Files
pytorch/torch/_inductor/codegen/cpp_template.py
Bin Bao 2e67d7cc35 [AOTI] Remove the non-ABI-compatible mode (part 1) (#138009)
Summary: The ABI-compatible mode has been turned on as default in https://github.com/pytorch/pytorch/pull/136534. Removing the non-ABI-compatible logic to greatly simplify the wrapper codegen logic.

Differential Revision: [D64439676](https://our.internmc.facebook.com/intern/diff/D64439676)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138009
Approved by: https://github.com/chenyang78
ghstack dependencies: #137982, #138016
2024-10-17 02:48:26 +00:00

127 lines
4.3 KiB
Python

# mypy: allow-untyped-defs
import ctypes
import functools
import itertools
import logging
import sys
from typing import Callable, List, Optional
from unittest.mock import patch
import sympy
from .. import codecache, config, ir
from ..autotune_process import CppBenchmarkRequest, TensorMeta
from ..utils import IndentedBuffer, Placeholder, unique
from ..virtualized import V
from .common import KernelTemplate
from .cpp_template_kernel import CppTemplateCaller, CppTemplateKernel
log = logging.getLogger(__name__)
class CppTemplate(KernelTemplate):
index_counter = itertools.count()
def __init__(
self,
name: str,
input_nodes,
layout: ir.Layout,
num_threads: int,
epilogue_creator: Optional[Callable[[ir.Buffer], ir.Pointwise]] = None,
) -> None:
super().__init__(name)
self.input_nodes = input_nodes
self.output_node: ir.Buffer = ir.Buffer(name="buf_out", layout=layout)
self.layout = layout
self.num_threads = num_threads
self.epilogue_creator = epilogue_creator
def generate(self, **kwargs):
kernel_name = f"cpp_{self.name}"
with patch.object(
V.graph, "get_dtype", self._fake_get_dtype(self.output_node)
), patch.object(ir.FlexibleLayout, "allow_indexing", True), CppTemplateKernel(
kernel_name=kernel_name, num_threads=self.num_threads
) as kernel:
code = kernel.render(self, **kwargs)
_, call_args, _, _ = kernel.args.python_argdefs()
log.debug("Generated Code:\n%s", code)
log.debug(
"Args: cpp_argdefs: %s, python_argdefs: %s",
kernel.args.cpp_argdefs(),
kernel.args.python_argdefs(),
)
expected_args = list(
unique(input_node.get_name() for input_node in self.input_nodes)
)
expected_args.extend([self.output_node.get_name()])
assert list(call_args)[: len(expected_args)] == expected_args, (
call_args,
expected_args,
)
extra_args = V.graph.sizevars.size_hints(
map(sympy.expand, call_args[len(expected_args) :])
)
# Cast the size hint from int to ctypes.c_ulonglong explicitly
# since in cpp kernel, we bind it to C long
extra_args = tuple(ctypes.c_ulonglong(x) for x in extra_args)
kernel_hash_name = f"cpp_{self.name}_{next(self.index_counter)}"
# Create the BenchmarkRequest for CPP
bmreq = CppBenchmarkRequest(
kernel_name=kernel_name,
input_tensor_meta=TensorMeta.from_irnodes(self.input_nodes),
output_tensor_meta=TensorMeta.from_irnodes(self.output_node),
extra_args=extra_args,
source_code=code,
)
def make_kernel_render(
template_node: ir.CppTemplateBuffer,
flag_template_buffer_has_other_users: bool,
epilogue_nodes: Optional[List[ir.IRNode]] = None,
):
kernel = CppTemplateKernel(
kernel_name=str(Placeholder.KERNEL_NAME), num_threads=self.num_threads
)
render = functools.partial(
kernel.render,
self,
template_buffer_node=template_node,
flag_template_buffer_has_other_users=flag_template_buffer_has_other_users,
epilogue_nodes=epilogue_nodes,
**kwargs,
)
return kernel, render
return CppTemplateCaller(
kernel_hash_name,
self.name,
self.input_nodes,
self.output_node.get_layout(),
make_kernel_render,
bmreq,
self,
)
def header(self) -> IndentedBuffer:
res = IndentedBuffer()
res.writeline(codecache.cpp_prefix())
# TODO: add c10::ForcedUnroll test to test_aoti_abi_check
res.splice("""#include <c10/util/Unroll.h>""")
res.splice("""#include <torch/csrc/inductor/aoti_torch/c/shim.h>""")
enable_kernel_profile = config.cpp.enable_kernel_profile and sys.platform in [
"linux",
"win32",
]
if enable_kernel_profile:
res.writelines(["#include <ATen/record_function.h>"])
return res
def render(self, **kwargs) -> str:
raise NotImplementedError