiest and least invasive way to ameliorate this is to catch the error condition and print a more informative error asking the user to update their Python version. It might be possible to buffer the data into memory and then read from memory, but that would be an invasive change and might cause memory exhaustion for very large models. Suggestions for alternate fixes or ways to improve the error message wording are very welcome. Pull Request resolved: https://github.com/pytorch/pytorch/pull/33824 Differential Revision: D20131722 Pulled By: ezyang fbshipit-source-id: a6e3fbf4bf7f9dcce5772b36f7a622cbf14b5ae4
862 lines
34 KiB
Python
862 lines
34 KiB
Python
import difflib
|
|
import os
|
|
import io
|
|
import shutil
|
|
import struct
|
|
import sys
|
|
import torch
|
|
import tarfile
|
|
import tempfile
|
|
import warnings
|
|
import copyreg
|
|
from contextlib import closing, contextmanager
|
|
from ._utils import _import_dotted_name
|
|
from ._six import string_classes as _string_classes
|
|
from torch._utils_internal import get_source_lines_and_file
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
else:
|
|
import pickle
|
|
import pathlib
|
|
|
|
DEFAULT_PROTOCOL = 2
|
|
|
|
LONG_SIZE = struct.Struct('=l').size
|
|
INT_SIZE = struct.Struct('=i').size
|
|
SHORT_SIZE = struct.Struct('=h').size
|
|
|
|
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
|
|
PROTOCOL_VERSION = 1001
|
|
STORAGE_KEY_SEPARATOR = ','
|
|
|
|
|
|
class SourceChangeWarning(Warning):
|
|
pass
|
|
|
|
|
|
@contextmanager
|
|
def mkdtemp():
|
|
path = tempfile.mkdtemp()
|
|
yield path
|
|
shutil.rmtree(path)
|
|
|
|
|
|
_package_registry = []
|
|
|
|
|
|
def _is_zipfile(f):
|
|
# This is a stricter implementation than zipfile.is_zipfile().
|
|
# zipfile.is_zipfile() is True if the magic number appears anywhere in the
|
|
# binary. Since we expect the files here to be generated by torch.save or
|
|
# torch.jit.save, it's safe to only check the start bytes and avoid
|
|
# collisions and assume the zip has only 1 file.
|
|
# See bugs.python.org/issue28494.
|
|
|
|
# Read the first 4 bytes of the file
|
|
read_bytes = []
|
|
start = f.tell()
|
|
|
|
byte = f.read(1)
|
|
while byte != "":
|
|
read_bytes.append(byte)
|
|
if len(read_bytes) == 4:
|
|
break
|
|
byte = f.read(1)
|
|
f.seek(start)
|
|
|
|
local_header_magic_number = [b'P', b'K', b'\x03', b'\x04']
|
|
return read_bytes == local_header_magic_number
|
|
|
|
|
|
def register_package(priority, tagger, deserializer):
|
|
queue_elem = (priority, tagger, deserializer)
|
|
_package_registry.append(queue_elem)
|
|
_package_registry.sort()
|
|
|
|
|
|
def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True):
|
|
'''
|
|
Check if a module's version satisfies requirements
|
|
|
|
Usually, a module's version string will be like 'x.y.z', which would be represented
|
|
as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version
|
|
string does not match the given tuple's format up to the length of the tuple, then
|
|
error and exit or emit a warning.
|
|
|
|
Args:
|
|
module: the module to check the version of
|
|
req_version_tuple: tuple (usually of ints) representing the required version
|
|
error_if_malformed: whether we should exit if module version string is malformed
|
|
|
|
Returns:
|
|
requirement_is_met: bool
|
|
'''
|
|
try:
|
|
version_strs = module.__version__.split('.')
|
|
# Cast module version fields to match the types of the required version
|
|
module_version = tuple(
|
|
type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple)
|
|
)
|
|
requirement_is_met = module_version >= req_version_tuple
|
|
|
|
except Exception as e:
|
|
message = (
|
|
"'%s' module version string is malformed '%s' and cannot be compared"
|
|
" with tuple %s"
|
|
) % (
|
|
module.__name__, module.__version__, str(req_version_tuple)
|
|
)
|
|
if error_if_malformed:
|
|
raise RuntimeError(message)
|
|
else:
|
|
warnings.warn(message + ', but continuing assuming that requirement is met')
|
|
requirement_is_met = True
|
|
|
|
return requirement_is_met
|
|
|
|
|
|
def _cpu_tag(obj):
|
|
if type(obj).__module__ == 'torch':
|
|
return 'cpu'
|
|
|
|
|
|
def _cuda_tag(obj):
|
|
if type(obj).__module__ == 'torch.cuda':
|
|
return 'cuda:' + str(obj.get_device())
|
|
|
|
|
|
def _cpu_deserialize(obj, location):
|
|
if location == 'cpu':
|
|
return obj
|
|
|
|
|
|
def validate_cuda_device(location):
|
|
device = torch.cuda._utils._get_device_index(location, True)
|
|
|
|
if not torch.cuda.is_available():
|
|
raise RuntimeError('Attempting to deserialize object on a CUDA '
|
|
'device but torch.cuda.is_available() is False. '
|
|
'If you are running on a CPU-only machine, '
|
|
'please use torch.load with map_location=torch.device(\'cpu\') '
|
|
'to map your storages to the CPU.')
|
|
if device >= torch.cuda.device_count():
|
|
raise RuntimeError('Attempting to deserialize object on CUDA device '
|
|
'{device} but torch.cuda.device_count() is {device_count}. Please use '
|
|
'torch.load with map_location to map your storages '
|
|
'to an existing device.'.format(
|
|
device=device, device_count=torch.cuda.device_count()))
|
|
return device
|
|
|
|
|
|
def _cuda_deserialize(obj, location):
|
|
if location.startswith('cuda'):
|
|
device = validate_cuda_device(location)
|
|
if getattr(obj, "_torch_load_uninitialized", False):
|
|
storage_type = getattr(torch.cuda, type(obj).__name__)
|
|
with torch.cuda.device(device):
|
|
return storage_type(obj.size())
|
|
else:
|
|
return obj.cuda(device)
|
|
|
|
|
|
register_package(10, _cpu_tag, _cpu_deserialize)
|
|
register_package(20, _cuda_tag, _cuda_deserialize)
|
|
|
|
|
|
def location_tag(storage):
|
|
for _, tagger, _ in _package_registry:
|
|
location = tagger(storage)
|
|
if location:
|
|
return location
|
|
raise RuntimeError("don't know how to determine data location of "
|
|
+ torch.typename(storage))
|
|
|
|
|
|
def default_restore_location(storage, location):
|
|
for _, _, fn in _package_registry:
|
|
result = fn(storage, location)
|
|
if result is not None:
|
|
return result
|
|
raise RuntimeError("don't know how to restore data location of "
|
|
+ torch.typename(storage) + " (tagged with "
|
|
+ location + ")")
|
|
|
|
|
|
def normalize_storage_type(storage_type):
|
|
return getattr(torch, storage_type.__name__)
|
|
|
|
|
|
def storage_to_tensor_type(storage):
|
|
storage_type = type(storage)
|
|
module = _import_dotted_name(storage_type.__module__)
|
|
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
|
|
|
|
|
|
def _is_path(name_or_buffer):
|
|
return isinstance(name_or_buffer, str) or \
|
|
(sys.version_info[0] == 2 and isinstance(name_or_buffer, unicode)) or \
|
|
(sys.version_info[0] == 3 and isinstance(name_or_buffer, pathlib.Path))
|
|
|
|
|
|
class _opener(object):
|
|
def __init__(self, file_like):
|
|
self.file_like = file_like
|
|
|
|
def __enter__(self):
|
|
return self.file_like
|
|
|
|
def __exit__(self, *args):
|
|
pass
|
|
|
|
|
|
class _open_file(_opener):
|
|
def __init__(self, name, mode):
|
|
super(_open_file, self).__init__(open(name, mode))
|
|
|
|
def __exit__(self, *args):
|
|
self.file_like.close()
|
|
|
|
|
|
class _open_buffer_reader(_opener):
|
|
def __init__(self, buffer):
|
|
super(_open_buffer_reader, self).__init__(buffer)
|
|
_check_seekable(buffer)
|
|
|
|
|
|
class _open_buffer_writer(_opener):
|
|
def __exit__(self, *args):
|
|
self.file_like.flush()
|
|
|
|
|
|
def _open_file_like(name_or_buffer, mode):
|
|
if _is_path(name_or_buffer):
|
|
return _open_file(name_or_buffer, mode)
|
|
else:
|
|
if 'w' in mode:
|
|
return _open_buffer_writer(name_or_buffer)
|
|
elif 'r' in mode:
|
|
return _open_buffer_reader(name_or_buffer)
|
|
else:
|
|
raise RuntimeError("Expected 'r' or 'w' in mode but got {}".format(mode))
|
|
|
|
|
|
class _open_zipfile_reader(_opener):
|
|
def __init__(self, name_or_buffer):
|
|
super(_open_zipfile_reader, self).__init__(torch._C.PyTorchFileReader(name_or_buffer))
|
|
|
|
|
|
class _open_zipfile_writer_file(_opener):
|
|
def __init__(self, name):
|
|
super(_open_zipfile_writer_file, self).__init__(torch._C.PyTorchFileWriter(name))
|
|
|
|
def __exit__(self, *args):
|
|
self.file_like.write_end_of_file()
|
|
|
|
|
|
class _open_zipfile_writer_buffer(_opener):
|
|
def __init__(self, buffer):
|
|
self.buffer = buffer
|
|
super(_open_zipfile_writer_buffer, self).__init__(torch._C.PyTorchFileWriter(buffer))
|
|
|
|
def __exit__(self, *args):
|
|
self.file_like.write_end_of_file()
|
|
self.buffer.flush()
|
|
|
|
|
|
def _open_zipfile_writer(name_or_buffer):
|
|
if _is_path(name_or_buffer):
|
|
container = _open_zipfile_writer_file
|
|
else:
|
|
container = _open_zipfile_writer_buffer
|
|
return container(name_or_buffer)
|
|
|
|
|
|
def _is_compressed_file(f):
|
|
compress_modules = ['gzip']
|
|
try:
|
|
return f.__module__ in compress_modules
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def _should_read_directly(f):
|
|
"""
|
|
Checks if f is a file that should be read directly. It should be read
|
|
directly if it is backed by a real file (has a fileno) and is not a
|
|
a compressed file (e.g. gzip)
|
|
"""
|
|
if _is_compressed_file(f):
|
|
return False
|
|
try:
|
|
return f.fileno() >= 0
|
|
except io.UnsupportedOperation:
|
|
return False
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def _check_seekable(f):
|
|
|
|
def raise_err_msg(patterns, e):
|
|
for p in patterns:
|
|
if p in str(e):
|
|
msg = (str(e) + ". You can only torch.load from a file that is seekable."
|
|
+ " Please pre-load the data into a buffer like io.BytesIO and"
|
|
+ " try to load from it instead.")
|
|
raise type(e)(msg)
|
|
raise e
|
|
|
|
try:
|
|
f.seek(f.tell())
|
|
return True
|
|
except (io.UnsupportedOperation, AttributeError) as e:
|
|
raise_err_msg(["seek", "tell"], e)
|
|
|
|
def _check_dill_version(pickle_module):
|
|
'''Checks if using dill as the pickle module, and if so, checks if it is the correct version.
|
|
If dill version is lower than 0.3.1, a ValueError is raised.
|
|
|
|
Args:
|
|
pickle_module: module used for pickling metadata and objects
|
|
|
|
'''
|
|
if pickle_module.__name__ == 'dill':
|
|
required_dill_version = (0, 3, 1)
|
|
if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False):
|
|
raise ValueError((
|
|
"'torch' supports dill >= %s, but you have dill %s."
|
|
" Please upgrade dill or switch to 'pickle'"
|
|
) % (
|
|
'.'.join([str(num) for num in required_dill_version]),
|
|
pickle_module.__version__
|
|
))
|
|
|
|
def save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=False):
|
|
"""Saves an object to a disk file.
|
|
|
|
See also: :ref:`recommend-saving-models`
|
|
|
|
Args:
|
|
obj: saved object
|
|
f: a file-like object (has to implement write and flush) or a string
|
|
containing a file name
|
|
pickle_module: module used for pickling metadata and objects
|
|
pickle_protocol: can be specified to override the default protocol
|
|
|
|
.. warning::
|
|
If you are using Python 2, :func:`torch.save` does NOT support :class:`StringIO.StringIO`
|
|
as a valid file-like object. This is because the write method should return
|
|
the number of bytes written; :meth:`StringIO.write()` does not do this.
|
|
|
|
Please use something like :class:`io.BytesIO` instead.
|
|
|
|
Example:
|
|
>>> # Save to file
|
|
>>> x = torch.tensor([0, 1, 2, 3, 4])
|
|
>>> torch.save(x, 'tensor.pt')
|
|
>>> # Save to io.BytesIO buffer
|
|
>>> buffer = io.BytesIO()
|
|
>>> torch.save(x, buffer)
|
|
"""
|
|
_check_dill_version(pickle_module)
|
|
|
|
if _use_new_zipfile_serialization:
|
|
with _open_zipfile_writer(f) as opened_file:
|
|
_save(obj, opened_file, pickle_module, pickle_protocol)
|
|
return
|
|
|
|
with _open_file_like(f, 'wb') as opened_file:
|
|
_legacy_save(obj, opened_file, pickle_module, pickle_protocol)
|
|
|
|
|
|
def _legacy_save(obj, f, pickle_module, pickle_protocol):
|
|
if sys.version_info[0] == 2:
|
|
import StringIO
|
|
if isinstance(f, StringIO.StringIO):
|
|
msg = ('torch.save received unsupported StringIO.StringIO file object, whose '
|
|
'write method does not return the number of bytes written. '
|
|
'Please use something like io.BytesIO for torch.save instead.')
|
|
raise RuntimeError(msg)
|
|
|
|
import torch.nn as nn
|
|
serialized_container_types = {}
|
|
serialized_storages = {}
|
|
|
|
def persistent_id(obj):
|
|
# FIXME: the docs say that persistent_id should only return a string
|
|
# but torch store returns tuples. This works only in the binary protocol
|
|
# see
|
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
|
if isinstance(obj, type) and issubclass(obj, nn.Module):
|
|
if obj in serialized_container_types:
|
|
return None
|
|
serialized_container_types[obj] = True
|
|
source_file = source = None
|
|
try:
|
|
source_lines, _, source_file = get_source_lines_and_file(obj)
|
|
source = ''.join(source_lines)
|
|
except Exception: # saving the source is optional, so we can ignore any errors
|
|
warnings.warn("Couldn't retrieve source code for container of "
|
|
"type " + obj.__name__ + ". It won't be checked "
|
|
"for correctness upon loading.")
|
|
return ('module', obj, source_file, source)
|
|
|
|
elif torch.is_storage(obj):
|
|
storage_type = normalize_storage_type(type(obj))
|
|
# Offset is always 0, but we keep it for backwards compatibility
|
|
# with the old serialization format (which supported storage views)
|
|
offset = 0
|
|
obj_key = str(obj._cdata)
|
|
location = location_tag(obj)
|
|
serialized_storages[obj_key] = obj
|
|
is_view = obj._cdata != obj._cdata
|
|
if is_view:
|
|
view_metadata = (str(obj._cdata), offset, obj.size())
|
|
else:
|
|
view_metadata = None
|
|
|
|
return ('storage',
|
|
storage_type,
|
|
obj_key,
|
|
location,
|
|
obj.size(),
|
|
view_metadata)
|
|
return None
|
|
|
|
sys_info = dict(
|
|
protocol_version=PROTOCOL_VERSION,
|
|
little_endian=sys.byteorder == 'little',
|
|
type_sizes=dict(
|
|
short=SHORT_SIZE,
|
|
int=INT_SIZE,
|
|
long=LONG_SIZE,
|
|
),
|
|
)
|
|
|
|
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
|
|
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
|
|
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
|
|
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
|
|
pickler.persistent_id = persistent_id
|
|
pickler.dump(obj)
|
|
|
|
serialized_storage_keys = sorted(serialized_storages.keys())
|
|
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
|
|
f.flush()
|
|
for key in serialized_storage_keys:
|
|
serialized_storages[key]._write_file(f, _should_read_directly(f), True)
|
|
|
|
|
|
def _save(obj, zip_file, pickle_module, pickle_protocol):
|
|
serialized_storages = {}
|
|
|
|
def persistent_id(obj):
|
|
# FIXME: the docs say that persistent_id should only return a string
|
|
# but torch store returns tuples. This works only in the binary protocol
|
|
# see
|
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
|
if torch.is_storage(obj):
|
|
storage_type = normalize_storage_type(type(obj))
|
|
obj_key = str(obj._cdata)
|
|
location = location_tag(obj)
|
|
serialized_storages[obj_key] = obj
|
|
|
|
return ('storage',
|
|
storage_type,
|
|
obj_key,
|
|
location,
|
|
obj.size())
|
|
return None
|
|
|
|
# Write the pickle data for `obj`
|
|
data_buf = io.BytesIO()
|
|
pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol)
|
|
pickler.persistent_id = persistent_id
|
|
pickler.dump(obj)
|
|
data_value = data_buf.getvalue()
|
|
zip_file.write_record('data.pkl', data_value, len(data_value))
|
|
|
|
# Write each tensor to a file named tensor/the_tensor_key in the zip archive
|
|
for key in sorted(serialized_storages.keys()):
|
|
name = 'data/{}'.format(key)
|
|
storage = serialized_storages[key]
|
|
if storage.device.type == 'cpu':
|
|
# If it's on the CPU we can directly copy it into the zip file
|
|
num_bytes = storage.size() * storage.element_size()
|
|
buf = io.BytesIO()
|
|
zip_file.write_record(name, storage.data_ptr(), num_bytes)
|
|
else:
|
|
# Copy to a buffer, then serialize that
|
|
buf = io.BytesIO()
|
|
storage._write_file(buf, _should_read_directly(buf))
|
|
buf_value = buf.getvalue()
|
|
zip_file.write_record(name, buf_value, len(buf_value))
|
|
|
|
|
|
def load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
|
|
"""Loads an object saved with :func:`torch.save` from a file.
|
|
|
|
:func:`torch.load` uses Python's unpickling facilities but treats storages,
|
|
which underlie tensors, specially. They are first deserialized on the
|
|
CPU and are then moved to the device they were saved from. If this fails
|
|
(e.g. because the run time system doesn't have certain devices), an exception
|
|
is raised. However, storages can be dynamically remapped to an alternative
|
|
set of devices using the :attr:`map_location` argument.
|
|
|
|
If :attr:`map_location` is a callable, it will be called once for each serialized
|
|
storage with two arguments: storage and location. The storage argument
|
|
will be the initial deserialization of the storage, residing on the CPU.
|
|
Each serialized storage has a location tag associated with it which
|
|
identifies the device it was saved from, and this tag is the second
|
|
argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
|
|
for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
|
|
:attr:`map_location` should return either ``None`` or a storage. If
|
|
:attr:`map_location` returns a storage, it will be used as the final deserialized
|
|
object, already moved to the right device. Otherwise, :func:`torch.load` will
|
|
fall back to the default behavior, as if :attr:`map_location` wasn't specified.
|
|
|
|
If :attr:`map_location` is a :class:`torch.device` object or a string containing
|
|
a device tag, it indicates the location where all tensors should be loaded.
|
|
|
|
Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
|
|
appearing in the file (keys), to ones that specify where to put the
|
|
storages (values).
|
|
|
|
User extensions can register their own location tags and tagging and
|
|
deserialization methods using :func:`torch.serialization.register_package`.
|
|
|
|
Args:
|
|
f: a file-like object (has to implement :meth:`read`, :meth`readline`, :meth`tell`, and :meth`seek`),
|
|
or a string containing a file name
|
|
map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
|
|
locations
|
|
pickle_module: module used for unpickling metadata and objects (has to
|
|
match the :attr:`pickle_module` used to serialize file)
|
|
pickle_load_args: (Python 3 only) optional keyword arguments passed over to
|
|
:func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
|
|
:attr:`errors=...`.
|
|
|
|
.. warning::
|
|
:func:`torch.load()` uses ``pickle`` module implicitly, which is known to be insecure.
|
|
It is possible to construct malicious pickle data which will execute arbitrary code
|
|
during unpickling. Never load data that could have come from an untrusted
|
|
source, or that could have been tampered with. **Only load data you trust**.
|
|
|
|
.. note::
|
|
When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
|
|
will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
|
|
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
|
|
|
|
.. note::
|
|
By default, we decode byte strings as ``utf-8``. This is to avoid a common error
|
|
case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
|
|
when loading files saved by Python 2 in Python 3. If this default
|
|
is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
|
|
these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
|
|
to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
|
|
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
|
|
|
|
Example:
|
|
>>> torch.load('tensors.pt')
|
|
# Load all tensors onto the CPU
|
|
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
|
|
# Load all tensors onto the CPU, using a function
|
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
|
|
# Load all tensors onto GPU 1
|
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
|
|
# Map tensors from GPU 1 to GPU 0
|
|
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
|
|
# Load tensor from io.BytesIO object
|
|
>>> with open('tensor.pt', 'rb') as f:
|
|
buffer = io.BytesIO(f.read())
|
|
>>> torch.load(buffer)
|
|
# Load a module with 'ascii' encoding for unpickling
|
|
>>> torch.load('module.pt', encoding='ascii')
|
|
"""
|
|
_check_dill_version(pickle_module)
|
|
|
|
if sys.version_info >= (3, 0) and 'encoding' not in pickle_load_args.keys():
|
|
pickle_load_args['encoding'] = 'utf-8'
|
|
|
|
with _open_file_like(f, 'rb') as opened_file:
|
|
if _is_zipfile(opened_file):
|
|
with _open_zipfile_reader(f) as opened_zipfile:
|
|
if _is_torchscript_zip(opened_zipfile):
|
|
warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive"
|
|
" dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
|
|
" silence this warning)", UserWarning)
|
|
return torch.jit.load(f)
|
|
return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
|
|
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
|
|
|
|
|
|
# Register pickling support for layout instances such as
|
|
# torch.sparse_coo, etc
|
|
def _get_layout(name):
|
|
"""Get layout extension object from its string representation.
|
|
"""
|
|
cache = _get_layout.cache
|
|
if not cache:
|
|
for v in torch.__dict__.values():
|
|
if isinstance(v, torch.layout):
|
|
cache[str(v)] = v
|
|
return cache[name]
|
|
|
|
|
|
_get_layout.cache = {}
|
|
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))
|
|
|
|
|
|
def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
|
|
deserialized_objects = {}
|
|
|
|
restore_location = _get_restore_location(map_location)
|
|
|
|
def _check_container_source(container_type, source_file, original_source):
|
|
try:
|
|
current_source = ''.join(get_source_lines_and_file(container_type)[0])
|
|
except Exception: # saving the source is optional, so we can ignore any errors
|
|
warnings.warn("Couldn't retrieve source code for container of "
|
|
"type " + container_type.__name__ + ". It won't be checked "
|
|
"for correctness upon loading.")
|
|
return
|
|
if original_source != current_source:
|
|
if container_type.dump_patches:
|
|
file_name = container_type.__name__ + '.patch'
|
|
diff = difflib.unified_diff(current_source.split('\n'),
|
|
original_source.split('\n'),
|
|
source_file,
|
|
source_file, lineterm="")
|
|
lines = '\n'.join(diff)
|
|
try:
|
|
with open(file_name, 'a+') as f:
|
|
file_size = f.seek(0, 2)
|
|
f.seek(0)
|
|
if file_size == 0:
|
|
f.write(lines)
|
|
elif file_size != len(lines) or f.read() != lines:
|
|
raise IOError
|
|
msg = ("Saved a reverse patch to " + file_name + ". "
|
|
"Run `patch -p0 < " + file_name + "` to revert your "
|
|
"changes.")
|
|
except IOError:
|
|
msg = ("Tried to save a patch, but couldn't create a "
|
|
"writable file " + file_name + ". Make sure it "
|
|
"doesn't exist and your working directory is "
|
|
"writable.")
|
|
else:
|
|
msg = ("you can retrieve the original source code by "
|
|
"accessing the object's source attribute or set "
|
|
"`torch.nn.Module.dump_patches = True` and use the "
|
|
"patch tool to revert the changes.")
|
|
msg = ("source code of class '{container_type}' has changed. {msg}"
|
|
.format(container_type=torch.typename(container_type), msg=msg))
|
|
warnings.warn(msg, SourceChangeWarning)
|
|
|
|
def legacy_load(f):
|
|
deserialized_objects = {}
|
|
|
|
def persistent_load(saved_id):
|
|
if isinstance(saved_id, tuple):
|
|
# Ignore containers that don't have any sources saved
|
|
if all(saved_id[1:]):
|
|
_check_container_source(*saved_id)
|
|
return saved_id[0]
|
|
return deserialized_objects[int(saved_id)]
|
|
|
|
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
|
|
mkdtemp() as tmpdir:
|
|
|
|
tar.extract('storages', path=tmpdir)
|
|
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
|
|
num_storages = pickle_module.load(f, **pickle_load_args)
|
|
for i in range(num_storages):
|
|
args = pickle_module.load(f, **pickle_load_args)
|
|
key, location, storage_type = args
|
|
obj = storage_type._new_with_file(f)
|
|
obj = restore_location(obj, location)
|
|
deserialized_objects[key] = obj
|
|
|
|
storage_views = pickle_module.load(f, **pickle_load_args)
|
|
for target_cdata, root_cdata, offset, size in storage_views:
|
|
root = deserialized_objects[root_cdata]
|
|
deserialized_objects[target_cdata] = root[offset:offset + size]
|
|
|
|
tar.extract('tensors', path=tmpdir)
|
|
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
|
|
num_tensors = pickle_module.load(f, **pickle_load_args)
|
|
for _ in range(num_tensors):
|
|
args = pickle_module.load(f, **pickle_load_args)
|
|
key, storage_id, original_tensor_type = args
|
|
storage = deserialized_objects[storage_id]
|
|
tensor_type = storage_to_tensor_type(storage)
|
|
ndim, = struct.unpack('<i', f.read(4))
|
|
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
|
|
f.read(4)
|
|
size = struct.unpack('<{}q'.format(ndim), f.read(8 * ndim))
|
|
stride = struct.unpack('<{}q'.format(ndim), f.read(8 * ndim))
|
|
storage_offset, = struct.unpack('<q', f.read(8))
|
|
tensor = tensor_type().set_(storage, storage_offset, size, stride)
|
|
deserialized_objects[key] = tensor
|
|
|
|
pickle_file = tar.extractfile('pickle')
|
|
unpickler = pickle_module.Unpickler(pickle_file, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
return result
|
|
|
|
deserialized_objects = {}
|
|
|
|
def persistent_load(saved_id):
|
|
assert isinstance(saved_id, tuple)
|
|
typename = _maybe_decode_ascii(saved_id[0])
|
|
data = saved_id[1:]
|
|
|
|
if typename == 'module':
|
|
# Ignore containers that don't have any sources saved
|
|
if all(data[1:]):
|
|
_check_container_source(*data)
|
|
return data[0]
|
|
elif typename == 'storage':
|
|
data_type, root_key, location, size, view_metadata = data
|
|
location = _maybe_decode_ascii(location)
|
|
if root_key not in deserialized_objects:
|
|
obj = data_type(size)
|
|
obj._torch_load_uninitialized = True
|
|
deserialized_objects[root_key] = restore_location(obj, location)
|
|
storage = deserialized_objects[root_key]
|
|
if view_metadata is not None:
|
|
view_key, offset, view_size = view_metadata
|
|
if view_key not in deserialized_objects:
|
|
deserialized_objects[view_key] = storage[offset:offset + view_size]
|
|
return deserialized_objects[view_key]
|
|
else:
|
|
return storage
|
|
else:
|
|
raise RuntimeError("Unknown saved id type: %s" % saved_id[0])
|
|
|
|
_check_seekable(f)
|
|
f_should_read_directly = _should_read_directly(f)
|
|
|
|
if f_should_read_directly and f.tell() == 0:
|
|
# legacy_load requires that f has fileno()
|
|
# only if offset is zero we can attempt the legacy tar file loader
|
|
try:
|
|
return legacy_load(f)
|
|
except tarfile.TarError:
|
|
if _is_zipfile(f):
|
|
# .zip is used for torch.jit.save and will throw an un-pickling error here
|
|
raise RuntimeError(
|
|
"{filename} is a zip archive (did you mean to use torch.jit.load()?)".format(filename=f.name))
|
|
# if not a tarfile, reset file offset and proceed
|
|
f.seek(0)
|
|
|
|
if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
|
|
raise RuntimeError(
|
|
"torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
|
|
"Received object of type \"{}\". Please update to Python 3.8.2 or newer to restore this "
|
|
"functionality.".format(type(f)))
|
|
|
|
magic_number = pickle_module.load(f, **pickle_load_args)
|
|
if magic_number != MAGIC_NUMBER:
|
|
raise RuntimeError("Invalid magic number; corrupt file?")
|
|
protocol_version = pickle_module.load(f, **pickle_load_args)
|
|
if protocol_version != PROTOCOL_VERSION:
|
|
raise RuntimeError("Invalid protocol version: %s" % protocol_version)
|
|
|
|
_sys_info = pickle_module.load(f, **pickle_load_args)
|
|
unpickler = pickle_module.Unpickler(f, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
|
|
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
|
|
|
|
offset = f.tell() if f_should_read_directly else None
|
|
for key in deserialized_storage_keys:
|
|
assert key in deserialized_objects
|
|
deserialized_objects[key]._set_from_file(f, offset, f_should_read_directly)
|
|
if offset is not None:
|
|
offset = f.tell()
|
|
|
|
return result
|
|
|
|
|
|
def _maybe_decode_ascii(bytes_str):
|
|
# When using encoding='bytes' in Py3, some **internal** keys stored as
|
|
# strings in Py2 are loaded as bytes. This function decodes them with
|
|
# ascii encoding, one that Py3 uses by default.
|
|
#
|
|
# NOTE: This should only be used on internal keys (e.g., `typename` and
|
|
# `location` in `persistent_load` below!
|
|
if isinstance(bytes_str, bytes):
|
|
return bytes_str.decode('ascii')
|
|
return bytes_str
|
|
|
|
|
|
def _get_restore_location(map_location):
|
|
if map_location is None:
|
|
restore_location = default_restore_location
|
|
elif isinstance(map_location, dict):
|
|
def restore_location(storage, location):
|
|
location = map_location.get(location, location)
|
|
return default_restore_location(storage, location)
|
|
elif isinstance(map_location, _string_classes):
|
|
def restore_location(storage, location):
|
|
return default_restore_location(storage, map_location)
|
|
elif isinstance(map_location, torch.device):
|
|
def restore_location(storage, location):
|
|
return default_restore_location(storage, str(map_location))
|
|
else:
|
|
def restore_location(storage, location):
|
|
result = map_location(storage, location)
|
|
if result is None:
|
|
result = default_restore_location(storage, location)
|
|
return result
|
|
return restore_location
|
|
|
|
|
|
def _load(zip_file, map_location, pickle_module, **pickle_load_args):
|
|
restore_location = _get_restore_location(map_location)
|
|
|
|
loaded_storages = {}
|
|
|
|
def load_tensor(obj, size, key, location):
|
|
loaded_storages[key] = restore_location(obj, location)
|
|
name = 'data/{}'.format(key)
|
|
size_long = struct.pack("<Q", size)
|
|
tensor_file = io.BytesIO(size_long + zip_file.get_record(name))
|
|
offset = None
|
|
is_real_file = False
|
|
loaded_storages[key]._set_from_file(tensor_file, offset, is_real_file)
|
|
|
|
def persistent_load(saved_id):
|
|
assert isinstance(saved_id, tuple)
|
|
typename = _maybe_decode_ascii(saved_id[0])
|
|
data = saved_id[1:]
|
|
|
|
assert typename == 'storage', \
|
|
"Unknown typename for persistent_load, expected 'storage' but got '{}'".format(typename)
|
|
data_type, key, location, size = data
|
|
if key not in loaded_storages:
|
|
load_tensor(data_type(size), size, key, _maybe_decode_ascii(location))
|
|
storage = loaded_storages[key]
|
|
return storage
|
|
|
|
# Load the data (which may in turn use `persistent_load` to load tensors)
|
|
data_file = io.BytesIO(zip_file.get_record('data.pkl'))
|
|
unpickler = pickle_module.Unpickler(data_file, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
|
|
return result
|
|
|
|
|
|
def _is_torchscript_zip(zip_file):
|
|
for file_name in zip_file.get_all_records():
|
|
parts = file_name.split(os.sep)
|
|
if len(parts) > 1 and parts[1] == 'constants.pkl':
|
|
return True
|
|
return False
|