Files
pytorch/benchmarks/tensorexpr/microbenchmarks.py
Aaron Gokaslan 6de28e92d2 [BE]: Apply FURB118 (prev): replaces unnecessary lambdas with operator. (#116027)
This replaces a bunch of unnecessary lambdas with the operator package. This is semantically equivalent, but the operator package is faster, and arguably more readable. When the FURB rules are taken out of preview, I will enable it as a ruff check.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116027
Approved by: https://github.com/malfet
2023-12-20 19:35:08 +00:00

334 lines
9.0 KiB
Python

import argparse
import operator
import time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
import torch._C._te as te
class kernel_arena_scope:
def __enter__(self):
self.scope = te.KernelScope()
def __exit__(self, typ, val, traceback):
self.scope = None
unary_ops = [
("sin", torch.sin),
("cos", torch.cos),
("tan", torch.tan),
("asin", torch.asin),
("acos", torch.acos),
("atan", torch.atan),
("sinh", torch.sinh),
("cosh", torch.cosh),
("tanh", torch.tanh),
("sigmoid", torch.sigmoid),
("exp", torch.exp),
("expm1", torch.expm1),
("expm1", torch.expm1),
("abs", torch.abs),
("log", torch.log),
("fast_log", torch.log),
("log2", torch.log2),
("log10", torch.log10),
("log1p", torch.log1p),
("erf", torch.erf),
("erfc", torch.erfc),
("sqrt", torch.sqrt),
("rsqrt", torch.rsqrt),
("ceil", torch.ceil),
("floor", torch.floor),
("round", torch.round),
("trunc", torch.trunc),
("lgamma", torch.lgamma),
# ("frac", torch.frac), # seems unimplemented
# ("isnan", torch.isnan), # no out variant
]
def gen_unary_nnc_fun(nnc_name):
def nnc_fun(A, B):
def compute(i, j):
return getattr(A.load([i, j]), nnc_name)()
return compute
return nnc_fun
def gen_unary_torch_fun(torch_op):
def torch_fun(a, b, out):
def fun():
return torch_op(a, out=out)
return fun
return torch_fun
def gen_binary_nnc_fun(fn):
def nnc_fun(A, B):
def compute(i, j):
return fn(A.load([i, j]), B.load([i, j]))
return compute
return nnc_fun
def gen_binary_torch_fun(fn):
def pt_fun(a, b, out):
def fun():
return fn(a, b, out=out)
return fun
return pt_fun
def gen_int_comparison_tensors(N, M):
return (
torch.randint(0, 3, (N, M)),
torch.randint(0, 3, (N, M)),
torch.empty((N, M), dtype=torch.bool),
)
def gen_float_comparison_tensors(N, M):
return (torch.rand(N, M), torch.rand(N, M), torch.empty((N, M), dtype=torch.bool))
te_bool = te.Dtype.Bool
binary_ops = [
("add", operator.add, torch.add),
("mul", operator.mul, torch.mul),
("sub", operator.sub, torch.sub),
("div", operator.truediv, torch.div),
(
"eq",
(lambda a, b: te.Cast.make(te_bool, a == b)),
torch.eq,
gen_int_comparison_tensors,
),
(
"gt",
(lambda a, b: te.Cast.make(te_bool, a > b)),
torch.gt,
gen_float_comparison_tensors,
),
(
"lt",
(lambda a, b: te.Cast.make(te_bool, a < b)),
torch.lt,
gen_float_comparison_tensors,
),
(
"gte",
(lambda a, b: te.Cast.make(te_bool, a >= b)),
torch.greater_equal,
gen_float_comparison_tensors,
),
(
"lte",
(lambda a, b: te.Cast.make(te_bool, a <= b)),
torch.less_equal,
gen_float_comparison_tensors,
),
# ('neq', (lambda a, b: a != b), None)), # no one-op equivalent
# ('&', (lambda a, b: a & b), torch.bitwise_and), # requires more work to test
]
def nnc_relu(A, B):
def f(i, j):
return torch._C._te.ifThenElse(
A.load([i, j]) < torch._C._te.ExprHandle.float(0),
torch._C._te.ExprHandle.float(0),
A.load([i, j]),
)
return f
def pt_relu(a, b, c):
return torch.relu(a)
custom_ops = [
("relu", nnc_relu, pt_relu),
# ('nnc_mul_relu', nnc_mul_relu, pt_mul_relu)
# ('manual_sigmoid', nnc_manual_sigmoid, lambda a, b, c: torch.sigmoid(a, out=c))
]
def gen_custom_torch_fun(fn):
def pt_fun(a, b, out):
def fun():
return fn(a, b, out)
return fun
return pt_fun
def normalize_benchmarks(ops):
return [i + (None,) if len(i) == 3 else i for i in ops]
names = []
nnc_fns = []
pt_fns = []
shape_fns = []
for nnc_name, pt_op in unary_ops:
names.append(nnc_name)
nnc_fns.append(gen_unary_nnc_fun(nnc_name))
pt_fns.append(gen_unary_torch_fun(pt_op))
shape_fns.append(None)
for name, lmbda, pt_fn, shape_fn in normalize_benchmarks(binary_ops):
names.append(name)
nnc_fns.append(gen_binary_nnc_fun(lmbda))
pt_fns.append(gen_binary_torch_fun(pt_fn))
shape_fns.append(shape_fn)
for name, lmbda, pt_fn, shape_fn in normalize_benchmarks(custom_ops):
names.append(name)
nnc_fns.append(lmbda)
pt_fns.append(gen_custom_torch_fun(pt_fn))
shape_fns.append(shape_fn)
benchmarks = list(zip(names, nnc_fns, pt_fns, shape_fns))
def run_benchmarks(benchmarks, sizes):
df = pd.DataFrame(columns=["name", "N", "M", "nnc_time", "torch_time", "ratio"])
with torch.no_grad():
for name, nnc_fun, torch_fun, shape_fn in benchmarks:
for N, M in sizes:
iters = int(1e6 / (N + M))
with kernel_arena_scope():
if shape_fn is None:
tA = torch.rand(M, N).clamp(0.01, 0.99)
tB = torch.rand(M, N).clamp(0.01, 0.99)
tX = torch.empty(M, N)
tR = torch.empty(M, N)
else:
tA, tB, tX = shape_fn(M, N)
tR = tX.clone()
def get_nnc_type(dtype):
if dtype == torch.float:
return torch._C._te.Dtype.Float
elif dtype == torch.long:
return torch._C._te.Dtype.Long
dtype = get_nnc_type(tA.dtype)
dM = torch._C._te.ExprHandle.int(M)
dN = torch._C._te.ExprHandle.int(N)
A = torch._C._te.Placeholder("A", dtype, [dM, dN])
B = torch._C._te.Placeholder("B", dtype, [dM, dN])
dim_args = [
torch._C._te.DimArg(*args) for args in [(dM, "m"), (dN, "n")]
]
compute = nnc_fun(A, B)
X = torch._C._te.Compute("X", dim_args, compute)
loopnest = torch._C._te.LoopNest([X])
loopnest.prepare_for_codegen()
stmt = torch._C._te.simplify(loopnest.root_stmt())
cg = torch._C._te.construct_codegen(
"llvm", stmt, [torch._C._te.BufferArg(x) for x in [A, B, X]]
)
# warmup
for _ in range(10):
cg.call([tA, tB, tX])
start = time.time()
for it in range(iters):
cg.call([tA, tB, tX])
time1 = time.time() - start
fn = torch_fun(tA, tB, tR)
# warmup
for _ in range(10):
tR = fn()
start = time.time()
for it in range(iters):
tR = fn()
time2 = time.time() - start
df = df.append(
{
"name": name,
"N": N,
"M": M,
"nnc_time": time1,
"torch_time": time2,
"ratio": time2 / time1,
},
ignore_index=True,
)
print(name, N, M)
print(time2 / time1, time1, time2)
print()
def check_correctness(a, b):
if not np.allclose(a, b):
print(name)
assert np.allclose(a, b)
check_correctness(tX, tR)
return df
def dump_plot(df, sizes):
keys = []
vals = []
indexed = df[df["N"] == df["M"]]
for index, row in indexed.iterrows():
keys.append(row["name"])
vals.append(row["ratio"])
keys = keys[:: len(sizes)]
sns.set(rc={"figure.figsize": (5.0, len(keys) * 0.5)})
cmap = sns.diverging_palette(10, 120, n=9, as_cmap=True)
np_vals = np.array([vals]).reshape(-1, len(sizes))
g = sns.heatmap(np_vals, annot=True, cmap=cmap, center=1.0, yticklabels=True)
plt.yticks(rotation=0)
plt.title("PyTorch performance divided by NNC performance (single core)")
plt.xlabel("Size of NxN matrix")
plt.ylabel("Operation")
g.set_yticklabels(keys)
g.set_xticklabels(sizes)
plt.savefig("nnc.png")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Runs NNC microbenchmarks")
parser.add_argument(
"--multi-threaded",
"--multi_threaded",
action="store_true",
help="Run with more than one thread",
)
args = parser.parse_args()
if not args.multi_threaded:
torch.set_num_threads(1)
sizes = [1, 4, 16, 64, 256, 1024]
df = run_benchmarks(benchmarks, [(i, i) for i in sizes])
dump_plot(df, sizes)