mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132376 Approved by: https://github.com/jamesjwu ghstack dependencies: #132335, #132351, #132352
161 lines
5.5 KiB
Python
161 lines
5.5 KiB
Python
# Owner(s): ["oncall: jit"]
|
|
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.parallel as dp
|
|
|
|
|
|
# Make the helper files in test/ importable
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA_MULTI_GPU
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise RuntimeError(
|
|
"This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_jit.py TESTNAME\n\n"
|
|
"instead."
|
|
)
|
|
|
|
|
|
class TestDataParallel(JitTestCase):
|
|
class Mpy(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super(TestDataParallel.Mpy, self).__init__()
|
|
self.m = nn.Sequential(
|
|
nn.Linear(2, 2), nn.BatchNorm1d(2), nn.ReLU(), nn.Linear(2, 2)
|
|
)
|
|
|
|
@torch.jit.ignore
|
|
def forward(self, input):
|
|
return self.m(input)
|
|
|
|
class Mpy1(torch.nn.Module):
|
|
def __init__(self, block):
|
|
super(TestDataParallel.Mpy1, self).__init__()
|
|
self.m = block
|
|
|
|
@torch.jit.ignore
|
|
def forward(self, input):
|
|
return self.m.forward(input)
|
|
|
|
class Mpy2(torch.nn.Module):
|
|
def __init__(self, block1, block2):
|
|
super(TestDataParallel.Mpy2, self).__init__()
|
|
self.m1 = block1
|
|
self.m2 = block2
|
|
|
|
@torch.jit.ignore
|
|
def forward(self, input):
|
|
x = self.m1.forward(input)
|
|
return self.m2(x)
|
|
|
|
class Msm(torch.jit.ScriptModule):
|
|
__constants__ = ["m"]
|
|
|
|
def __init__(self) -> None:
|
|
super(TestDataParallel.Msm, self).__init__()
|
|
self.m = nn.Sequential(
|
|
nn.Linear(2, 2), nn.BatchNorm1d(2), nn.ReLU(), nn.Linear(2, 2)
|
|
)
|
|
|
|
@torch.jit.script_method
|
|
def forward(self, input):
|
|
return self.m(input)
|
|
|
|
class Msm1(torch.jit.ScriptModule):
|
|
def __init__(self, block):
|
|
super(TestDataParallel.Msm1, self).__init__()
|
|
self.block = block
|
|
|
|
@torch.jit.script_method
|
|
def forward(self, input):
|
|
x = self.block(input)
|
|
return x
|
|
|
|
def check_replicas(self, module, replicas, input_shape=(2, 2)):
|
|
input = torch.randn(input_shape).cuda()
|
|
expected_output = module(input).data
|
|
for i, replica in enumerate(replicas):
|
|
for p in replica.parameters():
|
|
self.assertEqual(p.get_device(), i)
|
|
for b in replica.buffers():
|
|
self.assertEqual(b.get_device(), i)
|
|
replica_input = input.cuda(i)
|
|
self.assertEqual(replica(replica_input).data, expected_output)
|
|
|
|
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported")
|
|
def test_python_submodule_script(self):
|
|
module = self.Mpy1(self.Msm()).cuda()
|
|
replicas = dp.replicate(module, {0, 1})
|
|
self.check_replicas(module, replicas)
|
|
|
|
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported")
|
|
def test_shared_module(self):
|
|
s = self.Msm()
|
|
p1 = self.Mpy1(s)
|
|
module = self.Mpy2(p1, s).cuda()
|
|
replicas = dp.replicate(module, {0, 1})
|
|
self.check_replicas(module, replicas)
|
|
|
|
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported")
|
|
def test_traced_module(self):
|
|
module = torch.jit.trace(self.Mpy1(self.Mpy()), torch.ones(2, 2)).cuda()
|
|
replicas = dp.replicate(module, {0, 1})
|
|
self.check_replicas(module, replicas)
|
|
|
|
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported")
|
|
def test_tensor_sharing(self):
|
|
module = self.Msm1(self.Msm()).cuda()
|
|
replica = dp.replicate(module, {0, 1})
|
|
|
|
def assert_share_data(t1, t2):
|
|
# Only checks that they point to the same memory on the same device.
|
|
return (
|
|
t1.device == t2.device
|
|
and t1.storage().data_ptr() == t2.storage().data_ptr()
|
|
)
|
|
|
|
for p1, p2 in zip(module.parameters(), replica[0].parameters()):
|
|
self.assertTrue(assert_share_data(p1, p2))
|
|
|
|
for p1, p2 in zip(module.buffers(), replica[0].buffers()):
|
|
self.assertTrue(assert_share_data(p1, p2))
|
|
|
|
for p1, p2 in zip(module.parameters(), replica[1].parameters()):
|
|
self.assertFalse(assert_share_data(p1, p2))
|
|
|
|
for p1, p2 in zip(module.buffers(), replica[1].buffers()):
|
|
self.assertFalse(assert_share_data(p1, p2))
|
|
|
|
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported")
|
|
def test_tensor_sharing_with_forward(self):
|
|
module = self.Msm1(self.Msm()).cuda()
|
|
replica = dp.replicate(module, {0, 1})
|
|
x = torch.ones(2, 2, requires_grad=True).cuda()
|
|
first_forward = module(x)
|
|
first_forward.sum().backward()
|
|
with torch.no_grad():
|
|
for p in module.parameters():
|
|
# Use .data here to avoid version counter bump.
|
|
# The graph created by the following forward will be wrong but
|
|
# we never backward through them so it's fine
|
|
p.data -= 1.0 * p.grad
|
|
second_forward = module(x)
|
|
|
|
# replica which is on the same GPU has a shallow copy of the original
|
|
# params and buffers
|
|
r0_forward = replica[0](x)
|
|
self.assertEqual(second_forward, r0_forward)
|
|
|
|
# replica which is on a different GPU has a deep copy of the original
|
|
# params and buffers
|
|
x1 = torch.ones(2, 2, requires_grad=True).cuda(device=1)
|
|
r1_forward = replica[1](x1)
|
|
self.assertEqual(first_forward, r1_forward)
|