mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-05 16:44:58 +08:00
This replaces a bunch of unnecessary lambdas with the operator package. This is semantically equivalent, but the operator package is faster, and arguably more readable. When the FURB rules are taken out of preview, I will enable it as a ruff check. Pull Request resolved: https://github.com/pytorch/pytorch/pull/116027 Approved by: https://github.com/malfet
334 lines
9.0 KiB
Python
334 lines
9.0 KiB
Python
import argparse
|
|
import operator
|
|
import time
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
import torch
|
|
import torch._C._te as te
|
|
|
|
|
|
class kernel_arena_scope:
|
|
def __enter__(self):
|
|
self.scope = te.KernelScope()
|
|
|
|
def __exit__(self, typ, val, traceback):
|
|
self.scope = None
|
|
|
|
|
|
unary_ops = [
|
|
("sin", torch.sin),
|
|
("cos", torch.cos),
|
|
("tan", torch.tan),
|
|
("asin", torch.asin),
|
|
("acos", torch.acos),
|
|
("atan", torch.atan),
|
|
("sinh", torch.sinh),
|
|
("cosh", torch.cosh),
|
|
("tanh", torch.tanh),
|
|
("sigmoid", torch.sigmoid),
|
|
("exp", torch.exp),
|
|
("expm1", torch.expm1),
|
|
("expm1", torch.expm1),
|
|
("abs", torch.abs),
|
|
("log", torch.log),
|
|
("fast_log", torch.log),
|
|
("log2", torch.log2),
|
|
("log10", torch.log10),
|
|
("log1p", torch.log1p),
|
|
("erf", torch.erf),
|
|
("erfc", torch.erfc),
|
|
("sqrt", torch.sqrt),
|
|
("rsqrt", torch.rsqrt),
|
|
("ceil", torch.ceil),
|
|
("floor", torch.floor),
|
|
("round", torch.round),
|
|
("trunc", torch.trunc),
|
|
("lgamma", torch.lgamma),
|
|
# ("frac", torch.frac), # seems unimplemented
|
|
# ("isnan", torch.isnan), # no out variant
|
|
]
|
|
|
|
|
|
def gen_unary_nnc_fun(nnc_name):
|
|
def nnc_fun(A, B):
|
|
def compute(i, j):
|
|
return getattr(A.load([i, j]), nnc_name)()
|
|
|
|
return compute
|
|
|
|
return nnc_fun
|
|
|
|
|
|
def gen_unary_torch_fun(torch_op):
|
|
def torch_fun(a, b, out):
|
|
def fun():
|
|
return torch_op(a, out=out)
|
|
|
|
return fun
|
|
|
|
return torch_fun
|
|
|
|
|
|
def gen_binary_nnc_fun(fn):
|
|
def nnc_fun(A, B):
|
|
def compute(i, j):
|
|
return fn(A.load([i, j]), B.load([i, j]))
|
|
|
|
return compute
|
|
|
|
return nnc_fun
|
|
|
|
|
|
def gen_binary_torch_fun(fn):
|
|
def pt_fun(a, b, out):
|
|
def fun():
|
|
return fn(a, b, out=out)
|
|
|
|
return fun
|
|
|
|
return pt_fun
|
|
|
|
|
|
def gen_int_comparison_tensors(N, M):
|
|
return (
|
|
torch.randint(0, 3, (N, M)),
|
|
torch.randint(0, 3, (N, M)),
|
|
torch.empty((N, M), dtype=torch.bool),
|
|
)
|
|
|
|
|
|
def gen_float_comparison_tensors(N, M):
|
|
return (torch.rand(N, M), torch.rand(N, M), torch.empty((N, M), dtype=torch.bool))
|
|
|
|
|
|
te_bool = te.Dtype.Bool
|
|
binary_ops = [
|
|
("add", operator.add, torch.add),
|
|
("mul", operator.mul, torch.mul),
|
|
("sub", operator.sub, torch.sub),
|
|
("div", operator.truediv, torch.div),
|
|
(
|
|
"eq",
|
|
(lambda a, b: te.Cast.make(te_bool, a == b)),
|
|
torch.eq,
|
|
gen_int_comparison_tensors,
|
|
),
|
|
(
|
|
"gt",
|
|
(lambda a, b: te.Cast.make(te_bool, a > b)),
|
|
torch.gt,
|
|
gen_float_comparison_tensors,
|
|
),
|
|
(
|
|
"lt",
|
|
(lambda a, b: te.Cast.make(te_bool, a < b)),
|
|
torch.lt,
|
|
gen_float_comparison_tensors,
|
|
),
|
|
(
|
|
"gte",
|
|
(lambda a, b: te.Cast.make(te_bool, a >= b)),
|
|
torch.greater_equal,
|
|
gen_float_comparison_tensors,
|
|
),
|
|
(
|
|
"lte",
|
|
(lambda a, b: te.Cast.make(te_bool, a <= b)),
|
|
torch.less_equal,
|
|
gen_float_comparison_tensors,
|
|
),
|
|
# ('neq', (lambda a, b: a != b), None)), # no one-op equivalent
|
|
# ('&', (lambda a, b: a & b), torch.bitwise_and), # requires more work to test
|
|
]
|
|
|
|
|
|
def nnc_relu(A, B):
|
|
def f(i, j):
|
|
return torch._C._te.ifThenElse(
|
|
A.load([i, j]) < torch._C._te.ExprHandle.float(0),
|
|
torch._C._te.ExprHandle.float(0),
|
|
A.load([i, j]),
|
|
)
|
|
|
|
return f
|
|
|
|
|
|
def pt_relu(a, b, c):
|
|
return torch.relu(a)
|
|
|
|
|
|
custom_ops = [
|
|
("relu", nnc_relu, pt_relu),
|
|
# ('nnc_mul_relu', nnc_mul_relu, pt_mul_relu)
|
|
# ('manual_sigmoid', nnc_manual_sigmoid, lambda a, b, c: torch.sigmoid(a, out=c))
|
|
]
|
|
|
|
|
|
def gen_custom_torch_fun(fn):
|
|
def pt_fun(a, b, out):
|
|
def fun():
|
|
return fn(a, b, out)
|
|
|
|
return fun
|
|
|
|
return pt_fun
|
|
|
|
|
|
def normalize_benchmarks(ops):
|
|
return [i + (None,) if len(i) == 3 else i for i in ops]
|
|
|
|
|
|
names = []
|
|
nnc_fns = []
|
|
pt_fns = []
|
|
shape_fns = []
|
|
|
|
for nnc_name, pt_op in unary_ops:
|
|
names.append(nnc_name)
|
|
nnc_fns.append(gen_unary_nnc_fun(nnc_name))
|
|
pt_fns.append(gen_unary_torch_fun(pt_op))
|
|
shape_fns.append(None)
|
|
|
|
for name, lmbda, pt_fn, shape_fn in normalize_benchmarks(binary_ops):
|
|
names.append(name)
|
|
nnc_fns.append(gen_binary_nnc_fun(lmbda))
|
|
pt_fns.append(gen_binary_torch_fun(pt_fn))
|
|
shape_fns.append(shape_fn)
|
|
|
|
for name, lmbda, pt_fn, shape_fn in normalize_benchmarks(custom_ops):
|
|
names.append(name)
|
|
nnc_fns.append(lmbda)
|
|
pt_fns.append(gen_custom_torch_fun(pt_fn))
|
|
shape_fns.append(shape_fn)
|
|
|
|
benchmarks = list(zip(names, nnc_fns, pt_fns, shape_fns))
|
|
|
|
|
|
def run_benchmarks(benchmarks, sizes):
|
|
df = pd.DataFrame(columns=["name", "N", "M", "nnc_time", "torch_time", "ratio"])
|
|
with torch.no_grad():
|
|
for name, nnc_fun, torch_fun, shape_fn in benchmarks:
|
|
for N, M in sizes:
|
|
iters = int(1e6 / (N + M))
|
|
with kernel_arena_scope():
|
|
if shape_fn is None:
|
|
tA = torch.rand(M, N).clamp(0.01, 0.99)
|
|
tB = torch.rand(M, N).clamp(0.01, 0.99)
|
|
tX = torch.empty(M, N)
|
|
tR = torch.empty(M, N)
|
|
else:
|
|
tA, tB, tX = shape_fn(M, N)
|
|
tR = tX.clone()
|
|
|
|
def get_nnc_type(dtype):
|
|
if dtype == torch.float:
|
|
return torch._C._te.Dtype.Float
|
|
elif dtype == torch.long:
|
|
return torch._C._te.Dtype.Long
|
|
|
|
dtype = get_nnc_type(tA.dtype)
|
|
|
|
dM = torch._C._te.ExprHandle.int(M)
|
|
dN = torch._C._te.ExprHandle.int(N)
|
|
|
|
A = torch._C._te.Placeholder("A", dtype, [dM, dN])
|
|
B = torch._C._te.Placeholder("B", dtype, [dM, dN])
|
|
|
|
dim_args = [
|
|
torch._C._te.DimArg(*args) for args in [(dM, "m"), (dN, "n")]
|
|
]
|
|
|
|
compute = nnc_fun(A, B)
|
|
X = torch._C._te.Compute("X", dim_args, compute)
|
|
loopnest = torch._C._te.LoopNest([X])
|
|
loopnest.prepare_for_codegen()
|
|
stmt = torch._C._te.simplify(loopnest.root_stmt())
|
|
cg = torch._C._te.construct_codegen(
|
|
"llvm", stmt, [torch._C._te.BufferArg(x) for x in [A, B, X]]
|
|
)
|
|
|
|
# warmup
|
|
for _ in range(10):
|
|
cg.call([tA, tB, tX])
|
|
start = time.time()
|
|
for it in range(iters):
|
|
cg.call([tA, tB, tX])
|
|
time1 = time.time() - start
|
|
|
|
fn = torch_fun(tA, tB, tR)
|
|
# warmup
|
|
for _ in range(10):
|
|
tR = fn()
|
|
start = time.time()
|
|
for it in range(iters):
|
|
tR = fn()
|
|
time2 = time.time() - start
|
|
|
|
df = df.append(
|
|
{
|
|
"name": name,
|
|
"N": N,
|
|
"M": M,
|
|
"nnc_time": time1,
|
|
"torch_time": time2,
|
|
"ratio": time2 / time1,
|
|
},
|
|
ignore_index=True,
|
|
)
|
|
print(name, N, M)
|
|
|
|
print(time2 / time1, time1, time2)
|
|
print()
|
|
|
|
def check_correctness(a, b):
|
|
if not np.allclose(a, b):
|
|
print(name)
|
|
assert np.allclose(a, b)
|
|
|
|
check_correctness(tX, tR)
|
|
return df
|
|
|
|
|
|
def dump_plot(df, sizes):
|
|
keys = []
|
|
vals = []
|
|
indexed = df[df["N"] == df["M"]]
|
|
for index, row in indexed.iterrows():
|
|
keys.append(row["name"])
|
|
vals.append(row["ratio"])
|
|
|
|
keys = keys[:: len(sizes)]
|
|
sns.set(rc={"figure.figsize": (5.0, len(keys) * 0.5)})
|
|
|
|
cmap = sns.diverging_palette(10, 120, n=9, as_cmap=True)
|
|
np_vals = np.array([vals]).reshape(-1, len(sizes))
|
|
g = sns.heatmap(np_vals, annot=True, cmap=cmap, center=1.0, yticklabels=True)
|
|
plt.yticks(rotation=0)
|
|
plt.title("PyTorch performance divided by NNC performance (single core)")
|
|
plt.xlabel("Size of NxN matrix")
|
|
plt.ylabel("Operation")
|
|
g.set_yticklabels(keys)
|
|
g.set_xticklabels(sizes)
|
|
|
|
plt.savefig("nnc.png")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Runs NNC microbenchmarks")
|
|
parser.add_argument(
|
|
"--multi-threaded",
|
|
"--multi_threaded",
|
|
action="store_true",
|
|
help="Run with more than one thread",
|
|
)
|
|
args = parser.parse_args()
|
|
if not args.multi_threaded:
|
|
torch.set_num_threads(1)
|
|
|
|
sizes = [1, 4, 16, 64, 256, 1024]
|
|
df = run_benchmarks(benchmarks, [(i, i) for i in sizes])
|
|
dump_plot(df, sizes)
|