Files
pytorch/torch/quantization/fake_quantize.py
Gao, Xiang 45e4b614d1 Per channel quantization performance improvement (#33772)
Summary:
Benchmark:
NVIDIA GTX 1650 + AMD Ryzen Threadripper 3970X
```python
import torch
print(torch.__version__)

for i in range(1000):
    torch.randn(1024 * 128, device='cuda')

def cuda(e):
    a = torch.randn(2 ** e, 32, device='cuda')
    s = torch.randn(32, device='cuda')
    z = torch.randn(32, device='cuda')
    torch.cuda.synchronize()
    %timeit torch.fake_quantize_per_channel_affine(a, s, z, 1, -999, 999); torch.cuda.synchronize()

def cpu(e):
    a = torch.randn(2 ** e, 32, device='cpu')
    s = torch.randn(32, device='cpu')
    z = torch.randn(32, device='cpu')
    %timeit torch.fake_quantize_per_channel_affine(a, s, z, 1, -999, 999);

for i in range(10, 24):
    cuda(i)
print()
for i in range(10, 32):
    cpu(i)
```
Before
```
1.5.0a0+9bc922d
849 µs ± 44.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
817 µs ± 30.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
814 µs ± 2.93 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.11 ms ± 1.32 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.19 ms ± 4.19 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.6 ms ± 5.58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2.44 ms ± 14.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.14 ms ± 2.55 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
7.41 ms ± 2.46 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
13.9 ms ± 2.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
26.9 ms ± 254 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
52.6 ms ± 260 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
104 ms ± 176 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
207 ms ± 1.24 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

249 µs ± 158 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
420 µs ± 230 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
766 µs ± 391 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.45 ms ± 574 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2.84 ms ± 34.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
5.69 ms ± 83 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
7.29 ms ± 2.58 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
7.32 ms ± 13.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
17.4 ms ± 38.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
47.5 ms ± 264 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
187 ms ± 1.19 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
379 ms ± 5.05 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
652 ms ± 11.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.22 s ± 4.58 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
2.34 s ± 8.77 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
4.56 s ± 7.15 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
8.97 s ± 33.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
17.8 s ± 32.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
35.2 s ± 167 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```
After
```
1.5.0a0+a7ec8cc
92.5 µs ± 2.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
97.7 µs ± 469 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
109 µs ± 4.73 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
119 µs ± 6.17 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
146 µs ± 1.84 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
211 µs ± 2.45 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
347 µs ± 4.18 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
624 µs ± 14.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.17 ms ± 16.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2.25 ms ± 48.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
4.43 ms ± 220 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
8.51 ms ± 44.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
16.9 ms ± 30.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
33.7 ms ± 7.64 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

201 µs ± 234 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
285 µs ± 465 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
287 µs ± 214 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
287 µs ± 221 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
287 µs ± 761 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
347 µs ± 399 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
675 µs ± 213 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.34 ms ± 643 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
4.82 ms ± 34.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
10.7 ms ± 88.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
20.3 ms ± 25.6 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
39.4 ms ± 242 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
78.8 ms ± 2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
153 ms ± 786 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
285 ms ± 911 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
541 ms ± 1.09 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.03 s ± 1.67 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.97 s ± 8.59 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
3.81 s ± 10.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

Fixes https://github.com/pytorch/pytorch/issues/33647
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33772

Differential Revision: D20112531

Pulled By: ngimel

fbshipit-source-id: f90e3ef1b5be8276851637f3e1251cb8f1af411f
2020-02-26 10:19:25 -08:00

156 lines
7.5 KiB
Python

from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from torch.nn import Module
from .observer import MovingAverageMinMaxObserver, HistogramObserver, MovingAveragePerChannelMinMaxObserver, _with_args
class FakeQuantize(Module):
r""" Simulate the quantize and dequantize operations in training time.
The output of this module is given by
x_out = (clamp(round(x/scale + zero_point), quant_min, quant_max)-zero_point)*scale
* :attr:`scale` defines the scale factor used for quantization.
* :attr:`zero_point` specifies the quantized value to which 0 in floating point maps to
* :attr:`quant_min` specifies the minimum allowable quantized value.
* :attr:`quant_max` specifies the maximum allowable quantized value.
* :attr:`fake_quant_enable` controls the application of fake quantization on tensors, note that
statistics can still be updated.
* :attr:`observer_enable` controls statistics collection on tensors
* :attr:`dtype` specifies the quantized dtype that is being emulated with fake-quantization,
allowable values are torch.qint8 and torch.quint8. The values of quant_min and
quant_max should be chosen to be consistent with the dtype
Args:
observer (module): Module for observing statistics on input tensors and calculating scale
and zero-point.
quant_min (int): The minimum allowable quantized value.
quant_max (int): The maximum allowable quantized value.
observer_kwargs (optional): Arguments for the observer module
Attributes:
observer (Module): User provided module that collects statistics on the input tensor and
provides a method to calculate scale and zero-point.
"""
def __init__(self, observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255, **observer_kwargs):
super(FakeQuantize, self).__init__()
assert quant_min <= quant_max, \
'quant_min must be less than or equal to quant_max'
self.quant_min = quant_min
self.quant_max = quant_max
self.fake_quant_enabled = True
self.observer_enabled = True
self.activation_post_process = observer(**observer_kwargs)
assert torch.iinfo(self.activation_post_process.dtype).min <= quant_min, 'quant_min out of bound'
assert quant_max <= torch.iinfo(self.activation_post_process.dtype).max, 'quant_max out of bound'
self.register_buffer('scale', torch.tensor([1.0]))
self.register_buffer('zero_point', torch.tensor([0]))
self.dtype = self.activation_post_process.dtype
self.qscheme = self.activation_post_process.qscheme
self.ch_axis = self.activation_post_process.ch_axis if hasattr(self.activation_post_process, 'ch_axis') else None
def enable_fake_quant(self, enabled=True):
self.fake_quant_enabled = enabled
return self
def disable_fake_quant(self):
return self.enable_fake_quant(False)
def enable_observer(self, enabled=True):
self.observer_enabled = enabled
return self
def disable_observer(self):
return self.enable_observer(False)
def calculate_qparams(self):
return self.activation_post_process.calculate_qparams()
def forward(self, X):
if self.observer_enabled:
self.activation_post_process(X.detach())
_scale, _zero_point = self.calculate_qparams()
self.scale, self.zero_point = _scale.to(self.scale.device), _zero_point.to(self.zero_point.device)
if self.fake_quant_enabled:
if self.qscheme == torch.per_channel_symmetric or self.qscheme == torch.per_channel_affine:
X = torch.fake_quantize_per_channel_affine(X, self.scale, self.zero_point,
self.ch_axis, self.quant_min, self.quant_max)
else:
X = torch.fake_quantize_per_tensor_affine(X, float(self.scale),
int(self.zero_point), self.quant_min,
self.quant_max)
return X
with_args = classmethod(_with_args)
def extra_repr(self):
return 'fake_quant_enabled={}, observer_enabled={},\
scale={}, zero_point={}'.format(
self.fake_quant_enabled, self.observer_enabled,
self.scale, self.zero_point)
def _save_to_state_dict(self, destination, prefix, keep_vars):
# We cannot currently register scalar values as buffers, so need to manually
# specify serialization here.
super(FakeQuantize, self)._save_to_state_dict(destination, prefix, keep_vars)
destination[prefix + 'scale'] = self.scale
destination[prefix + 'zero_point'] = self.zero_point
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
# Removing this function throws an error that the the size of the loaded tensor does not match the original size
# i.e., These buffers start out with numel 0 and become numel 1 once they have their first forward pass.
local_state = ['scale', 'zero_point']
for name in local_state:
key = prefix + name
if key in state_dict:
val = state_dict[key]
setattr(self, name, val)
elif strict:
missing_keys.append(key)
super(FakeQuantize, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
default_fake_quant = FakeQuantize.with_args(observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255,
dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=True)
default_weight_fake_quant = FakeQuantize.with_args(observer=MovingAverageMinMaxObserver, quant_min=-128, quant_max=127,
dtype=torch.qint8, qscheme=torch.per_tensor_symmetric, reduce_range=False)
default_per_channel_weight_fake_quant = FakeQuantize.with_args(observer=MovingAveragePerChannelMinMaxObserver,
quant_min=-128,
quant_max=127,
dtype=torch.qint8,
qscheme=torch.per_channel_symmetric,
reduce_range=False,
ch_axis=0)
default_histogram_fake_quant = FakeQuantize.with_args(observer=HistogramObserver,
quant_min=0,
quant_max=255,
dtype=torch.quint8,
qscheme=torch.per_tensor_affine,
reduce_range=True)
def disable_fake_quant(mod):
if type(mod) == FakeQuantize:
mod.disable_fake_quant()
def enable_fake_quant(mod):
if type(mod) == FakeQuantize:
mod.enable_fake_quant()
def disable_observer(mod):
if type(mod) == FakeQuantize:
mod.disable_observer()
def enable_observer(mod):
if type(mod) == FakeQuantize:
mod.enable_observer()