Files
pytorch/torch/_inductor/codegen/cpp_template.py
Ding, Yi1 f7d1b966c2 [Inductor] Unify the data type propagation between Triton and CPP Backend (#146970)
Fixes #144246

Use `DtypePropagationOpsHandler` for CSE variables of CPP backend. In addition, add static type checking for the generated CPP code similar to the `config.test_configs.runtime_triton_dtype_assert`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146970
Approved by: https://github.com/jgong5, https://github.com/eellison, https://github.com/leslie-fang-intel
2025-03-21 17:52:51 +00:00

139 lines
4.8 KiB
Python

# mypy: allow-untyped-defs
import ctypes
import functools
import itertools
import logging
import sys
from collections.abc import Iterable
from typing import Callable, Optional, Union
from unittest.mock import patch
import sympy
from .. import codecache, config, ir
from ..autotune_process import CppBenchmarkRequest, TensorMeta
from ..utils import IndentedBuffer, Placeholder, unique
from ..virtualized import V
from .common import KernelTemplate
from .cpp_template_kernel import CppTemplateCaller, CppTemplateKernel
log = logging.getLogger(__name__)
class CppTemplate(KernelTemplate):
index_counter = itertools.count()
def __init__(
self,
name: str,
input_nodes,
layout: ir.Layout,
num_threads: int,
epilogue_creator: Optional[Callable[[ir.Buffer], ir.Pointwise]] = None,
) -> None:
super().__init__(name)
self.input_nodes = input_nodes
self.index = next(self.index_counter)
self.output_node: Union[ir.Buffer, list[ir.Buffer]] = ir.Buffer(
name=f"buf_out{self.index}", layout=layout
)
self.layout = layout
self.num_threads = num_threads
self.epilogue_creator = epilogue_creator
def generate(self, **kwargs):
kernel_name = f"cpp_{self.name}"
with (
patch.object(V.graph, "get_dtype", self._fake_get_dtype(self.output_node)),
patch.object(ir.FlexibleLayout, "allow_indexing", True),
V.graph.set_current_device(self.layout.device),
CppTemplateKernel(
kernel_name=kernel_name, num_threads=self.num_threads
) as kernel,
):
code = kernel.render(self, **kwargs)
_, call_args, _, _ = kernel.args.python_argdefs()
log.debug("Generated Code:\n%s", code)
log.debug(
"Args: cpp_argdefs: %s, python_argdefs: %s",
kernel.args.cpp_argdefs(),
kernel.args.python_argdefs(),
)
expected_args = list(
unique(input_node.get_name() for input_node in self.input_nodes)
)
if isinstance(self.output_node, Iterable):
expected_args.extend([node.get_name() for node in self.output_node])
else:
expected_args.extend([self.output_node.get_name()])
assert list(call_args)[: len(expected_args)] == expected_args, (
call_args,
expected_args,
)
extra_args = V.graph.sizevars.size_hints(
map(sympy.expand, call_args[len(expected_args) :])
)
# Cast the size hint from int to ctypes.c_ulonglong explicitly
# since in cpp kernel, we bind it to C long
extra_args = tuple(ctypes.c_ulonglong(x) for x in extra_args)
kernel_hash_name = f"cpp_{self.name}_{self.index}"
# Create the BenchmarkRequest for CPP
bmreq = CppBenchmarkRequest(
kernel_name=kernel_name,
input_tensor_meta=TensorMeta.from_irnodes(self.input_nodes),
output_tensor_meta=TensorMeta.from_irnodes(self.output_node),
extra_args=extra_args,
source_code=code,
)
def make_kernel_render(
template_node: ir.CppTemplateBuffer,
flag_template_buffer_has_other_users: bool,
epilogue_nodes: Optional[list[ir.IRNode]] = None,
):
kernel = CppTemplateKernel(
kernel_name=str(Placeholder.KERNEL_NAME), num_threads=self.num_threads
)
render = functools.partial(
kernel.render,
self,
template_buffer_node=template_node,
flag_template_buffer_has_other_users=flag_template_buffer_has_other_users,
epilogue_nodes=epilogue_nodes,
**kwargs,
)
return kernel, render
return CppTemplateCaller(
kernel_hash_name,
self.name,
self.input_nodes,
self.output_node[0].get_layout()
if isinstance(self.output_node, Iterable)
else self.output_node.get_layout(),
make_kernel_render,
bmreq,
self,
)
def header(self) -> IndentedBuffer:
res = IndentedBuffer()
res.writeline(codecache.cpp_prefix())
# TODO: add c10::ForcedUnroll test to test_aoti_abi_check
res.splice("""#include <c10/util/Unroll.h>""")
res.splice("""#include <torch/csrc/inductor/aoti_torch/c/shim.h>""")
enable_kernel_profile = config.cpp.enable_kernel_profile and sys.platform in [
"linux",
"win32",
]
if enable_kernel_profile:
res.writelines(["#include <ATen/record_function.h>"])
return res
def render(self, **kwargs) -> str:
raise NotImplementedError