Files
pytorch/torch/csrc/distributed/rpc/tensorpipe_cuda.cpp
Nikita Shulga 9b953bb3fb [BE] Update TensorPipe pin (#159834)
No functional changes, just:
- Update C++ standard to C++17
- Update `cmake` min version to 3.18
- Update `libuv` dependency to 1.51 (to move its cmake min version to 3.10)
- Replace boost optional implementation with `std::optional` wrapper
- Make it compilable with gcc-14.x plus by including `cstddef` in few headers
-  Avoid using deprecated enums for MacOS builds

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159834
Approved by: https://github.com/Skylion007
2025-08-05 20:45:09 +00:00

130 lines
4.5 KiB
C++

#include <torch/csrc/distributed/rpc/tensorpipe_agent.h>
#include <torch/csrc/distributed/rpc/tensorpipe_utils.h>
#if defined(USE_TENSORPIPE) && !defined(USE_ROCM)
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wdeprecated")
#include <tensorpipe/tensorpipe.h>
#include <tensorpipe/tensorpipe_cuda.h>
C10_DIAGNOSTIC_POP()
namespace torch::distributed::rpc {
namespace {
#if TENSORPIPE_HAS_CUDA_IPC_CHANNEL
std::unique_ptr<ChannelRegistration> makeCudaIpcChannel() {
auto context = tensorpipe::channel::cuda_ipc::create();
return std::make_unique<ChannelRegistration>(
ChannelRegistration{std::move(context), kCudaIpcChannelPriority});
}
// The cuda_ipc channels use cudaMemcpy to transmit CUDA tensor across processes
C10_REGISTER_CREATOR(TensorPipeChannelRegistry, cuda_ipc, makeCudaIpcChannel)
#endif
#if TENSORPIPE_HAS_CUDA_GDR_CHANNEL
std::unique_ptr<ChannelRegistration> makeCudaGdrChannel() {
auto context = tensorpipe::channel::cuda_gdr::create();
return std::make_unique<ChannelRegistration>(
ChannelRegistration{std::move(context), kCudaGdrChannelPriority});
}
// The cuda_gdr channel sends CUDA memory over InfiniBand using GPUDirect RDMA.
// It directly registers the user-provided tensor with libibverbs, an operation
// which is expensive the first time, but it then caches the registration in
// order to amortize the cost and get low latency for subsequent transfers. A
// ready-to-send/ready-to-receive handshake is still needed before the transfer
// in order to ensure readiness and to agree on the device indices and thus the
// queue pair to use. It automatically pairs each GPU to the "closest" NIC if
// there are multiple of them (closest = longest prefix match in PCI tree).
C10_REGISTER_CREATOR(TensorPipeChannelRegistry, cuda_gdr, makeCudaGdrChannel)
#endif
std::unique_ptr<ChannelRegistration> makeCudaXthChannel() {
auto context = tensorpipe::channel::cuda_xth::create();
return std::make_unique<ChannelRegistration>(
ChannelRegistration{std::move(context), kCudaXthChannelPriority});
}
// The cuda_xth channel supports same-process GPU-to-GPU comm
C10_REGISTER_CREATOR(TensorPipeChannelRegistry, cuda_xth, makeCudaXthChannel)
std::unique_ptr<ChannelRegistration> makeCudaBasicChannel() {
auto context = tensorpipe::channel::cuda_basic::create(
tensorpipe::channel::basic::create());
return std::make_unique<ChannelRegistration>(
ChannelRegistration{std::move(context), kCudaBasicChannelPriority});
}
// The cuda_basic is the fallback channel for GPU-to-GPU comm
C10_REGISTER_CREATOR(
TensorPipeChannelRegistry,
cuda_basic,
makeCudaBasicChannel)
class TensorpipeCudaConverter : public TensorpipeDeviceTypeConverter {
public:
std::optional<std::vector<char>> prepareTensorForSending(
const c10::Storage& storage,
const std::vector<c10::Stream>& streams,
tensorpipe::Message& message) const override {
auto stream =
at::cuda::CUDAStream(getStreamForDevice(streams, storage.device()));
// record tensor data ptrs on TensorPipe streams, so that the tensors
// won't be destructed before TensorPipe finishing sending them.
c10::cuda::CUDACachingAllocator::recordStream(storage.data_ptr(), stream);
tensorpipe::CudaBuffer buffer;
buffer.ptr = static_cast<char*>(storage.mutable_data());
buffer.stream = stream.stream();
tensorpipe::Message::Tensor tensor;
tensor.buffer = buffer;
tensor.length = storage.nbytes();
message.tensors.push_back(std::move(tensor));
return std::nullopt;
}
at::DataPtr allocateTensorForReceiving(
c10::DeviceIndex deviceIndex,
size_t length,
const std::vector<c10::Stream>& streams,
tensorpipe::Allocation& allocation) const override {
c10::Device device(c10::kCUDA, deviceIndex);
at::cuda::CUDAStream stream(getStreamForDevice(streams, device));
// CUDACachingAllocator will call recordStream accordingly on the current
// stream.
at::cuda::CUDAStreamGuard guard(stream);
at::DataPtr dataPtr =
c10::cuda::CUDACachingAllocator::get()->allocate(length);
tensorpipe::CudaBuffer buffer;
buffer.ptr = dataPtr.get();
buffer.stream = stream.stream();
tensorpipe::Allocation::Tensor tensor;
tensor.buffer = buffer;
allocation.tensors.push_back(tensor);
return dataPtr;
}
};
C10_REGISTER_TENSORPIPE_DEVICE_TYPE_CONVERTER(CUDA, TensorpipeCudaConverter)
} // namespace
} // namespace torch::distributed::rpc
#endif