Files
pytorch/torch/_inductor/codegen/block_analysis.py
Blaine Burton Rister c2fa544472 [Inductor] move block pointer analysis to a new module (#141733)
# Summary

Preparatory refactor for https://github.com/pytorch/pytorch/pull/137243. This refactors the ModularIndexing block pointer analysis into its own module. That way, we can call it from other places besides Triton codegen. In the parent PR, we will use this to find tiling splits that simplify the indexing.

# Test plan

Tested by the existing CI.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141733
Approved by: https://github.com/jansel
2024-11-30 23:21:24 +00:00

117 lines
4.1 KiB
Python

import collections
import functools
import textwrap
from typing import List, Optional, Tuple
import sympy
from sympy import Expr, Symbol
from torch.utils._sympy.functions import FloorDiv, ModularIndexing
from ..utils import sympy_dot, sympy_subs
from ..virtualized import V
class BlockPatternMatcher:
"""
Matches block indexing expressions.
"""
@staticmethod
def get_subexpr_involving_symbol(expr: Expr, symbol: Symbol) -> Expr:
"""
Given a sympy expression, return the subexpression comprised only of terms
involving the specified symbol.
For example, if `expr` is `x * 5 + x ** 2 + y * 2 + 5`, and `symbol` is `x`,
this returns `x * 5 + x ** 2`.
"""
return sympy.S.Zero + sum(
term for term in sympy.Add.make_args(expr) if symbol in term.free_symbols
)
@staticmethod
def get_slice_numels(dims: List[Expr]) -> List[Expr]:
"""
Compute the cumulative size of each dimension's slice.
This proceeds from the last dim up to the second.
"""
numels = collections.deque([sympy.S.One])
for dim in dims[:0:-1]:
numel = dim * numels[0]
numels.appendleft(numel)
return [*numels]
@classmethod
def match_mod_div_block_expr(
cls,
index: Expr,
index_var: Symbol,
numel: Expr,
num_dims: int,
) -> Optional[Tuple[List[Expr], List[Expr], List[Expr]]]:
"""
Matches modular indexing expressions, converting them to implied block dimensions and strides.
See triton.py for more information.
"""
# Pattern match to find the strides and offset.
wild = functools.partial(sympy.Wild, exclude=[index_var])
dims: List[Expr] = [wild(f"dim_mod{idx}") for idx in range(num_dims)]
strides: List[Expr] = [wild(f"stride_mod{idx}") for idx in range(num_dims)]
# The first dimension's index is computed by division.
# The remaining are computed by modulo.
slice_numels = cls.get_slice_numels(dims[:num_dims])
block_index_exprs = [FloorDiv(index_var, slice_numels[0])] + [
ModularIndexing(index_var, numel, dim)
for dim, numel in zip(dims[1:], slice_numels[1:])
]
# Calculate a linear index from block indices.
match_expr = sympy_dot(strides, block_index_exprs)
# Pattern match.
match = index.match(match_expr)
if match is None:
return None
# Provide default values for unmatched dims and strides.
for dim in dims[1:]:
if dim not in match:
match[dim] = sympy.S.One
for stride in strides[1:]:
if stride not in match:
match[stride] = sympy.S.Zero
sizevars = V.graph.sizevars
def get_match(expr: Expr) -> Expr:
return sizevars.lookup_precomputed_size(match[expr])
# Replace wildcards with matched expressions.
dims = [dims[0]] + [get_match(dim) for dim in dims[1:]]
strides = [get_match(stride) for stride in strides]
slice_numels = cls.get_slice_numels(dims)
block_index_exprs = [sympy_subs(expr, match) for expr in block_index_exprs]
# The leading dimension is not directly matched in our expression.
# We solve for it by dividing the range tree numel by the product of
# all other dimensions. We quit if they are not known to be divisible.
assert dims[0] not in match, "Expected not to match the leading dimension!"
if not sizevars.statically_known_multiple_of(numel, slice_numels[0]):
return None
dims[0] = numel / slice_numels[0]
# Sanity check that we can recover the index from the matched subexpressions.
matched_index = sympy_dot(strides, block_index_exprs)
assert sizevars.statically_known_equals(matched_index, index), textwrap.dedent(
f"""
Invalid match!
Index: {index}
Matched expression: {matched_index}
"""
)
return dims, strides, block_index_exprs