mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables. * list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize. * Manually went back and made mypy happy after the change. * Also fixed style lints in files covered by flake8 but not by pyfmt Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980 Approved by: https://github.com/justinchuby, https://github.com/malfet
225 lines
8.4 KiB
Python
225 lines
8.4 KiB
Python
# mypy: ignore-errors
|
|
|
|
r"""Importing this file includes common utility methods for checking quantized
|
|
tensors and modules.
|
|
"""
|
|
import numpy as np
|
|
import torch
|
|
from contextlib import contextmanager
|
|
from torch.testing._internal.common_utils import TEST_WITH_TSAN, IS_PPC, IS_MACOS, IS_WINDOWS
|
|
|
|
supported_qengines = torch.backends.quantized.supported_engines
|
|
supported_qengines.remove('none')
|
|
# Note: We currently do not run QNNPACK tests on WINDOWS and MACOS as it is flaky. Issue #29326
|
|
# QNNPACK is not supported on PPC
|
|
if 'qnnpack' in supported_qengines and any([IS_PPC, TEST_WITH_TSAN, IS_MACOS, IS_WINDOWS]):
|
|
supported_qengines.remove('qnnpack')
|
|
|
|
def _conv_output_shape(input_size, kernel_size, padding, stride, dilation,
|
|
output_padding=0):
|
|
"""Computes the output shape given convolution parameters."""
|
|
return np.floor((input_size + 2 * padding - kernel_size - (kernel_size - 1)
|
|
* (dilation - 1)) / stride) + 2 * output_padding + 1
|
|
|
|
# Quantization references
|
|
def _quantize(x, scale, zero_point, qmin=None, qmax=None, dtype=np.uint8):
|
|
"""Quantizes a numpy array."""
|
|
if qmin is None:
|
|
qmin = np.iinfo(dtype).min
|
|
if qmax is None:
|
|
qmax = np.iinfo(dtype).max
|
|
qx = np.round(x / scale + zero_point).astype(np.int64)
|
|
qx = np.clip(qx, qmin, qmax)
|
|
qx = qx.astype(dtype)
|
|
return qx
|
|
|
|
|
|
def _dequantize(qx, scale, zero_point):
|
|
"""Dequantizes a numpy array."""
|
|
x = (qx.astype(float) - zero_point) * scale
|
|
return x
|
|
|
|
|
|
def _requantize(x, multiplier, zero_point, qmin=0, qmax=255, qtype=np.uint8):
|
|
"""Requantizes a numpy array, i.e., intermediate int32 or int16 values are
|
|
converted back to given type"""
|
|
qx = (x * multiplier).round() + zero_point
|
|
qx = np.clip(qx, qmin, qmax).astype(qtype)
|
|
return qx
|
|
|
|
def _calculate_dynamic_qparams(X, dtype, reduce_range=False, qscheme=torch.per_tensor_affine):
|
|
"""Calculate the dynamic quantization parameters (scale, zero_point)
|
|
according to the min and max element of the tensor"""
|
|
assert qscheme in (torch.per_tensor_affine, torch.per_tensor_symmetric)
|
|
if qscheme == torch.per_tensor_symmetric:
|
|
assert dtype == torch.qint8
|
|
if isinstance(X, torch.Tensor):
|
|
X = X.numpy()
|
|
if dtype == torch.qint8:
|
|
if reduce_range:
|
|
qmin, qmax = -64, 63
|
|
else:
|
|
qmin, qmax = -128, 127
|
|
else: # dtype == torch.quint8
|
|
if reduce_range:
|
|
qmin, qmax = 0, 127
|
|
else:
|
|
qmin, qmax = 0, 255
|
|
min_val = X.min()
|
|
max_val = X.max()
|
|
is_symmetric = (qscheme == torch.per_tensor_symmetric)
|
|
if min_val == max_val:
|
|
scale = 1.0
|
|
zero_point = 0
|
|
else:
|
|
if is_symmetric:
|
|
max_val = max(max_val, -min_val)
|
|
min_val = -max_val
|
|
scale = (max_val - min_val) / (qmax - qmin)
|
|
scale = max(scale, np.finfo(np.float32).eps)
|
|
zero_point = 0
|
|
else:
|
|
max_val = max(max_val, 0.0)
|
|
min_val = min(min_val, 0.0)
|
|
scale = (max_val - min_val) / (qmax - qmin)
|
|
scale = max(scale, np.finfo(np.float32).eps)
|
|
zero_point = qmin - round(min_val / scale)
|
|
zero_point = max(qmin, zero_point)
|
|
zero_point = min(qmax, zero_point)
|
|
return [float(scale), int(zero_point)]
|
|
|
|
def _calculate_dynamic_per_channel_qparams(X, dtype):
|
|
"""Calculate the dynamic quantization parameters (scale, zero_point)
|
|
according to the min and max element of the tensor"""
|
|
if isinstance(X, torch.Tensor):
|
|
X = X.numpy()
|
|
qmin, qmax = torch.iinfo(dtype).min, torch.iinfo(dtype).max
|
|
n_levels = qmax - qmin
|
|
scale = np.zeros(X.shape[0], dtype=np.float64)
|
|
zero_point = np.zeros(X.shape[0], dtype=np.int64)
|
|
for i in range(zero_point.shape[0]):
|
|
min_val = X.min()
|
|
max_val = X.max()
|
|
if min_val == max_val:
|
|
scale[i] = 1.0
|
|
zero_point[i] = 0
|
|
else:
|
|
max_val = max(max_val, 0.0)
|
|
min_val = min(min_val, 0.0)
|
|
scale[i] = (max_val - min_val) / n_levels
|
|
scale[i] = max(scale[i], np.finfo(np.float32).eps)
|
|
zero_point[i] = qmin - round(min_val / scale[i])
|
|
zero_point[i] = max(qmin, zero_point[i])
|
|
zero_point[i] = min(qmax, zero_point[i])
|
|
|
|
return scale, zero_point
|
|
|
|
def _snr(x, x_hat):
|
|
"""Calculates the signal to noise ratio and returns the signal and noise
|
|
power, as well as the SNR in dB.
|
|
If the input is a list/tuple this function is called recursively on each
|
|
element. The result will have the same nested structure as the inputs.
|
|
|
|
Args:
|
|
x, x_hat: Either a tensor or a nested list/tuple of tensors.
|
|
Returns:
|
|
signal, noise, SNR(in dB): Either floats or a nested list of floats
|
|
"""
|
|
if isinstance(x, (list, tuple)):
|
|
assert len(x) == len(x_hat)
|
|
res = [_snr(x[idx], x_hat[idx]) for idx in range(len(x))]
|
|
return res
|
|
if x_hat.is_quantized:
|
|
x_hat = x_hat.dequantize()
|
|
if x.is_quantized:
|
|
x = x.dequantize()
|
|
noise = (x - x_hat).norm()
|
|
if noise == 0:
|
|
return 0.0, float('inf'), float('inf')
|
|
signal = x.norm()
|
|
snr = signal / noise
|
|
snr_db = 20 * snr.log10()
|
|
return signal, noise, snr_db
|
|
|
|
@contextmanager
|
|
def override_quantized_engine(qengine):
|
|
previous = torch.backends.quantized.engine
|
|
torch.backends.quantized.engine = qengine
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.backends.quantized.engine = previous
|
|
|
|
@contextmanager
|
|
def override_cpu_allocator_for_qnnpack(qengine_is_qnnpack):
|
|
try:
|
|
if qengine_is_qnnpack:
|
|
torch._C._set_default_mobile_cpu_allocator()
|
|
yield
|
|
finally:
|
|
if qengine_is_qnnpack:
|
|
torch._C._unset_default_mobile_cpu_allocator()
|
|
|
|
# TODO: Update all quantization tests to use this decorator.
|
|
# Currently for some of the tests it seems to have inconsistent params
|
|
# for fbgemm vs qnnpack.
|
|
def override_qengines(qfunction):
|
|
def test_fn(*args, **kwargs):
|
|
for qengine in supported_qengines:
|
|
with override_quantized_engine(qengine):
|
|
# qfunction should not return anything.
|
|
qfunction(*args, **kwargs)
|
|
return test_fn
|
|
|
|
def qengine_is_fbgemm():
|
|
return torch.backends.quantized.engine == 'fbgemm'
|
|
def qengine_is_qnnpack():
|
|
return torch.backends.quantized.engine == 'qnnpack'
|
|
def qengine_is_onednn():
|
|
return torch.backends.quantized.engine == 'onednn'
|
|
def qengine_is_x86():
|
|
return torch.backends.quantized.engine == 'x86'
|
|
|
|
# Helper function used to simulate per-channel fake-quant against any axis
|
|
def _permute_to_axis_zero(X, axis):
|
|
new_axis_list = list(range(X.dim()))
|
|
new_axis_list[axis] = 0
|
|
new_axis_list[0] = axis
|
|
y = X.permute(tuple(new_axis_list))
|
|
return y, new_axis_list
|
|
|
|
# Reference method for fake quantize
|
|
# Note: because scale/zero_point are left as float in the actual kernel, this mimics how fake_quant works for float16/64
|
|
def _fake_quantize_per_channel_affine_reference(X, per_channel_scale, per_channel_zero_point, axis, quant_min, quant_max):
|
|
dtype = X.dtype
|
|
X, permute_axis_list = _permute_to_axis_zero(X.to(torch.float32), axis)
|
|
res = torch.zeros_like(X)
|
|
|
|
for i in range(X.size()[0]):
|
|
res[i] = (torch.clamp(torch.round(X[i] * (1.0 / per_channel_scale[i]) +
|
|
per_channel_zero_point[i]), quant_min, quant_max) - per_channel_zero_point[i]) * per_channel_scale[i]
|
|
|
|
out = res.permute(tuple(permute_axis_list))
|
|
return out.to(dtype)
|
|
|
|
# Reference method for the gradient of the fake quantize operator
|
|
# Note: because scale/zero_point are left as float in the actual kernel, this mimics how fake_quant works for float16/64
|
|
def _fake_quantize_per_channel_affine_grad_reference(dY, X, per_channel_scale, per_channel_zero_point, axis, quant_min, quant_max):
|
|
dtype = X.dtype
|
|
X, permute_axis_list = _permute_to_axis_zero(X.to(torch.float32), axis)
|
|
Xq = torch.zeros_like(X)
|
|
for i in range(X.size()[0]):
|
|
Xq[i] = torch.round(X[i] * (1.0 / per_channel_scale[i]) + per_channel_zero_point[i])
|
|
Xq = Xq.permute(tuple(permute_axis_list))
|
|
mask = (Xq >= quant_min) * (Xq <= quant_max)
|
|
res = torch.zeros_like(dY)
|
|
res[mask] = dY[mask]
|
|
return res.to(dtype)
|
|
|
|
def to_tensor(X, device):
|
|
if not isinstance(X, torch.Tensor):
|
|
X = torch.tensor(X)
|
|
else:
|
|
X = X.detach().clone()
|
|
return X.to(device=torch.device(device), dtype=torch.float32)
|