mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This PR adds Auto-Trace implementation for Trace ID. By default, the python side will generate a uuid in the same format as the one set in the backend by kineto. Upon running an auto-trace, the python generated trace id will overwrite the one set in kineto using the Config variable. Since we don't expect users to generate on-demand traces after an auto-trace we can simply keep overwriting the backend trace id whenever autotrace is ran. If we one day want to eventually do something like this, we simply have to add a call in kineto on the backend to generate a new ID upon start of profiling. We also implement a custom callback in the frontend such that users can generate their own trace ids if they wish to. This works similarly as the default, only difference being that they have to manually set this callback after a profiler is generated. We use a specific call to set this rather then putting it in the frontend initializer in case users want to change the trace_id for different repeats. Test Plan: Tested both default and custom callbacks using the verbose prints added. Trace ids on the frontend and the prints on the backend for the manifold upload matched. Differential Revision: D65178308 Pull Request resolved: https://github.com/pytorch/pytorch/pull/139310 Approved by: https://github.com/shengfukevin
1190 lines
47 KiB
Python
1190 lines
47 KiB
Python
# mypy: allow-untyped-defs
|
|
import uuid
|
|
from collections import defaultdict
|
|
from dataclasses import dataclass
|
|
from time import perf_counter_ns
|
|
from typing import Any, Dict, Iterable, List, Optional
|
|
from warnings import warn
|
|
|
|
import torch
|
|
import torch.cuda
|
|
from torch._C import _get_privateuse1_backend_name
|
|
from torch._C._profiler import _ExperimentalConfig
|
|
from torch.autograd import (
|
|
_disable_profiler,
|
|
_enable_profiler,
|
|
_kineto_step,
|
|
_prepare_profiler,
|
|
_ProfilerResult,
|
|
_supported_activities,
|
|
_toggle_collection_dynamic,
|
|
DeviceType,
|
|
kineto_available,
|
|
ProfilerActivity,
|
|
ProfilerConfig,
|
|
ProfilerState,
|
|
)
|
|
from torch.autograd.profiler_util import (
|
|
_filter_name,
|
|
_filter_stack_entry,
|
|
_rewrite_name,
|
|
EventList,
|
|
FunctionEvent,
|
|
MEMORY_EVENT_NAME,
|
|
MemRecordsAcc,
|
|
OUT_OF_MEMORY_EVENT_NAME,
|
|
)
|
|
from torch.futures import Future
|
|
|
|
|
|
__all__ = [
|
|
"profile",
|
|
"record_function",
|
|
"emit_itt",
|
|
"emit_nvtx",
|
|
"load_nvprof",
|
|
"EnforceUnique",
|
|
"parse_nvprof_trace",
|
|
"KinetoStepTracker",
|
|
"EventList",
|
|
"FunctionEvent",
|
|
"MemRecordsAcc",
|
|
]
|
|
|
|
try:
|
|
# Available in Python >= 3.2
|
|
from contextlib import ContextDecorator as _ContextDecorator
|
|
except ImportError:
|
|
import functools
|
|
|
|
class _ContextDecorator: # type: ignore[no-redef]
|
|
def __enter__(self):
|
|
raise NotImplementedError
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
raise NotImplementedError
|
|
|
|
def __call__(self, func):
|
|
@functools.wraps(func)
|
|
def wrapped(*args, **kwargs):
|
|
with self:
|
|
return func(*args, **kwargs)
|
|
|
|
return wrapped
|
|
|
|
|
|
# global python state - whether profiler is currently enabled
|
|
# useful for fast python checks to reduce latency
|
|
_is_profiler_enabled: bool = False
|
|
|
|
|
|
def _set_is_profiler_enabled(enable: bool):
|
|
global _is_profiler_enabled
|
|
_is_profiler_enabled = enable
|
|
|
|
|
|
def _run_on_profiler_start():
|
|
_set_is_profiler_enabled(True)
|
|
|
|
|
|
def _run_on_profiler_stop():
|
|
_set_is_profiler_enabled(False)
|
|
|
|
|
|
@dataclass
|
|
class _ProfilerStats:
|
|
"Profiler timing and stats used by developers to catch issues/regressions"
|
|
profiling_window_duration_sec: float = 0
|
|
number_of_events: int = 0
|
|
profiler_prepare_call_duration_us: int = 0
|
|
profiler_enable_call_duration_us: int = 0
|
|
profiler_disable_call_duration_us: int = 0
|
|
parse_kineto_call_duration_us: int = 0
|
|
function_events_build_tree_call_duration_us: int = 0
|
|
|
|
|
|
class profile:
|
|
"""Context manager that manages autograd profiler state and holds a summary of results.
|
|
|
|
Under the hood it just records events of functions being executed in C++ and
|
|
exposes those events to Python. You can wrap any code into it and it will
|
|
only report runtime of PyTorch functions.
|
|
Note: profiler is thread local and is automatically propagated into the async tasks
|
|
|
|
Args:
|
|
enabled (bool, optional): Setting this to False makes this context manager a no-op.
|
|
|
|
use_cuda (bool, optional): Enables timing of CUDA events as well
|
|
using the cudaEvent API. (will be deprecated)
|
|
|
|
use_device (str, optional): Enables timing of device events.
|
|
Adds approximately 4us of overhead to each tensor operation when use cuda.
|
|
The valid devices options are 'cuda', 'xpu', 'mtia' and 'privateuseone'.
|
|
|
|
record_shapes (bool, optional): If shapes recording is set, information
|
|
about input dimensions will be collected. This allows one to see which
|
|
dimensions have been used under the hood and further group by them
|
|
using prof.key_averages(group_by_input_shape=True). Please note that
|
|
shape recording might skew your profiling data. It is recommended to
|
|
use separate runs with and without shape recording to validate the timing.
|
|
Most likely the skew will be negligible for bottom most events (in a case
|
|
of nested function calls). But for higher level functions the total
|
|
self cpu time might be artificially increased because of the shape
|
|
collection.
|
|
|
|
with_flops (bool, optional): If with_flops is set, the profiler will estimate
|
|
the FLOPs (floating point operations) value using the operator's input shape.
|
|
This allows one to estimate the hardware performance. Currently,
|
|
this option only works for the matrix multiplication and 2D convolution operators.
|
|
|
|
profile_memory (bool, optional): track tensor memory allocation/deallocation.
|
|
|
|
with_stack (bool, optional): record source information (file and line number) for the ops.
|
|
|
|
with_modules (bool): record module hierarchy (including function names)
|
|
corresponding to the callstack of the op. e.g. If module A's forward call's
|
|
module B's forward which contains an aten::add op,
|
|
then aten::add's module hierarchy is A.B
|
|
Note that this support exist, at the moment, only for TorchScript models
|
|
and not eager mode models.
|
|
|
|
use_kineto (bool, optional): experimental, enable profiling with Kineto profiler.
|
|
|
|
use_cpu (bool, optional): profile CPU events; setting to ``False`` requires
|
|
``use_kineto=True`` and can be used to lower the overhead for GPU-only profiling.
|
|
|
|
experimental_config (_ExperimentalConfig) : A set of experimental options
|
|
used by profiler libraries like Kineto. Note, backward compatibility is not guaranteed.
|
|
|
|
acc_events (bool): Enable the accumulation of FunctionEvents across multiple profiling cycles
|
|
|
|
|
|
.. warning:
|
|
Enabling memory profiling or source attribution incurs additional profiler
|
|
overhead
|
|
|
|
.. warning:
|
|
This context managers should not be called recursively, i.e. no nested
|
|
instances are allowed
|
|
|
|
.. warning:
|
|
Due to some CUDA multiprocessing limitations (multiprocessing-cuda-note_),
|
|
one cannot use the profiler with ``use_device = 'cuda'`` to benchmark
|
|
DataLoaders with ``num_workers > 0``. If you wish to benchmark data loading,
|
|
please use ``use_device = None`` or ``num_workers = 0``.
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD_PROFILER)
|
|
>>> x = torch.randn((1, 1), requires_grad=True)
|
|
>>> with torch.autograd.profiler.profile() as prof:
|
|
>>> for _ in range(100): # any normal python code, really!
|
|
>>> y = x ** 2
|
|
>>> y.backward()
|
|
>>> # NOTE: some columns were removed for brevity
|
|
>>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
|
|
----------------------------------- --------------- --------------- ---------------
|
|
Name Self CPU total CPU time avg Number of Calls
|
|
----------------------------------- --------------- --------------- ---------------
|
|
mul 32.048ms 32.048ms 200
|
|
pow 27.041ms 27.041ms 200
|
|
PowBackward0 9.727ms 55.483ms 100
|
|
torch::autograd::AccumulateGrad 9.148ms 9.148ms 100
|
|
torch::autograd::GraphRoot 691.816us 691.816us 100
|
|
----------------------------------- --------------- --------------- ---------------
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
enabled=True,
|
|
*,
|
|
use_cuda=False, # Deprecated
|
|
use_device=None,
|
|
record_shapes=False,
|
|
with_flops=False,
|
|
profile_memory=False,
|
|
with_stack=False,
|
|
with_modules=False,
|
|
use_kineto=False,
|
|
use_cpu=True,
|
|
experimental_config=None,
|
|
acc_events=False,
|
|
custom_trace_id_callback=None,
|
|
):
|
|
self.enabled: bool = enabled
|
|
if not self.enabled:
|
|
return
|
|
self.use_cuda = use_cuda
|
|
if self.use_cuda:
|
|
warn(
|
|
"The attribute `use_cuda` will be deprecated soon, "
|
|
"please use ``use_device = 'cuda'`` instead.",
|
|
FutureWarning,
|
|
stacklevel=2,
|
|
)
|
|
self.use_device: Optional[str] = "cuda"
|
|
else:
|
|
self.use_device = use_device
|
|
# TODO Consider changing _function_events into data structure with size cap
|
|
self._function_events: Optional[EventList] = None
|
|
self._old_function_events: Optional[EventList] = None
|
|
# Function event processing is done lazily
|
|
self._needs_processing = False
|
|
self.entered = False
|
|
self.record_shapes = record_shapes
|
|
self.with_flops = with_flops
|
|
self.record_shapes |= self.with_flops
|
|
self.profile_memory = profile_memory
|
|
self.with_stack = with_stack
|
|
self.with_modules = with_modules
|
|
self.use_cpu = use_cpu
|
|
self.acc_events = acc_events
|
|
if experimental_config is None:
|
|
experimental_config = _ExperimentalConfig()
|
|
self.experimental_config = experimental_config
|
|
self.kineto_results: Optional[_ProfilerResult] = None
|
|
self.profiling_start_time_ns = 0
|
|
self.profiling_end_time_ns = 0
|
|
self._stats = _ProfilerStats()
|
|
self.custom_trace_id_callback = custom_trace_id_callback
|
|
self.trace_id = ""
|
|
if not self.use_cpu:
|
|
assert (
|
|
use_kineto
|
|
), "Device-only events supported only with Kineto (use_kineto=True)"
|
|
|
|
if self.use_device is not None:
|
|
VALID_DEVICE_OPTIONS = ["cuda", "xpu", "mtia"]
|
|
if _get_privateuse1_backend_name() != "privateuseone":
|
|
VALID_DEVICE_OPTIONS.append(_get_privateuse1_backend_name())
|
|
if self.use_device not in VALID_DEVICE_OPTIONS:
|
|
warn(f"The {self.use_device} is not a valid device option.")
|
|
self.use_device = None
|
|
|
|
if self.use_device == "cuda" and not torch.cuda.is_available():
|
|
warn("CUDA is not available, disabling CUDA profiling")
|
|
self.use_cuda = False
|
|
self.use_device = None
|
|
|
|
if self.use_device == "xpu" and not torch.xpu.is_available():
|
|
warn("XPU is not available, disabling XPU profiling")
|
|
self.use_device = None
|
|
|
|
self.kineto_activities = set()
|
|
if self.use_cpu:
|
|
self.kineto_activities.add(ProfilerActivity.CPU)
|
|
|
|
self.profiler_kind = ProfilerState.KINETO
|
|
if self.use_device == "cuda":
|
|
if not use_kineto or ProfilerActivity.CUDA not in _supported_activities():
|
|
assert self.use_cpu, "Legacy CUDA profiling requires use_cpu=True"
|
|
self.profiler_kind = ProfilerState.KINETO_GPU_FALLBACK
|
|
else:
|
|
self.kineto_activities.add(ProfilerActivity.CUDA)
|
|
elif self.use_device == "xpu":
|
|
assert (
|
|
use_kineto and ProfilerActivity.XPU in _supported_activities()
|
|
), "Legacy XPU profiling is not supported. Requires use_kineto=True on XPU devices."
|
|
self.kineto_activities.add(ProfilerActivity.XPU)
|
|
elif self.use_device == "mtia":
|
|
assert (
|
|
use_kineto and ProfilerActivity.MTIA in _supported_activities()
|
|
), "Legacy MTIA profiling is not supported. Requires use_kineto=True on MTIA devices."
|
|
self.kineto_activities.add(ProfilerActivity.MTIA)
|
|
elif self.use_device is not None and self.use_device != "privateuseone":
|
|
if (
|
|
not use_kineto
|
|
or ProfilerActivity.PrivateUse1 not in _supported_activities()
|
|
):
|
|
assert (
|
|
self.use_cpu
|
|
), "Legacy custombackend profiling requires use_cpu=True"
|
|
self.profiler_kind = ProfilerState.KINETO_PRIVATEUSE1_FALLBACK
|
|
else:
|
|
self.kineto_activities.add(ProfilerActivity.PrivateUse1)
|
|
|
|
assert (
|
|
len(self.kineto_activities) > 0
|
|
), "No activities specified for the profiler"
|
|
|
|
def default_trace_id(self):
|
|
# Generate a UUID
|
|
uuid_raw = uuid.uuid4()
|
|
|
|
return f"{uuid_raw.int:032X}"
|
|
|
|
def create_trace_id(self):
|
|
if self.custom_trace_id_callback:
|
|
return self.custom_trace_id_callback()
|
|
return self.default_trace_id()
|
|
|
|
def config(self, create_trace_id=False):
|
|
# only need to generate new trace id upon prepare trace not start trace
|
|
if create_trace_id:
|
|
trace_id = self.create_trace_id()
|
|
self.trace_id = trace_id
|
|
return ProfilerConfig(
|
|
self.profiler_kind,
|
|
self.record_shapes,
|
|
self.profile_memory,
|
|
self.with_stack,
|
|
self.with_flops,
|
|
self.with_modules,
|
|
self.experimental_config,
|
|
self.trace_id,
|
|
)
|
|
|
|
def __enter__(self):
|
|
if not self.enabled:
|
|
return
|
|
if self.entered:
|
|
raise RuntimeError("Profiler context manager is not reentrant")
|
|
self._prepare_trace()
|
|
self._start_trace()
|
|
return self
|
|
|
|
def _prepare_trace(self):
|
|
self.entered = True
|
|
t0 = perf_counter_ns()
|
|
_prepare_profiler(self.config(create_trace_id=True), self.kineto_activities)
|
|
t1 = perf_counter_ns()
|
|
self._stats.profiler_prepare_call_duration_us = int((t1 - t0) / 1000)
|
|
|
|
def _start_trace(self):
|
|
self.entered = True
|
|
_run_on_profiler_start()
|
|
t0 = perf_counter_ns()
|
|
_enable_profiler(self.config(create_trace_id=False), self.kineto_activities)
|
|
t1 = perf_counter_ns()
|
|
self._stats.profiler_enable_call_duration_us = int((t1 - t0) / 1000)
|
|
self.profiling_start_time_ns = t1
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
if not self.enabled:
|
|
return
|
|
if self.use_device and hasattr(torch, self.use_device):
|
|
device_module = getattr(torch, self.use_device)
|
|
if hasattr(device_module, "synchronize"):
|
|
device_module.synchronize()
|
|
|
|
if self._function_events and self.acc_events:
|
|
self._old_function_events = self._function_events
|
|
self._function_events = None
|
|
self._needs_processing = True
|
|
|
|
t0 = perf_counter_ns()
|
|
|
|
self.kineto_results = _disable_profiler()
|
|
t1 = perf_counter_ns()
|
|
self._stats.profiler_disable_call_duration_us = int((t1 - t0) / 1000)
|
|
self.profiling_end_time_ns = t0
|
|
|
|
_run_on_profiler_stop()
|
|
|
|
self._stats.profiling_window_duration_sec = (
|
|
(self.profiling_end_time_ns - self.profiling_start_time_ns) * 1.0 / 1e9
|
|
)
|
|
|
|
# If we plan to accumulate events we should post process the function events
|
|
# right away to retain the state across mulitple start/stop calls
|
|
if self.acc_events:
|
|
self._ensure_function_events()
|
|
return False
|
|
|
|
def __repr__(self):
|
|
if self._needs_processing:
|
|
self._ensure_function_events()
|
|
if self._function_events is None:
|
|
return "<unfinished torch.autograd.profile>"
|
|
return repr(self._function_events)
|
|
|
|
def __str__(self):
|
|
if self._needs_processing:
|
|
self._ensure_function_events()
|
|
if self._function_events is None:
|
|
return "<unfinished torch.autograd.profile>"
|
|
return str(self._function_events)
|
|
|
|
def _ensure_function_events(self):
|
|
"""Process function events lazily if required"""
|
|
if self._function_events is not None:
|
|
return
|
|
self._needs_processing = False
|
|
|
|
t0 = perf_counter_ns()
|
|
parsed_results = []
|
|
if self.kineto_results:
|
|
parsed_results = self._parse_kineto_results(self.kineto_results)
|
|
t1 = perf_counter_ns()
|
|
self._stats.parse_kineto_call_duration_us = int((t1 - t0) / 1000)
|
|
|
|
self._function_events = EventList(
|
|
parsed_results,
|
|
use_device=self.use_device,
|
|
profile_memory=self.profile_memory,
|
|
with_flops=self.with_flops,
|
|
)
|
|
t0 = perf_counter_ns()
|
|
self._function_events._build_tree()
|
|
t1 = perf_counter_ns()
|
|
self._stats.function_events_build_tree_call_duration_us = int((t1 - t0) / 1000)
|
|
self._stats.number_of_events = len(self._function_events)
|
|
|
|
if self._old_function_events and self.acc_events:
|
|
for evt in self._old_function_events:
|
|
self._function_events.append(evt)
|
|
self._old_function_events = None
|
|
|
|
if self._function_events is None:
|
|
raise RuntimeError("Profiler didn't finish running")
|
|
|
|
@property
|
|
def function_events(self):
|
|
if self._function_events is None or self._needs_processing:
|
|
self._ensure_function_events()
|
|
return self._function_events
|
|
|
|
def table(
|
|
self,
|
|
sort_by=None,
|
|
row_limit=100,
|
|
max_src_column_width=75,
|
|
max_name_column_width=55,
|
|
max_shapes_column_width=80,
|
|
header=None,
|
|
top_level_events_only=False,
|
|
):
|
|
self._ensure_function_events()
|
|
assert self._function_events is not None
|
|
return self._function_events.table(
|
|
sort_by=sort_by,
|
|
row_limit=row_limit,
|
|
max_src_column_width=max_src_column_width,
|
|
max_name_column_width=max_name_column_width,
|
|
max_shapes_column_width=max_shapes_column_width,
|
|
header=header,
|
|
top_level_events_only=top_level_events_only,
|
|
)
|
|
|
|
table.__doc__ = EventList.table.__doc__
|
|
|
|
def export_chrome_trace(self, path):
|
|
"""
|
|
Exports the collected trace in Chrome JSON format. If kineto is enabled, only
|
|
last cycle in schedule is exported.
|
|
"""
|
|
if kineto_available():
|
|
self.kineto_results.save(path) # type: ignore[union-attr]
|
|
else:
|
|
self._ensure_function_events()
|
|
return self._function_events.export_chrome_trace(path) # type: ignore[union-attr]
|
|
|
|
export_chrome_trace.__doc__ = EventList.export_chrome_trace.__doc__
|
|
|
|
def export_stacks(self, path: str, metric: str = "self_cpu_time_total"):
|
|
self._ensure_function_events()
|
|
assert self._function_events is not None, "Expected profiling results"
|
|
assert self.with_stack, "export_stacks() requires with_stack=True"
|
|
return self._function_events.export_stacks(path, metric)
|
|
|
|
def toggle_collection_dynamic(
|
|
self, enabled: bool, activities: Iterable[ProfilerActivity]
|
|
):
|
|
"""
|
|
Toggles the collection of activities for the current profiler instance.
|
|
"""
|
|
return _toggle_collection_dynamic(enabled, set(activities))
|
|
|
|
def key_averages(self, group_by_input_shape=False, group_by_stack_n=0):
|
|
self._ensure_function_events()
|
|
assert self._function_events is not None, "Expected profiling results"
|
|
return self._function_events.key_averages(
|
|
group_by_input_shape, group_by_stack_n
|
|
)
|
|
|
|
key_averages.__doc__ = EventList.key_averages.__doc__
|
|
|
|
def total_average(self):
|
|
self._ensure_function_events()
|
|
assert self._function_events is not None, "Expected profiling results"
|
|
return self._function_events.total_average()
|
|
|
|
total_average.__doc__ = EventList.total_average.__doc__
|
|
|
|
@property
|
|
def self_cpu_time_total(self):
|
|
"""Returns total time spent on CPU.
|
|
|
|
The total time is a sum of all self times across all the events.
|
|
"""
|
|
self._ensure_function_events()
|
|
assert self._function_events is not None
|
|
return self._function_events.self_cpu_time_total
|
|
|
|
def _parse_kineto_results(self, result: _ProfilerResult):
|
|
# result.events() has most of the events - PyTorch op-level and device-level events
|
|
|
|
trace_start_ns = result.trace_start_ns()
|
|
mem_records = [
|
|
[evt, False] for evt in result.events() if evt.name() == MEMORY_EVENT_NAME
|
|
]
|
|
oom_records = [
|
|
evt for evt in result.events() if evt.name() == OUT_OF_MEMORY_EVENT_NAME
|
|
]
|
|
mem_records_acc = MemRecordsAcc(mem_records)
|
|
|
|
def _cpu_memory_usage(mem_record):
|
|
return (
|
|
mem_record.nbytes()
|
|
if mem_record.device_type()
|
|
in [DeviceType.CPU, DeviceType.MKLDNN, DeviceType.IDEEP]
|
|
else 0
|
|
)
|
|
|
|
def _device_memory_usage(mem_record):
|
|
return (
|
|
mem_record.nbytes()
|
|
if mem_record.device_type()
|
|
in [DeviceType.CUDA, DeviceType.PrivateUse1, DeviceType.HIP]
|
|
else 0
|
|
)
|
|
|
|
# Create and return FunctionEvent list, which contains all function events
|
|
# Here 2 function events are created:
|
|
# all_function_events contains all events associated with each kineto event from result
|
|
all_function_events = []
|
|
# frontend_function_events contains the events in aten or torch frontend level,
|
|
# whose correlation id is 0
|
|
frontend_function_events = []
|
|
device_corr_map: Dict[int, List[FunctionEvent]] = {}
|
|
max_evt_id = 0
|
|
for kineto_event in result.events():
|
|
if _filter_name(kineto_event.name()):
|
|
continue
|
|
rel_start_ns = kineto_event.start_ns() - trace_start_ns
|
|
rel_end_ns = kineto_event.end_ns() - trace_start_ns
|
|
abs_end_ns = kineto_event.end_ns()
|
|
|
|
cpu_memory_usage = 0
|
|
device_memory_usage = 0
|
|
if kineto_event.device_type() == DeviceType.CPU:
|
|
# find the corresponding memory allocation events
|
|
for mem_record in mem_records_acc.in_interval(
|
|
kineto_event.start_ns() / 1000, abs_end_ns / 1000
|
|
):
|
|
cpu_memory_usage += _cpu_memory_usage(mem_record[0])
|
|
device_memory_usage += _device_memory_usage(mem_record[0])
|
|
mem_record[1] = True
|
|
|
|
is_async = kineto_event.is_async() or (
|
|
kineto_event.start_thread_id() != kineto_event.end_thread_id()
|
|
)
|
|
|
|
fe = FunctionEvent(
|
|
id=kineto_event.correlation_id(),
|
|
name=_rewrite_name(name=kineto_event.name(), with_wildcard=True),
|
|
trace_name=_rewrite_name(name=kineto_event.name(), with_wildcard=False),
|
|
thread=kineto_event.start_thread_id(),
|
|
start_us=rel_start_ns / 1000,
|
|
end_us=rel_end_ns / 1000,
|
|
fwd_thread=kineto_event.fwd_thread_id(),
|
|
input_shapes=kineto_event.shapes(),
|
|
concrete_inputs=kineto_event.concrete_inputs(),
|
|
kwinputs=kineto_event.kwinputs(),
|
|
stack=[
|
|
entry
|
|
for entry in kineto_event.stack()
|
|
if _filter_stack_entry(entry)
|
|
],
|
|
scope=kineto_event.scope(),
|
|
use_device=self.use_device,
|
|
cpu_memory_usage=cpu_memory_usage,
|
|
device_memory_usage=device_memory_usage,
|
|
is_async=is_async,
|
|
sequence_nr=kineto_event.sequence_nr(),
|
|
device_type=kineto_event.device_type(),
|
|
device_index=kineto_event.device_index(),
|
|
device_resource_id=kineto_event.device_resource_id(),
|
|
flops=kineto_event.flops(),
|
|
is_user_annotation=kineto_event.is_user_annotation(),
|
|
)
|
|
max_evt_id = max(max_evt_id, fe.id)
|
|
if fe.device_type == DeviceType.CPU and not fe.is_async:
|
|
if self.use_device == "privateuseone":
|
|
privateuse1_time = kineto_event.privateuse1_elapsed_us()
|
|
if privateuse1_time > 0:
|
|
fe.append_kernel(fe.name, fe.device_index, privateuse1_time)
|
|
fe.is_legacy = True
|
|
elif self.use_device == "cuda":
|
|
# Check if we have CUDA time as a fallback
|
|
cuda_time = kineto_event.cuda_elapsed_us()
|
|
if cuda_time > 0:
|
|
fe.append_kernel(fe.name, fe.device_index, cuda_time)
|
|
fe.is_legacy = True
|
|
all_function_events.append(fe)
|
|
corr_id = kineto_event.linked_correlation_id()
|
|
if corr_id > 0:
|
|
if corr_id not in device_corr_map:
|
|
device_corr_map[corr_id] = []
|
|
device_corr_map[corr_id].append(fe)
|
|
elif corr_id == 0:
|
|
frontend_function_events.append(fe)
|
|
else:
|
|
raise RuntimeError(
|
|
f"Got negative correlation id {corr_id} in profiler post processing"
|
|
)
|
|
|
|
# associate device kernels and device runtime (CPU) with CPU events
|
|
for fe in frontend_function_events:
|
|
if (
|
|
fe.device_type == DeviceType.CPU
|
|
and not fe.is_async
|
|
and fe.id in device_corr_map
|
|
):
|
|
for f_evt in device_corr_map[fe.id]:
|
|
if (
|
|
f_evt.device_type == DeviceType.CUDA
|
|
or f_evt.device_type == DeviceType.PrivateUse1
|
|
):
|
|
fe.append_kernel(
|
|
f_evt.name,
|
|
f_evt.device_index,
|
|
f_evt.time_range.end - f_evt.time_range.start,
|
|
)
|
|
elif f_evt.device_type == DeviceType.CPU:
|
|
# make sure that 'thread' of a CPU Kineto (e.g. Device Runtime) event is associated
|
|
# with the 'thread' of the corresponding linked PyTorch event to properly track
|
|
# parents and children
|
|
f_evt.thread = fe.thread
|
|
|
|
def createFunctionEventForMemoryEvents(evt):
|
|
rel_start_ns = evt.start_ns() - trace_start_ns
|
|
fe = FunctionEvent(
|
|
id=max_evt_id,
|
|
name=evt.name(),
|
|
trace_name=None, # not outputting in the trace
|
|
thread=evt.start_thread_id(),
|
|
start_us=rel_start_ns / 1000,
|
|
end_us=rel_start_ns / 1000, # no duration
|
|
fwd_thread=evt.start_thread_id(),
|
|
input_shapes=[],
|
|
stack=[],
|
|
scope=0, # RecordScope::FUNCTION
|
|
use_device=self.use_device,
|
|
cpu_memory_usage=_cpu_memory_usage(evt),
|
|
device_memory_usage=_device_memory_usage(evt),
|
|
is_async=False,
|
|
sequence_nr=-1,
|
|
device_type=DeviceType.CPU,
|
|
device_index=0,
|
|
)
|
|
return fe
|
|
|
|
# output top-level memory events
|
|
for mem_record in mem_records:
|
|
if not mem_record[1]:
|
|
max_evt_id += 1
|
|
fe = createFunctionEventForMemoryEvents(mem_record[0])
|
|
all_function_events.append(fe)
|
|
|
|
for oom_record in oom_records:
|
|
max_evt_id += 1
|
|
fe = createFunctionEventForMemoryEvents(oom_record)
|
|
all_function_events.append(fe)
|
|
|
|
all_function_events.sort(
|
|
key=lambda evt: [evt.time_range.start, -evt.time_range.end]
|
|
)
|
|
return all_function_events
|
|
|
|
|
|
class record_function(_ContextDecorator):
|
|
"""Context manager/function decorator that adds a label to a code block/function when running autograd profiler.
|
|
Label will only appear if CPU activity tracing is enabled.
|
|
|
|
It is useful when tracing the code profile.
|
|
|
|
Args:
|
|
name (str): Label assigned to the block of code.
|
|
node_id (int): ID of node, for distributed profiling. Unset in
|
|
non-distributed cases.
|
|
|
|
Example:
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD_PROFILER)
|
|
>>> x = torch.randn((1, 1), requires_grad=True)
|
|
>>> with torch.autograd.profiler.profile() as prof:
|
|
... y = x ** 2
|
|
... with torch.autograd.profiler.record_function("label-z"): # label the block
|
|
... z = y ** 3
|
|
... y.backward()
|
|
...
|
|
>>> # xdoctest: +IGNORE_WANT
|
|
>>> # NOTE: some columns were removed for brevity
|
|
>>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
|
|
----------------------------------- --------------- --------------- ---------------
|
|
Name Self CPU total % CPU time avg Number of Calls
|
|
----------------------------------- --------------- --------------- ---------------
|
|
pow 60.77% 47.470us 3
|
|
mul 21.73% 25.465us 2
|
|
PowBackward0 12.03% 121.891us 1
|
|
torch::autograd::AccumulateGrad 2.70% 6.324us 1
|
|
label-z 2.13% 12.421us 1
|
|
torch::autograd::GraphRoot 0.64% 1.503us 1
|
|
----------------------------------- --------------- --------------- ---------------
|
|
Self CPU time total: 234.344us
|
|
CUDA time total: 0.000us
|
|
|
|
"""
|
|
|
|
def __init__(self, name: str, args: Optional[str] = None):
|
|
self.name: str = name
|
|
self.args: Optional[str] = args
|
|
# Whether or not we should run record function's end callbacks when exiting.
|
|
self.run_callbacks_on_exit: bool = True
|
|
# TODO: TorchScript ignores standard type annotation here
|
|
# self.record: Optional["torch.classes.profiler._RecordFunction"] = None
|
|
self.record = torch.jit.annotate(
|
|
Optional["torch.classes.profiler._RecordFunction"], None
|
|
)
|
|
|
|
def __enter__(self):
|
|
self.record = torch.ops.profiler._record_function_enter_new(
|
|
self.name, self.args
|
|
)
|
|
return self
|
|
|
|
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any):
|
|
if not self.run_callbacks_on_exit:
|
|
return
|
|
|
|
# Local variable is needed by TorchScript to refine Optional[T] to T
|
|
record = self.record
|
|
assert record is not None
|
|
|
|
# TODO: Too slow with __torch_function__ handling enabled
|
|
# See https://github.com/pytorch/pytorch/issues/76410
|
|
if not torch.jit.is_scripting():
|
|
with torch._C.DisableTorchFunctionSubclass():
|
|
torch.ops.profiler._record_function_exit._RecordFunction(record)
|
|
else:
|
|
torch.ops.profiler._record_function_exit(record)
|
|
|
|
def _call_end_callbacks_on_future(self, fut: Future[Any]) -> Future[Any]:
|
|
"""Use for profiling async calls that return a future.
|
|
|
|
Calling this function will extend recording beyond this scope, until the future is
|
|
satisfied. It is useful for profiling the end to end time of asynchronous calls.
|
|
This function should only be called once to attach the callback onto the future, and
|
|
will throw if called multiple times.
|
|
|
|
Args:
|
|
fut: (torch._C.Future): future for which to schedule
|
|
callback for.
|
|
|
|
Returns:
|
|
A future that completes with the value of the passed in future when
|
|
the profiling callbacks have ran.
|
|
|
|
"""
|
|
# Throw if we have already attached a callback onto the future.
|
|
if not self.run_callbacks_on_exit:
|
|
raise RuntimeError("_call_end_callbacks_on_future can only be called once.")
|
|
|
|
# We are scheduling to run this RecordFunction's end callbacks when the
|
|
# passed in future completes, so don't run end callbacks on exit.
|
|
self.run_callbacks_on_exit = False
|
|
|
|
# Local variable is needed by TorchScript to refine Optional[T] to T
|
|
record = self.record
|
|
assert record is not None
|
|
|
|
# TODO: Too slow with __torch_function__ handling enabled
|
|
# See https://github.com/pytorch/pytorch/issues/76410
|
|
if not torch.jit.is_scripting():
|
|
with torch._C.DisableTorchFunctionSubclass():
|
|
profiled_future = (
|
|
torch.ops.profiler._call_end_callbacks_on_jit_fut._RecordFunction(
|
|
record, fut
|
|
)
|
|
)
|
|
else:
|
|
profiled_future = torch.ops.profiler._call_end_callbacks_on_jit_fut(
|
|
record, fut
|
|
)
|
|
return profiled_future
|
|
|
|
|
|
class emit_itt:
|
|
"""Context manager that makes every autograd operation emit an ITT range.
|
|
|
|
It is useful when running the program under Intel(R) VTune Profiler::
|
|
|
|
vtune <--vtune-flags> <regular command here>
|
|
|
|
The Instrumentation and Tracing Technology (ITT) API enables your application to generate and
|
|
control the collection of trace data during its execution across different Intel tools.
|
|
This context manager is to annotate Intel(R) VTune Profiling trace. With help of this context manager,
|
|
you will be able to see labled ranges in Intel(R) VTune Profiler GUI.
|
|
|
|
.. warning:
|
|
This context manager should not be called recursively, i.e. at most one
|
|
instance should be enabled at any given time.
|
|
|
|
Args:
|
|
enabled (bool, optional): Setting ``enabled=False`` makes this context manager a no-op.
|
|
Default: ``True``.
|
|
record_shapes (bool, optional): If ``record_shapes=True``, the itt range wrapping
|
|
each autograd op will append information about the sizes of Tensor arguments received
|
|
by that op, in the following format:
|
|
``[[arg0.size(0), arg0.size(1), ...], [arg1.size(0), arg1.size(1), ...], ...]``
|
|
Non-tensor arguments will be represented by ``[]``.
|
|
Arguments will be listed in the order they are received by the backend op.
|
|
Please note that this order may not match the order in which those arguments were passed
|
|
on the Python side. Also note that shape recording may increase the overhead of itt range creation.
|
|
Default: ``False``
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP("Undefined variables")
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD_PROFILER)
|
|
>>> with torch.autograd.profiler.emit_itt():
|
|
... model(x)
|
|
|
|
"""
|
|
|
|
def __init__(self, enabled=True, record_shapes=False):
|
|
self.enabled = enabled
|
|
self.entered = False
|
|
self.record_shapes = record_shapes
|
|
|
|
def __enter__(self):
|
|
if not self.enabled:
|
|
return
|
|
if self.entered:
|
|
raise RuntimeError("ITT annotation context manager is not reentrant")
|
|
self.entered = True
|
|
_run_on_profiler_start()
|
|
_enable_profiler(
|
|
ProfilerConfig(
|
|
ProfilerState.ITT,
|
|
self.record_shapes,
|
|
False,
|
|
False,
|
|
False,
|
|
False,
|
|
_ExperimentalConfig(),
|
|
),
|
|
set(),
|
|
)
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
if not self.enabled:
|
|
return
|
|
_disable_profiler()
|
|
_run_on_profiler_stop()
|
|
return False
|
|
|
|
|
|
class emit_nvtx:
|
|
"""Context manager that makes every autograd operation emit an NVTX range.
|
|
|
|
It is useful when running the program under nvprof::
|
|
|
|
nvprof --profile-from-start off -o trace_name.prof -- <regular command here>
|
|
|
|
Unfortunately, there's no way to force nvprof to flush the data it collected
|
|
to disk, so for CUDA profiling one has to use this context manager to annotate
|
|
nvprof traces and wait for the process to exit before inspecting them.
|
|
Then, either NVIDIA Visual Profiler (nvvp) can be used to visualize the timeline, or
|
|
:func:`torch.autograd.profiler.load_nvprof` can load the results for inspection
|
|
e.g. in Python REPL.
|
|
|
|
.. warning:
|
|
This context manager should not be called recursively, i.e. at most one
|
|
instance should be enabled at any given time.
|
|
|
|
Args:
|
|
enabled (bool, optional): Setting ``enabled=False`` makes this context manager a no-op.
|
|
Default: ``True``.
|
|
record_shapes (bool, optional): If ``record_shapes=True``, the nvtx range wrapping
|
|
each autograd op will append information about the sizes of Tensor arguments received
|
|
by that op, in the following format:
|
|
``[[arg0.size(0), arg0.size(1), ...], [arg1.size(0), arg1.size(1), ...], ...]``
|
|
Non-tensor arguments will be represented by ``[]``.
|
|
Arguments will be listed in the order they are received by the backend op.
|
|
Please note that this order may not match the order in which those arguments were passed
|
|
on the Python side. Also note that shape recording may increase the overhead of nvtx range creation.
|
|
Default: ``False``
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP("undefined variables")
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD_PROFILER)
|
|
>>> with torch.cuda.profiler.profile():
|
|
... model(x) # Warmup CUDA memory allocator and profiler
|
|
... with torch.autograd.profiler.emit_nvtx():
|
|
... model(x)
|
|
|
|
**Forward-backward correlation**
|
|
|
|
When viewing a profile created using :class:`emit_nvtx` in the Nvidia Visual Profiler,
|
|
correlating each backward-pass op with the corresponding forward-pass op can be difficult.
|
|
To ease this task, :class:`emit_nvtx` appends sequence number information to the ranges it
|
|
generates.
|
|
|
|
During the forward pass, each function range is decorated with ``seq=<N>``. ``seq`` is a running
|
|
counter, incremented each time a new backward Function object is created and stashed for backward.
|
|
Thus, the ``seq=<N>`` annotation associated with each forward function range tells you that
|
|
if a backward Function object is created by this forward function,
|
|
the backward object will receive sequence number N.
|
|
During the backward pass, the top-level range wrapping each C++ backward Function's
|
|
``apply()`` call is decorated with ``stashed seq=<M>``. ``M`` is the sequence number that
|
|
the backward object was created with. By comparing ``stashed seq`` numbers in backward with ``seq``
|
|
numbers in forward, you can track down which forward op created each backward Function.
|
|
|
|
Any functions executed during the backward pass are also decorated with ``seq=<N>``. During
|
|
default backward (with ``create_graph=False``) this information is irrelevant, and in fact,
|
|
``N`` may simply be 0 for all such functions. Only the top-level ranges associated with
|
|
backward Function objects' ``apply()`` methods are useful, as a way to correlate these Function
|
|
objects with the earlier forward pass.
|
|
|
|
**Double-backward**
|
|
|
|
If, on the other hand, a backward pass with ``create_graph=True`` is underway (in other words,
|
|
if you are setting up for a double-backward), each function's execution during backward
|
|
is given a nonzero, useful ``seq=<N>``. Those functions may themselves create Function objects
|
|
to be executed later during double-backward, just as the original functions in the forward pass did.
|
|
The relationship between backward and double-backward is conceptually the same as the relationship
|
|
between forward and backward: The functions still emit current-sequence-number-tagged ranges,
|
|
the Function objects they create still stash those sequence numbers, and during the eventual
|
|
double-backward, the Function objects' ``apply()`` ranges are still tagged with ``stashed seq``
|
|
numbers, which can be compared to `seq` numbers from the backward pass.
|
|
|
|
.. warning:
|
|
The sequence number is thread-local, and some forward functions don't create an associated
|
|
backward Function object (instead delegating that to sub-functions further down the call chain).
|
|
For these reasons, the correspondence of stashed sequence numbers in
|
|
backward Function ``apply()`` ranges with `seq` numbers in forward-pass ranges is
|
|
not guaranteed to be 1 to 1. The sequence numbers alone may not be enough to fully
|
|
disambiguate which forward function created which
|
|
backward Function object. You may need to make a judgment based on analytic knowledge of what
|
|
the expected correspondence should be.
|
|
"""
|
|
|
|
def __init__(self, enabled=True, record_shapes=False):
|
|
self.enabled = enabled
|
|
self.entered = False
|
|
self.record_shapes = record_shapes
|
|
|
|
def __enter__(self):
|
|
if not self.enabled:
|
|
return
|
|
if self.entered:
|
|
raise RuntimeError("NVTX annotation context manager is not reentrant")
|
|
self.entered = True
|
|
torch.cuda.synchronize()
|
|
_run_on_profiler_start()
|
|
_enable_profiler(
|
|
ProfilerConfig(
|
|
ProfilerState.NVTX,
|
|
self.record_shapes,
|
|
False,
|
|
False,
|
|
False,
|
|
False,
|
|
_ExperimentalConfig(),
|
|
),
|
|
set(),
|
|
)
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
if not self.enabled:
|
|
return
|
|
torch.cuda.synchronize()
|
|
_disable_profiler()
|
|
_run_on_profiler_stop()
|
|
return False
|
|
|
|
|
|
def load_nvprof(path):
|
|
"""Open an nvprof trace file and parses autograd annotations.
|
|
|
|
Args:
|
|
path (str): path to nvprof trace
|
|
"""
|
|
return EventList(parse_nvprof_trace(path))
|
|
|
|
|
|
class EnforceUnique:
|
|
"""Raises an error if a key is seen more than once."""
|
|
|
|
def __init__(self):
|
|
self.seen = set()
|
|
|
|
def see(self, *key):
|
|
r"""
|
|
Observe a key and raise an error if it is seen multiple times.
|
|
"""
|
|
if key in self.seen:
|
|
raise RuntimeError("duplicate key: " + str(key))
|
|
self.seen.add(key)
|
|
|
|
|
|
def parse_nvprof_trace(path):
|
|
import sqlite3
|
|
|
|
conn = sqlite3.connect(path)
|
|
conn.row_factory = sqlite3.Row
|
|
|
|
# Parse strings table
|
|
strings = {}
|
|
for r in conn.execute("SELECT _id_ as id, value FROM StringTable"):
|
|
strings[r["id"]] = torch._C._demangle(r["value"])
|
|
|
|
# First, find all functions and create FunctionEvents for them
|
|
marker_query = """
|
|
SELECT
|
|
start.id AS marker_id, start.name, start.timestamp AS start_time, end.timestamp AS end_time
|
|
FROM
|
|
CUPTI_ACTIVITY_KIND_MARKER AS start INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end
|
|
ON start.id = end.id
|
|
WHERE
|
|
start.name != 0 AND end.name = 0
|
|
"""
|
|
functions = []
|
|
functions_map = {}
|
|
unique = EnforceUnique()
|
|
for row in conn.execute(marker_query):
|
|
unique.see(row["marker_id"])
|
|
evt = FunctionEvent(
|
|
id=row["marker_id"],
|
|
node_id=0, # missing a node_id when calling FunctionEvent. This is just to ensure
|
|
# that pytorch doesn't crash when creating a FunctionEvent() object
|
|
name=strings[row["name"]],
|
|
start_us=row["start_time"],
|
|
end_us=row["end_time"],
|
|
thread=0,
|
|
) # TODO: find in sqlite database
|
|
functions.append(evt)
|
|
functions_map[evt.id] = evt
|
|
|
|
# Now, correlate all kernels with FunctionEvents
|
|
kernel_query = """
|
|
SELECT
|
|
start.id AS marker_id, start.name, start.timestamp, end.timestamp,
|
|
runtime._id_ AS runtime_id, runtime.cbid, runtime.start AS runtime_start, runtime.end AS runtime_end,
|
|
kernel.start AS kernel_start, kernel.end AS kernel_end, kernel.name AS kernel_name
|
|
FROM
|
|
CUPTI_ACTIVITY_KIND_MARKER AS start
|
|
INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end
|
|
ON start.id = end.id
|
|
INNER JOIN CUPTI_ACTIVITY_KIND_RUNTIME as runtime
|
|
ON (start.timestamp < runtime.start AND runtime.end < end.timestamp)
|
|
INNER JOIN CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL AS kernel
|
|
ON kernel.correlationId = runtime.correlationId
|
|
"""
|
|
unique = EnforceUnique()
|
|
for row in conn.execute(kernel_query):
|
|
unique.see(row["marker_id"], row["runtime_id"])
|
|
# 211 is cudaKernelLaunch for cuda >= 9.2
|
|
assert row["cbid"] == 211
|
|
evt = functions_map[row["marker_id"]]
|
|
evt.append_kernel(
|
|
row["kernel_name"], 0, row["kernel_end"] - row["kernel_start"]
|
|
)
|
|
|
|
functions.sort(key=lambda evt: evt.time_range.start)
|
|
return functions
|
|
|
|
|
|
class KinetoStepTracker:
|
|
"""Provides an abstraction for incrementing the step count globally.
|
|
|
|
Previously, we only had one place to mark that a step() has occurred
|
|
in the program via pytorch profiler step(). We will now add step hooks
|
|
in the Optimizer class https://github.com/pytorch/pytorch/issues/88446
|
|
|
|
- This could mean programs that already call profiler.step() every
|
|
iteration can end up double incrementing step count.
|
|
- If a model uses multiple optimizers we can also have double or more
|
|
counting of the step.
|
|
|
|
We fix this by adding a layer of abstraction before calling step()
|
|
to the kineto library. The idea is to maintain steps per requester in a dict:
|
|
|
|
.. code-block::
|
|
|
|
{
|
|
"ProfilerStep": 100, # triggered by profiler step() call
|
|
"Optimizer1Step": 100, # Optimizer 1 or 2 are just examples, could be SGD, Adam etc
|
|
"Optimizer2Step": 100,
|
|
}
|
|
|
|
To figure out the global step count just take the max of dict values (100).
|
|
|
|
If one of the count increments the max will go up.
|
|
|
|
.. code-block::
|
|
|
|
{
|
|
"ProfilerStep": 100,
|
|
"Optimizer1Step": 101, # Optimizer1 got incremented first say
|
|
"Optimizer2Step": 100,
|
|
}
|
|
|
|
Then global step count is 101
|
|
We only call the kineto step() function when global count increments.
|
|
|
|
NOTE: Please do not use the KinetoStepTracker in modules beside the Optimizer
|
|
for now. The result could be incorrect increments of the step count.
|
|
"""
|
|
|
|
_current_step = 0
|
|
_step_dict: Dict[str, int] = defaultdict(int)
|
|
|
|
@classmethod
|
|
def init_step_count(cls, requester: str):
|
|
r"""
|
|
Initialize for a given requester.
|
|
"""
|
|
cls._step_dict[requester] = cls._current_step
|
|
|
|
@classmethod
|
|
def erase_step_count(cls, requester: str) -> bool:
|
|
r"""
|
|
Remove a given requester.
|
|
"""
|
|
return cls._step_dict.pop(requester, None) is not None
|
|
|
|
@classmethod
|
|
def increment_step(cls, requester: str) -> int:
|
|
"""Increments the step count for the requester.
|
|
|
|
Additionally if the max over all step counts has incremented then
|
|
trigger the _kineto_step() returns global step count
|
|
"""
|
|
if requester not in cls._step_dict:
|
|
cls.init_step_count(requester)
|
|
cls._step_dict[requester] += 1
|
|
|
|
new_step = max(cls._step_dict.values())
|
|
if new_step > cls._current_step:
|
|
delta = new_step - cls._current_step
|
|
if delta > 1:
|
|
warn(
|
|
"Profiler step count has increased more than 1 - "
|
|
f"current_step = {cls._current_step} step dict = {cls._step_dict}"
|
|
)
|
|
for _ in range(0, delta):
|
|
_kineto_step()
|
|
cls._current_step = new_step
|
|
return cls._current_step
|
|
|
|
@classmethod
|
|
def current_step(cls) -> int:
|
|
r"""
|
|
Get the latest step for any requester
|
|
"""
|
|
return cls._current_step
|