Files
pytorch/torch/_inductor/ops_handler.py

1149 lines
35 KiB
Python

# mypy: allow-untyped-defs
from __future__ import annotations
import inspect
import itertools
import re
import warnings
from io import StringIO
from typing import Any, Callable, Generic, Literal, NamedTuple, Optional, TypeVar, Union
from unittest.mock import patch
import sympy
import torch
import torch.utils._pytree as pytree
from ..utils._ordered_set import OrderedSet
from .utils import IndentedBuffer, reduction_num_outputs, sympy_index_symbol, sympy_str
T = TypeVar("T")
StoreMode = Optional[Literal["atomic_add"]]
ReductionType = Literal[
"argmax",
"argmin",
"welford_reduce",
"welford_combine",
"any",
"max",
"min",
"prod",
"sum",
"xor_sum",
"online_softmax_reduce",
]
def _arg_str(a: object) -> str:
if isinstance(a, sympy.Expr):
return sympy_str(a)
return str(a)
# See OpDecompositions for superclass that desugars operations like reciprocal/square.
class OpsHandler(Generic[T]):
"""
Protocol describing the set of valid operations on ``torch._inductor.virtualized.ops``,
as well as the contract for op handlers. The type T signifies the domain
of the abstract analysis AKA what all the functions return / take as arguments
anywhere compute occurs.
While these operators are typically dtype polymorphic (e.g., you can use mul
on both integers and floats), they do NOT do promotion and usually return the
same dtype as the input. You are expected to have handled type promotion
during ATen decompositions. Most operators correspond exactly to pointwise
operations as defined by torch, so when in doubt about semantics, check the
corresponding torch documentation. These are all scalar operations (so they
are defined to operate on a single element at a time.)
For convenience, many operators take a src_dtype which indicates what the dtype
of the input argument is. Although in principle this can be derived by an
analysis, providing this for ops where it is useful helps avoid having to repeatedly
recompute dtype in code generation.
Note that this often describes a class of static methods, for stateless
ops handlers.
Handlers are often defined using metaprogramming (e.g. _initialize_pointwise_overrides),
which means you will not get type errors for those methods. We have tests in
test/inductor/test_op_completeness.py which check that all operators are implemented after
all the metaprogramming has run.
"""
def constant(self, value: Union[bool, float, int], dtype: torch.dtype) -> T:
"""Produces a scalar constant of type dtype."""
raise NotImplementedError
def load_seed(self, name: str, offset: T) -> T:
"""Computes inductor_prims.lookup_seed."""
raise NotImplementedError
def rand(self, seed: T, offset: T) -> T:
"""Computes inductor_prims.random with mode="rand". offset has dtype int32."""
raise NotImplementedError
def randn(self, seed: T, offset: T) -> T:
"""Computes inductor_prims.random with mode="randn". offset has dtype int32."""
raise NotImplementedError
def randint64(self, seed: T, offset: T, low: T, high: T) -> T:
"""Computes inductor_prims.randint. offset has dtype int32."""
raise NotImplementedError
def masked(self, mask: T, body: Callable[[], T], other: T) -> T:
"""
Computes body, but only perform loads/stores if the boolean mask
evaluates to true. For example, you would use this if you needed to
perform an indirect load that may not be valid on some elements;
without masking, invalid accesses can cause IMAs. When mask is true,
the result is the result of body; otherwise it is other. Here, `other`
needs to be a constant.
Contrast this with ops.where, which can multiplex between two values
that have been unconditionally computed.
"""
raise NotImplementedError
def where(self, condition: T, input: T, other: T) -> T:
"""
Computes torch.where: when condition is true, return input; otherwise return other.
"""
raise NotImplementedError
def index_expr(self, expr: sympy.Expr, dtype: torch.dtype) -> T:
"""
Converts a sympy expression into a scalar of type dtype. expr is typically
an indexing expression, thus the name; however, it can also be used in
non-indexing situations.
"""
raise NotImplementedError
def to_dtype(
self,
x: T,
dtype: torch.dtype,
src_dtype: Optional[torch.dtype] = None,
use_compute_types: bool = True,
) -> T:
"""
Convert x to dtype. src_dtype can be optionally set to specify what the original
dtype of x was, which can improve code generation (used by torch to(dtype=dtype)).
"""
raise NotImplementedError
def trunc_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with truncation semantics (similar to how the int
constructor works in Python). In Inductor codegen, this just decays
to trunc and then to_dtype, but this composite operation helps
roundtrips for Sympy evaluation.
dtype is taken as an explicit parameter because the desired output
dtype is typically the index dtype, which may vary between int32 and
int64 depending on if we've shown that all the indexing operations can
be done in int32.
"""
raise NotImplementedError
def ceil_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with ceiling semantics. See also trunc_to_int.
"""
raise NotImplementedError
def floor_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with ceiling semantics. See also trunc_to_int.
"""
raise NotImplementedError
def round_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with round-to-even semantics. See also trunc_to_int.
"""
raise NotImplementedError
def to_dtype_bitcast(self, x: T, dtype: torch.dtype, src_dtype: torch.dtype) -> T:
"""
Reinterpret cast x to dtype (reinterpreting the bits in memory as another dtype.)
src_dtype must be the original type of x.
"""
raise NotImplementedError
def identity(self, x: T) -> T:
"""
Returns x as is. This is used to trigger CSE.
"""
raise NotImplementedError
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These operations are only available in a "kernel" context. Check
# torch._inductor.codegen.common.CSEProxy for their typical implementation
# in op handler (routing to their respective implementations in the kernel
# handler)
#
# Importantly, inside a kernel, indexing and mask variables are available
# in scope, which are typically used by sympy.Expr indexing.
def indirect_indexing(
self, x: T, size: sympy.Expr, check: bool = True, wrap_neg=True
) -> sympy.Expr:
"""
Convert an integral x into a sympy.Expr that can be subsequently used in
indexing computation. 'size' represents an upper bound on what valid
indexes can be; when 'check' is True, we check that the x is in bounds.
NB: This is typically mandatory to implement for any analysis, because you
MUST return a valid sympy.Expr of some sort (even if it's a meaningless symbol).
"""
raise NotImplementedError
def load(self, name: str, index: sympy.Expr) -> T:
"""
Load from the memory location 'name', offset by some indexing expression 'index'.
"""
raise NotImplementedError
def store(
self,
name: str,
index: sympy.Expr,
value: T,
mode: StoreMode = None,
) -> None:
"""
Store 'value' to the memory location 'name' offset by 'expr'. If
specified, 'mode' can require the store to be an atomic addition.
"""
raise NotImplementedError
# TODO: Better explain how the "collective" semantics of these ops;
# remember that the input value is a scalar, you can't reduce on it in the
# traditional sense!
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: T,
) -> Union[T, tuple[T, ...]]:
"""
Perform a 'reduction_type' reduction on 'value' of dtype 'src_dtype',
using 'dtype' as the accumulation dtype for the reduction. The result
is an intermediate computation which should be stored to the final
location using 'ops.store_reduction'.
Valid reduction types are . For Welford reduction types, this
function returns multiple outputs; consult reduction_num_outputs to
determine the amount in metaprogramming applications.
"""
raise NotImplementedError
# TODO: in practice, this seems to actually return None, but not returning
# a T makes common __getattr__ idioms not type correctly. Figure out if
# this should be returning something.
def store_reduction(self, name: str, index: sympy.Expr, value: T) -> None:
"""
Store the fully accumulated result of 'reduction' to the memory
location 'name' offset by 'expr'.
"""
raise NotImplementedError
def scan(
self,
dtypes: tuple[torch.dtype, ...],
combine_fn: Callable[[tuple[T, ...], tuple[T, ...]], tuple[T, ...]],
values: tuple[T, ...],
) -> tuple[T, ...]:
"""
Perform an associative scan on 'value'.
"""
# TODO: Improve the description with some pseudocode
raise NotImplementedError
def sort(
self,
dtypes: tuple[torch.dtype, ...],
values: tuple[T, ...],
stable: bool,
descending: bool,
) -> tuple[T, ...]:
"""
Sort values along the reduction dimension.
"""
raise NotImplementedError
def bucketize(
self,
values: T,
boundaries: tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: T,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[T] = None,
) -> T:
# See [Note: Inductor bucketize op]
raise NotImplementedError
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# The following ops have semantics that correspond exactly to the torch
# operation with the same corresponding name.
def abs(self, x0: T) -> T:
raise NotImplementedError
def exp(self, x0: T) -> T:
raise NotImplementedError
def exp2(self, x0: T) -> T:
raise NotImplementedError
def expm1(self, x0: T) -> T:
raise NotImplementedError
def sqrt(self, x0: T) -> T:
raise NotImplementedError
def relu(self, x0: T) -> T:
raise NotImplementedError
def minimum(self, x0: T, x1: T) -> T:
raise NotImplementedError
def maximum(self, x0: T, x1: T) -> T:
raise NotImplementedError
def cos(self, x0: T) -> T:
raise NotImplementedError
def sin(self, x0: T) -> T:
raise NotImplementedError
def lgamma(self, x0: T) -> T:
raise NotImplementedError
def erf(self, x0: T) -> T:
raise NotImplementedError
def cosh(self, x0: T) -> T:
raise NotImplementedError
def sinh(self, x0: T) -> T:
raise NotImplementedError
def acos(self, x0: T) -> T:
raise NotImplementedError
def acosh(self, x0: T) -> T:
raise NotImplementedError
def asin(self, x0: T) -> T:
raise NotImplementedError
def asinh(self, x0: T) -> T:
raise NotImplementedError
def atan2(self, x0: T, x1: T) -> T:
raise NotImplementedError
def atan(self, x0: T) -> T:
raise NotImplementedError
def atanh(self, x0: T) -> T:
raise NotImplementedError
def copysign(self, x0: T, x1: T) -> T:
raise NotImplementedError
def erfc(self, x0: T) -> T:
raise NotImplementedError
def erfinv(self, x0: T) -> T:
raise NotImplementedError
def frexp(self, x0: T):
raise NotImplementedError
def hypot(self, x0: T, x1: T) -> T:
raise NotImplementedError
def log10(self, x0: T) -> T:
raise NotImplementedError
def log2(self, x0: T) -> T:
raise NotImplementedError
def nextafter(self, x0: T, x1: T) -> T:
raise NotImplementedError
def logical_and(self, x0: T, x1: T) -> T:
raise NotImplementedError
def logical_not(self, x0: T) -> T:
raise NotImplementedError
def logical_or(self, x0: T, x1: T) -> T:
raise NotImplementedError
def logical_xor(self, x0: T, x1: T) -> T:
raise NotImplementedError
def bitwise_and(self, x0: T, x1: T) -> T:
raise NotImplementedError
def bitwise_not(self, x0: T) -> T:
raise NotImplementedError
def bitwise_or(self, x0: T, x1: T) -> T:
raise NotImplementedError
def bitwise_xor(self, x0: T, x1: T) -> T:
raise NotImplementedError
def bitwise_left_shift(self, x0: T, x1: T) -> T:
raise NotImplementedError
def bitwise_right_shift(self, x0: T, x1: T) -> T:
raise NotImplementedError
def rsqrt(self, x0: T) -> T:
raise NotImplementedError
def log1p(self, x0: T) -> T:
raise NotImplementedError
def tan(self, x0: T) -> T:
raise NotImplementedError
def tanh(self, x0: T) -> T:
raise NotImplementedError
def sigmoid(self, x0: T) -> T:
raise NotImplementedError
def signbit(self, x0: T) -> T:
raise NotImplementedError
def fmod(self, x0: T, x1: T) -> T:
raise NotImplementedError
def log(self, x0: T) -> T:
raise NotImplementedError
def isinf(self, x0: T) -> T:
raise NotImplementedError
def isnan(self, x0: T) -> T:
raise NotImplementedError
# NB: this returns a float, like the torch operation
# This rounds half to even to break ties
def round(self, x0: T) -> T:
raise NotImplementedError
# NB: this returns a float, like the torch operation
def floor(self, x0: T) -> T:
raise NotImplementedError
def sign(self, x0: T) -> T:
raise NotImplementedError
# NB: this returns a float, like the torch operation
def trunc(self, x0: T) -> T:
raise NotImplementedError
# NB: this returns a float, like the torch operation
def ceil(self, x0: T) -> T:
raise NotImplementedError
def neg(self, x0: T) -> T:
raise NotImplementedError
def reciprocal(self, x0: T) -> T:
raise NotImplementedError
def eq(self, x0: T, x1: T) -> T:
raise NotImplementedError
def ne(self, x0: T, x1: T) -> T:
raise NotImplementedError
def lt(self, x0: T, x1: T) -> T:
raise NotImplementedError
def gt(self, x0: T, x1: T) -> T:
raise NotImplementedError
def le(self, x0: T, x1: T) -> T:
raise NotImplementedError
def ge(self, x0: T, x1: T) -> T:
raise NotImplementedError
def add(self, x0: T, x1: T) -> T:
raise NotImplementedError
def sub(self, x0: T, x1: T) -> T:
raise NotImplementedError
def mul(self, x0: T, x1: T) -> T:
raise NotImplementedError
# NB: this returns a float, like the torch operation
def pow(self, x0: T, x1: T) -> T:
raise NotImplementedError
def and_(self, x0: T, x1: T) -> T:
raise NotImplementedError
def or_(self, x0: T, x1: T) -> T:
raise NotImplementedError
def xor(self, x0: T, x1: T) -> T:
raise NotImplementedError
# These are metaprogrammed by MockHandler._init_cls
def lshift(self, x0: T, x1: T) -> T:
raise NotImplementedError
def rshift(self, x0: T, x1: T) -> T:
raise NotImplementedError
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These are "special" operators. These only exist if the target
# language actually supports the operator. Keep this in sync with
# pointwise_overrides_data.
def airy_ai(self, x: T) -> T:
raise NotImplementedError
def bessel_j0(self, x: T) -> T:
raise NotImplementedError
def bessel_j1(self, x: T) -> T:
raise NotImplementedError
def bessel_y0(self, x: T) -> T:
raise NotImplementedError
def bessel_y1(self, x: T) -> T:
raise NotImplementedError
def digamma(self, x: T) -> T:
raise NotImplementedError
def erfcx(self, x: T) -> T:
raise NotImplementedError
def fma(self, x: T, y: T, z: T) -> T:
raise NotImplementedError
def igamma(self, x: T, y: T) -> T:
raise NotImplementedError
def igammac(self, x: T, y: T) -> T:
raise NotImplementedError
def gammainc(self, x: T, y: T) -> T:
raise NotImplementedError
def gammaincc(self, x: T, y: T) -> T:
raise NotImplementedError
def i0(self, x: T) -> T:
raise NotImplementedError
def i0e(self, x: T) -> T:
raise NotImplementedError
def i1(self, x: T) -> T:
raise NotImplementedError
def i1e(self, x: T) -> T:
raise NotImplementedError
def log_ndtr(self, x: T) -> T:
raise NotImplementedError
def modified_bessel_i0(self, x: T) -> T:
raise NotImplementedError
def modified_bessel_i1(self, x: T) -> T:
raise NotImplementedError
def modified_bessel_k0(self, x: T) -> T:
raise NotImplementedError
def modified_bessel_k1(self, x: T) -> T:
raise NotImplementedError
def ndtr(self, x: T) -> T:
raise NotImplementedError
def ndtri(self, x: T) -> T:
raise NotImplementedError
def polygamma(self, x: T, y: T) -> T:
raise NotImplementedError
def scaled_modified_bessel_k0(self, x: T) -> T:
raise NotImplementedError
def scaled_modified_bessel_k1(self, x: T) -> T:
raise NotImplementedError
def spherical_bessel_j0(self, x: T) -> T:
raise NotImplementedError
def zeta(self, x: T, y: T) -> T:
raise NotImplementedError
def chebyshev_polynomial_t(self, x: T, y: T) -> T:
raise NotImplementedError
def chebyshev_polynomial_u(self, x: T, y: T) -> T:
raise NotImplementedError
def chebyshev_polynomial_v(self, x: T, y: T) -> T:
raise NotImplementedError
def chebyshev_polynomial_w(self, x: T, y: T) -> T:
raise NotImplementedError
def legendre_polynomial_p(self, x: T, y: T) -> T:
raise NotImplementedError
def shifted_chebyshev_polynomial_t(self, x: T, y: T) -> T:
raise NotImplementedError
def shifted_chebyshev_polynomial_u(self, x: T, y: T) -> T:
raise NotImplementedError
def shifted_chebyshev_polynomial_v(self, x: T, y: T) -> T:
raise NotImplementedError
def shifted_chebyshev_polynomial_w(self, x: T, y: T) -> T:
raise NotImplementedError
def hermite_polynomial_h(self, x: T, y: T) -> T:
raise NotImplementedError
def hermite_polynomial_he(self, x: T, y: T) -> T:
raise NotImplementedError
def laguerre_polynomial_l(self, x: T, y: T) -> T:
raise NotImplementedError
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These operators are a bit special, because they are conventionally
# natively supported in both Python and C, but the semantics differ so
# care must be taken
def truncdiv(self, x0: T, x1: T) -> T:
"""C-style trunc division between integers only. Computes the true
division of two numbers and rounds the result to zero.
"""
raise NotImplementedError
def floordiv(self, x0: T, x1: T) -> T:
"""Python-style floor division between integers only. Computes the
true division of two numbers and floors the result. If you want
floor division for floats, do regular truediv and floor the result.
"""
raise NotImplementedError
def truediv(self, x0: T, x1: T) -> T:
"""True division between floats. Integer inputs are NOT valid. To
do Python-style (int, int) -> float division, use int_truediv"""
raise NotImplementedError
def int_truediv(self, x0: T, x1: T) -> T:
"""True division between integers. This is NOT the same as promoting
to float and doing integer division, there is a bespoke algorithm for
doing the division in higher precision than the above.
"""
raise NotImplementedError
def mod(self, x0: T, x1: T) -> T:
"""C-style modulus, take sign from LHS (x0)."""
raise NotImplementedError
def remainder(self, x0: T, x1: T) -> T:
"""Python-style modulus, take sign from RHS (x1)."""
raise NotImplementedError
def square(self, x0: T) -> T:
raise NotImplementedError
def check_bounds(
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
) -> None:
raise NotImplementedError
# halide-only
def halide_clamp(self, value: T, size: sympy.Expr, check: bool) -> T:
raise NotImplementedError
# triton-only
def inline_asm_elementwise(
self,
*inputs: T,
asm: str,
constraints: Optional[str] = None,
dtype: torch.dtype = torch.float32,
is_pure: bool = True,
pack: int = 1,
) -> T:
raise NotImplementedError
def output(self, *args: T) -> None:
"""This is a fake op used in analysis but not codegen"""
raise NotImplementedError
def placeholder(self, index: int) -> T:
"""This is a fake op used in analysis but not codegen"""
raise NotImplementedError
_ignore_op_re = re.compile(r"_.*|paren").fullmatch
def list_ops(cls: type[Any]):
return OrderedSet([x for x in dir(cls) if not _ignore_op_re(x)])
OP_NAMES = list_ops(OpsHandler)
class DefaultHandler(OpsHandler[Any]):
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
"""
Default implementation for all ops. Override in a subclass to
provide generic op behavior.
Args:
name: name of the op, see OpHandler.{name}
args: positional args passed to the op
kwargs: keyword args passed to the op
Returns:
return value of the op
"""
raise NotImplementedError
def __getattr__(self, name: str) -> Any:
def fallback(*args: Any, **kwargs: Any) -> Any:
return self._default(name, args, kwargs)
# would like to remove this function entirely, but it's used in MTIA backend
warnings.warn(f"undefined OpHandler.{name}, please add missing op schema")
return fallback
@staticmethod
def _call_default(target: str):
def call_default(self, *args, **kwargs):
return self._default(target, args, kwargs)
call_default.__name__ = target
return call_default
@classmethod
def _init_cls(cls):
"""
Here we codegen many functions of the form:
def add(self, a, b):
return self._default('add', (a, b), {})
and install them in cls. This is the same as _call_default above,
but is about 1.2x faster since CPython varargs parsing is slow.
"""
code = StringIO()
for target in OP_NAMES:
sig = inspect.signature(getattr(OpsHandler, target))
if all(
p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
and p.default is inspect.Parameter.empty
for p in sig.parameters.values()
):
self_arg, *args = sig.parameters.keys()
assert self_arg == "self"
code.write(
f"""
def {target}(self, {", ".join(args)}):
return self._default({target!r}, ({", ".join(args)}, ), {{}})
""".strip()
)
code.write("\n\n")
else:
# slower fallback for ops with default or variadic arguments
setattr(cls, target, cls._call_default(target))
ctx: dict[str, Any] = {}
exec(code.getvalue(), ctx)
for target, impl in ctx.items():
if target in OP_NAMES:
setattr(cls, target, impl)
DefaultHandler._init_cls()
class NoopHandler(DefaultHandler):
name = "NoopHandler"
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
return None
@staticmethod
def masked(mask, body, other) -> None:
return None
@staticmethod
def frexp(x) -> tuple[None, None]:
return (None, None)
@staticmethod
def scan(dtypes, combine_fn, values) -> tuple[None, ...]:
return (None,) * len(values)
@staticmethod
def sort(dtypes, values, stable, descending) -> tuple[None, ...]:
return (None,) * len(values)
@staticmethod
def indirect_indexing(index_var, size, check=True, wrap_neg=True) -> sympy.Symbol:
return sympy.S.Zero
class BasicMathOpsMixin:
@staticmethod
def add(a, b):
return f"{a} + {b}"
@staticmethod
def sub(a, b):
return f"{a} - {b}"
@staticmethod
def mul(a, b):
return f"{a} * {b}"
@staticmethod
def floordiv(a, b):
return f"{a} // {b}"
@staticmethod
def truediv(a, b):
return f"{a} / {b}"
@staticmethod
def mod(a, b):
# careful, depending on target semantics varies
return f"{a} % {b}"
@staticmethod
def pow(a, b):
return f"{a} ** {b}"
@staticmethod
def lshift(a, b):
return f"{a} << {b}"
@staticmethod
def rshift(a, b):
return f"{a} >> {b}"
@staticmethod
def and_(a, b):
return f"{a} & {b}"
@staticmethod
def or_(a, b):
return f"{a} | {b}"
@staticmethod
def xor(a, b):
return f"{a} ^ {b}"
@staticmethod
def eq(a, b):
return f"{a} == {b}"
@staticmethod
def ne(a, b):
return f"{a} != {b}"
@staticmethod
def lt(a, b):
return f"{a} < {b}"
@staticmethod
def gt(a, b):
return f"{a} > {b}"
@staticmethod
def le(a, b):
return f"{a} <= {b}"
@staticmethod
def ge(a, b):
return f"{a} >= {b}"
@staticmethod
def neg(a):
return f"-{a}"
class MockHandler(BasicMathOpsMixin, DefaultHandler):
name = "MockHandler"
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
fargs = [*map(_arg_str, args)]
for k, v in kwargs.items():
fargs.append(f"{k}={_arg_str(v)}")
return f"ops.{name}({', '.join(fargs)})"
@staticmethod
def masked(mask, body, other) -> str:
return f"ops.masked({mask}, {body()}, {other})"
@staticmethod
def frexp(x):
return (f"ops.frexp({x})[0]", f"ops.frexp({x})[1]")
@staticmethod
def scan(dtypes, combine_fn, values):
return tuple(
f"ops.scan({dtypes}, {combine_fn}, {values})[{i}]"
for i in range(len(values))
)
@staticmethod
def sort(dtypes, values, stable, descending):
return tuple(
f"ops.sort({dtypes}, {values}, stable={stable}, descending={descending})[{i}]"
for i in range(len(values))
)
@staticmethod
def indirect_indexing(index_var, size, check=True, wrap_neg=True) -> sympy.Symbol:
return sympy_index_symbol(str(index_var))
class KernelFormatterHandler(DefaultHandler):
def __init__(self, parent_handler: OpsHandler[Any]):
self.parent_handler = parent_handler
self._output = IndentedBuffer(1)
self.var_counter = itertools.count()
@staticmethod
def ir_to_string(ir_fn, index, rindex=None) -> str:
from .ir import FlexibleLayout
from .virtualized import V
args = [index, rindex] if rindex is not None else [index]
names = ["index", "rindex"] if rindex is not None else ["index"]
formatter = KernelFormatterHandler(MockHandler())
with formatter._output.indent(-1):
formatter._output.writeline(f"def inner_fn({', '.join(names)}):")
for name, arg in zip(names, args):
if arg:
lhs = ", ".join(
[
str("_" if isinstance(v, (int, sympy.Integer)) else v)
for v in arg
]
)
formatter._output.writeline(f"{lhs} = {name}")
with (
V.set_ops_handler(formatter),
patch.object(FlexibleLayout, "allow_indexing", True),
):
result = ir_fn(*args)
return formatter.getvalue(result)
def indirect_indexing(self, *args, **kwargs) -> sympy.Symbol:
return self.parent_handler.indirect_indexing(*args, **kwargs)
def _write(self, line):
# replace line with a new variable name
varname = f"tmp{next(self.var_counter)}"
self._output.writeline(f"{varname} = {line}")
return varname
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
return pytree.tree_map(
self._write, getattr(self.parent_handler, name)(*args, **kwargs)
)
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[str, tuple[str, ...]],
) -> Union[str, tuple[str, ...]]:
line = self.parent_handler.reduction(dtype, src_dtype, reduction_type, value)
num_values = reduction_num_outputs(reduction_type)
varnames = [f"tmp{next(self.var_counter)}" for _ in range(num_values)]
self._output.writeline(f"{','.join(varnames)} = {line}")
return tuple(varnames) if num_values > 1 else varnames[0]
def getvalue(self, result):
self._output.writeline(f"return {result}")
return self._output.getvalue()
class WrapperHandler(DefaultHandler):
def __init__(self, inner: OpsHandler[Any]):
self._inner = inner
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
return getattr(self._inner, name)(*args, **kwargs)
class AddParenHandler(WrapperHandler):
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
val = getattr(self._inner, name)(*args, **kwargs)
if not val or isinstance(val, (sympy.Expr, tuple, list)):
return val
return f"({val})"
class OpCountResult(NamedTuple):
num_ops: int
used_ops: OrderedSet[str]
read_buffers: list[str]
nontrivial_read_count: int
class OpCounterCSE(DefaultHandler):
"""Shim to count how many ops are used"""
def __init__(self, inner: OpsHandler[Any]):
super().__init__()
self.parent_handler = inner
self.op_count = 0
self.var_names: dict[str, str] = {}
self._used_ops: OrderedSet[str] = OrderedSet()
self._read_names: list[str] = []
self._nontrivial_read_count = 0
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
self._used_ops.add(name)
return pytree.tree_map(
self._update_count, getattr(self.parent_handler, name)(*args, **kwargs)
)
def _update_count(self, val):
varname = self.var_names.get(val)
if not varname:
varname = f"tmp{self.op_count}"
self.op_count += 1
self.var_names[val] = varname
return varname
def indirect_indexing(self, *args, **kwargs):
self._used_ops.add("indirect_indexing")
return self.parent_handler.indirect_indexing(*args, **kwargs)
def load(self, name: str, index: sympy.Expr) -> str:
val = self.parent_handler.load(name, index)
if val not in self.var_names:
self._used_ops.add("load")
self._read_names.append(name)
if not isinstance(index, (sympy.Integer, int)):
self._nontrivial_read_count += 1
return self._update_count(val)
def load_seed(self, name: str, offset: T):
val = self.parent_handler.load_seed(name, offset)
if val not in self.var_names:
self._used_ops.add("load_seed")
self._read_names.append(name)
return self._update_count(val)
def bucketize(
self,
values: T,
boundaries: tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: T,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[T] = None,
) -> T:
"""
See [Note: Inductor bucketize op]
"""
val = self.parent_handler.bucketize(
values,
boundaries,
boundary_indices,
indexing_dtype,
right,
sorter,
sorter_indices,
)
if val not in self.var_names:
self._used_ops.add("bucketize")
self._read_names.append(boundaries[0])
if sorter is not None:
self._read_names.append(sorter[0])
return self._update_count(val)
def getvalue(self):
return OpCountResult(
self.op_count, self._used_ops, self._read_names, self._nontrivial_read_count
)
class ExtractConstantsHandler(NoopHandler):
def __init__(self, device: Optional[torch.device]):
self.device = device
def constant(self, value: Any, dtype: torch.dtype) -> torch._inductor.ir.Constant:
from torch._inductor import ir
return ir.Constant(
value=value, dtype=dtype, device=self.device or torch.get_default_device()
)
class SimpleCSEHandler(WrapperHandler):
"""Wraps the underlying handler with a CSE pass
NOTE: Compared to codegen level CSE this is simplified as it
doesn't support stores which require load cache invalidation.
"""
def __init__(self, inner: Any):
super().__init__(inner)
self.cse_cache: dict[str, Union[Any, tuple[Any, ...]]] = {}
self.mock = MockHandler()
def indirect_indexing(self, *args, **kwargs) -> sympy.Expr:
return super().indirect_indexing(*args, **kwargs) # type: ignore[misc]
def store(self, *args, **kwargs) -> None:
raise NotImplementedError("store not implemented")
def store_reduction(self, *args, **kwargs) -> None:
raise NotImplementedError("store not implemented")
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
key = getattr(self.mock, name)(*args, **kwargs)
val = self.cse_cache.get(key)
if val is not None:
return val
val = getattr(self._inner, name)(*args, **kwargs)
self.cse_cache[key] = val
return val