Files
pytorch/caffe2/core/operator_c10wrapper.h
Sebastian Messmer 9e7f22b223 Remove dependencies from Caffe2Go on PyTorch JIT (#20463)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20463

Source file changes mostly involve ifdef'ing-out references to JIT code
from files that are part of Caffe2Go.  Update Internal build scripts to
remove those files from our globs.

After this, changes to most of the JIT files should not trigger mobile CI.

Reviewed By: dzhulgakov

Differential Revision: D15329407

fbshipit-source-id: 48f614c6b028eef0a03ce5161d083a3e078b0412
2019-05-14 14:36:08 -07:00

260 lines
9.3 KiB
C++

#pragma once
// TODO Also register c10 operators on mobile
#if !defined(CAFFE2_IS_XPLAT_BUILD)
#include <ATen/core/dispatch/Dispatcher.h>
#include <ATen/core/ivalue.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/C++17.h>
#include <c10/util/Metaprogramming.h>
#include "caffe2/core/operator.h"
#include "caffe2/core/c10_operator.h"
namespace caffe2 {
/**
* To make a c10 operator "C10Add" callable from caffe2 as "C2MyAddOpName", just
* write
*
* REGISTER_C10_OPERATOR_FOR_CAFFE2_DISPATCH(C10Add, C2MyAddOpName)
*
*/
namespace detail {
template <class Context>
class C10OperatorWrapper final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
C10OperatorWrapper(
const c10::OperatorHandle& op,
const OperatorDef& operator_def,
Workspace* ws)
: Operator<Context>(operator_def, ws),
op_(op),
kernel_(at::nullopt),
has_preallocated_outputs_(
op_.schema().arguments().size() != 0 &&
op_.schema().arguments().back().name() ==
detail::PREALLOCATED_OUTPUT_ARGNAME) {
AT_ASSERT(
!has_preallocated_outputs_ ||
op_.schema().arguments().back().type()->isSubtypeOf(
OptionalType::create(ListType::ofTensors())));
AT_ASSERT(operator_def.output_size() == op_.schema().returns().size());
AT_ASSERT(
operator_def.input_size() + (has_preallocated_outputs_ ? 1 : 0) <=
op_.schema()
.arguments()
.size()); // '<=' because there might be caffe2 nontensor arguments
}
bool RunOnDevice() override {
// due to caching the stack_, concurrent calling is not allowed.
// TODO thread_local might fix this
std::lock_guard<std::mutex> lock(mutex_);
pushInputs_();
callKernel_();
popOutputs_();
return true;
}
private:
void pushInputs_() {
AT_ASSERT(stack_.size() == 0);
stack_.reserve(
op_.schema().arguments().size() + (has_preallocated_outputs_ ? 1 : 0));
size_t input_tensor_index = 0;
for (const auto& argument : op_.schema().arguments()) {
if (argument.name() == detail::PREALLOCATED_OUTPUT_ARGNAME) {
// note: if detail::PREALLOCATED_OUTPUT_ARGNAME was at the end of the
// argument list, then has_preallocated_outputs_ would be true.
AT_ASSERTM(
has_preallocated_outputs_,
"Error in caffe2->c10 wrapper: Operator schema has a parameter named ",
detail::PREALLOCATED_OUTPUT_ARGNAME,
", but it's not at the end of the argument list");
AT_ASSERTM(
argument.type()->isSubtypeOf(
OptionalType::create(ListType::ofTensors())),
"Error in caffe2->c10 wrapper: Operator schema has a parameter named ",
detail::PREALLOCATED_OUTPUT_ARGNAME,
", but it's not of type TensorList?");
stack_.emplace_back(preallocated_outputs_());
} else if (argument.type()->isSubtypeOf(TensorType::get())) {
AT_ASSERTM(
input_tensor_index < InputSize(),
"Error in caffe2->c10 wrapper: Too few tensor arguments given (",
InputSize(),
"), operator schema expected more.");
stack_.emplace_back(at::Tensor(Input(input_tensor_index++)));
} else if (argument.type()->isSubtypeOf(OptionalType::ofTensor())) {
if (input_tensor_index < InputSize()) {
stack_.emplace_back(at::Tensor(Input(input_tensor_index++)));
} else {
stack_.emplace_back(IValue());
}
} else if (argument.type()->isSubtypeOf(ListType::ofTensors())) {
AT_ASSERTM(
input_tensor_index == 0,
"Error in caffe2->c10 wrapper: Schema can only have either one or more Tensor inputs or one TensorList input.");
stack_.emplace_back(ivalue::TensorList::create(array_inputs_()));
input_tensor_index = InputSize();
} else {
stack_.emplace_back(get_nontensor_argument_(argument));
}
}
AT_ASSERTM(
input_tensor_index == InputSize(),
"Error in caffe2->c10 wrapper: Number of caffe2 operator inputs (",
InputSize(),
") doesn't match number of tensor arguments (",
input_tensor_index,
") in the c10 operator schema.");
}
void callKernel_() {
AT_ASSERT(stack_.size() == op_.schema().arguments().size());
if (!kernel_.has_value()) {
// TODO if kernel is already set, try re-dispatch to assert it goes to the same kernel
kernel_ = c10::Dispatcher::singleton().lookup(op_, &stack_);
}
kernel_->call(&stack_);
}
void popOutputs_() {
AT_ASSERT(stack_.size() == op_.schema().returns().size());
for (size_t i = 0; i < op_.schema().returns().size(); ++i) {
OperatorBase::SetOutputTensor(i, Tensor(std::move(stack_[i]).toTensor()));
}
stack_.clear();
}
std::vector<at::Tensor> array_inputs_() {
std::vector<at::Tensor> result;
result.reserve(InputSize());
for (size_t i = 0; i < InputSize(); ++i) {
result.emplace_back(Input(i));
}
return result;
}
std::vector<at::Tensor> preallocated_outputs_() {
std::vector<at::Tensor> result;
result.reserve(OutputSize());
for (size_t i = 0; i < OutputSize(); ++i) {
result.emplace_back(OperatorBase::OutputTensorOrUndefined(i));
}
return result;
}
IValue get_nontensor_argument_(const c10::Argument& argument) {
if (argument.type()->isSubtypeOf(IntType::get())) {
return get_nontensor_argument_<int>(
argument.name(), argument.default_value());
} else if (argument.type()->isSubtypeOf(FloatType::get())) {
return get_nontensor_argument_<double>(
argument.name(), argument.default_value());
} else if (argument.type()->isSubtypeOf(BoolType::get())) {
return get_nontensor_argument_<bool>(
argument.name(), argument.default_value());
} else {
// TODO Support more types
AT_ERROR(
"Error in caffe2->c10 wrapper: Unsupported argument type ",
argument.type()->str(),
" in c10 operator schema");
}
}
template <class T>
IValue get_nontensor_argument_(
const std::string& name,
const c10::optional<IValue>& default_value) {
if (default_value.has_value()) {
return this->template GetSingleArgument<T>(name, default_value->to<T>());
} else {
AT_CHECK(
this->template HasSingleArgumentOfType<T>(name),
"Error in caffe2->c10 wrapper: Expected argument '",
name,
"' missing or wrong type.");
return this->template GetSingleArgument<T>(name, 0);
}
}
c10::OperatorHandle op_;
c10::optional<OpKernel> kernel_;
// has_preallocated_outputs_ is true iff the operator schema has a last
// argument that is a TensorList and has a name equal to with the name equal
// to detail::PREALLOCATED_OUTPUT_ARGNAME. This argument is then used to pass
// in preallocated output tensors to the caffe2 operator.
bool has_preallocated_outputs_;
// this is stored as a member here to avoid having to re-allocate a stack
// for each call. Between kernel calls, stack_.size() == 0, but capacity
// should not need to be grown anymore after the first call.
std::vector<IValue> stack_;
std::mutex mutex_;
};
template <class Context>
inline std::function<
std::unique_ptr<OperatorBase>(const OperatorDef&, Workspace*)>
createC10OperatorWrapper(const char* op_name, const char* overload_name) {
return [op_name, overload_name](const OperatorDef& op_def, Workspace* ws) {
auto op_handle =
c10::Dispatcher::singleton().findSchema(op_name, overload_name);
AT_ASSERTM(
op_handle.has_value(),
"Tried to register c10 operator ",
op_name,
".",
overload_name,
" with caffe2, but didn't find the c10 operator.");
return c10::guts::make_unique<C10OperatorWrapper<Context>>(
*op_handle, op_def, ws);
};
}
} // namespace detail
} // namespace caffe2
// TODO Currently we only register the CPU variant. This is going to be fixed
// once the tensor detemplatization lands.
#define REGISTER_C10_OPERATOR_FOR_CAFFE2_DISPATCH_CPU( \
OperatorName, Name) \
REGISTER_CPU_OPERATOR_CREATOR( \
Name, \
::caffe2::detail::createC10OperatorWrapper<CPUContext>( \
OperatorName, ""))
#define REGISTER_C10_OPERATOR_FOR_CAFFE2_DISPATCH_CUDA( \
OperatorName, Name) \
REGISTER_CUDA_OPERATOR_CREATOR( \
Name, \
::caffe2::detail::createC10OperatorWrapper<CUDAContext>( \
OperatorName, ""))
#define REGISTER_C10_OPERATOR_FOR_CAFFE2_DISPATCH_HIP( \
OperatorName, Name) \
REGISTER_HIP_OPERATOR_CREATOR( \
Name, \
::caffe2::detail::createC10OperatorWrapper<HIPContext>( \
OperatorName, ""))
#else
#define REGISTER_C10_OPERATOR_FOR_CAFFE2_DISPATCH_CPU( \
OperatorName, Name)
#define REGISTER_C10_OPERATOR_FOR_CAFFE2_DISPATCH_CUDA( \
OperatorName, Name)
#define REGISTER_C10_OPERATOR_FOR_CAFFE2_DISPATCH_HIP( \
OperatorName, Name)
#endif