mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
reland of https://github.com/pytorch/pytorch/pull/133113 I have to create a new PR because the previous reverted PR could not either be rebased, or imported successfully :( ---- Moving DTensor to be in the public namespace, to formally add the documentation page that includes all the public APIs. This includes: * many path renames and path import fixes * a dedicated doc page without too much content yet (adding in the next PRs) * To preserve the BC for users still using the torch.distributed._tensor, I added a shim script to redirect old path calls to the new module The BC preserving is evidented by the fact that all DTensor tests are still working without changing the public imports. So it's safe to land the changes Pull Request resolved: https://github.com/pytorch/pytorch/pull/134203 Approved by: https://github.com/tianyu-l
344 lines
13 KiB
Python
344 lines
13 KiB
Python
# Owner(s): ["oncall: distributed"]
|
|
|
|
from itertools import chain
|
|
|
|
import torch
|
|
from torch.distributed._tensor import DeviceMesh, DTensor
|
|
from torch.distributed._tensor.placement_types import (
|
|
DTensorSpec,
|
|
Partial,
|
|
Replicate,
|
|
Shard,
|
|
TensorMeta,
|
|
)
|
|
from torch.distributed.tensor._collective_utils import redistribute_cost
|
|
from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy
|
|
from torch.distributed.tensor._ops._einsum_strategy import (
|
|
EinsumDims,
|
|
gen_einsum_strategies,
|
|
)
|
|
from torch.testing._internal.common_utils import run_tests, TestCase
|
|
from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase
|
|
|
|
|
|
class TestEinsumDims(TestCase):
|
|
def test_batch_dims(self):
|
|
equation = "abc,abc->abc"
|
|
input_dims, output_dim = EinsumDims.parse_equation(equation)
|
|
edims = EinsumDims.parse_dims(input_dims, output_dim)
|
|
|
|
self.assertEqual(edims.batch_dims, ["a", "b", "c"])
|
|
self.assertEqual(edims.contracting_dims, [])
|
|
self.assertEqual(edims.lhs_out_only_dims, [])
|
|
self.assertEqual(edims.rhs_out_only_dims, [])
|
|
|
|
def test_mm_dims(self):
|
|
equation = "mk,kn->mn"
|
|
input_dims, output_dim = EinsumDims.parse_equation(equation)
|
|
edims = EinsumDims.parse_dims(input_dims, output_dim)
|
|
|
|
self.assertEqual(edims.batch_dims, [])
|
|
self.assertEqual(edims.contracting_dims, ["k"])
|
|
self.assertEqual(edims.lhs_out_only_dims, ["m"])
|
|
self.assertEqual(edims.rhs_out_only_dims, ["n"])
|
|
|
|
def test_bmm_dims(self):
|
|
equation = "bmk,bkn->bmn"
|
|
input_dims, output_dim = EinsumDims.parse_equation(equation)
|
|
edims = EinsumDims.parse_dims(input_dims, output_dim)
|
|
|
|
self.assertEqual(edims.batch_dims, ["b"])
|
|
self.assertEqual(edims.contracting_dims, ["k"])
|
|
self.assertEqual(edims.lhs_out_only_dims, ["m"])
|
|
self.assertEqual(edims.rhs_out_only_dims, ["n"])
|
|
|
|
equation = "bcmk,bckn->bcmn"
|
|
input_dims, output_dim = EinsumDims.parse_equation(equation)
|
|
edims = EinsumDims.parse_dims(input_dims, output_dim)
|
|
|
|
self.assertEqual(edims.batch_dims, ["b", "c"])
|
|
self.assertEqual(edims.contracting_dims, ["k"])
|
|
self.assertEqual(edims.lhs_out_only_dims, ["m"])
|
|
self.assertEqual(edims.rhs_out_only_dims, ["n"])
|
|
|
|
def test_free_dims(self):
|
|
equation = "abc,ab->abc"
|
|
input_dims, output_dim = EinsumDims.parse_equation(equation)
|
|
edims = EinsumDims.parse_dims(input_dims, output_dim)
|
|
|
|
self.assertEqual(edims.batch_dims, ["a", "b"])
|
|
self.assertEqual(edims.contracting_dims, [])
|
|
self.assertEqual(edims.lhs_out_only_dims, ["c"])
|
|
self.assertEqual(edims.rhs_out_only_dims, [])
|
|
|
|
equation = "abd,bf->abfd"
|
|
input_dims, output_dim = EinsumDims.parse_equation(equation)
|
|
edims = EinsumDims.parse_dims(input_dims, output_dim)
|
|
|
|
self.assertEqual(edims.batch_dims, ["b"])
|
|
self.assertEqual(edims.contracting_dims, [])
|
|
self.assertEqual(edims.lhs_out_only_dims, ["a", "d"])
|
|
self.assertEqual(edims.rhs_out_only_dims, ["f"])
|
|
|
|
|
|
class TestEinsumStrategies(DTensorOpTestBase):
|
|
@property
|
|
def world_size(self) -> int:
|
|
return 4
|
|
|
|
def test_mm_1d_mesh(self):
|
|
mesh = self.build_device_mesh()
|
|
|
|
all_strats = gen_einsum_strategies("mk,kn->mn", mesh)
|
|
self.assertEqual(len(all_strats.strategies), 4)
|
|
|
|
def test_mm_2d_mesh(self):
|
|
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
|
|
|
|
all_strats = gen_einsum_strategies("mk,kn->mn", mesh)
|
|
self.assertEqual(len(all_strats.strategies), 16)
|
|
|
|
def test_bmm_1d_mesh(self):
|
|
mesh = self.build_device_mesh()
|
|
|
|
all_strats = gen_einsum_strategies("bmk,bkn->bmn", mesh)
|
|
self.assertEqual(len(all_strats.strategies), 5)
|
|
|
|
def test_bmm_2d_mesh(self):
|
|
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
|
|
|
|
all_strats = gen_einsum_strategies("bmk,bkn->bmn", mesh)
|
|
self.assertEqual(len(all_strats.strategies), 25)
|
|
|
|
def test_pointwise_1d_mesh(self):
|
|
mesh = self.build_device_mesh()
|
|
|
|
simple_strats = gen_einsum_strategies("abcd,abcd->abcd", mesh)
|
|
self.assertEqual(len(simple_strats.strategies), 5)
|
|
|
|
broadcast_strats = gen_einsum_strategies("bcd,abcd->abcd", mesh)
|
|
self.assertEqual(len(broadcast_strats.strategies), 5)
|
|
|
|
def test_linearity_1d_mesh(self):
|
|
mesh = self.build_device_mesh()
|
|
|
|
all_strats = gen_einsum_strategies("abcd,abcd->abcd", mesh, linearity=True)
|
|
self.assertEqual(len(all_strats.strategies), 6)
|
|
|
|
|
|
class TestCostModel(DTensorOpTestBase):
|
|
def _extract_tensor_meta(self, t) -> TensorMeta:
|
|
return TensorMeta(t.shape, t.stride(), t.dtype)
|
|
|
|
@property
|
|
def world_size(self) -> int:
|
|
return 4
|
|
|
|
def test_redistribute_cost_mesh_1d(self):
|
|
mesh_1d = self.build_device_mesh()
|
|
shard_placement = (Shard(0),)
|
|
replica_placement = (Replicate(),)
|
|
partial_placement = (Partial(),)
|
|
|
|
global_tensor = torch.randn(10, 10)
|
|
global_tensor_meta = self._extract_tensor_meta(global_tensor)
|
|
|
|
# shard spec
|
|
shard_spec = DTensorSpec(mesh_1d, shard_placement, global_tensor_meta)
|
|
# replica spec
|
|
replica_spec = DTensorSpec(mesh_1d, replica_placement, global_tensor_meta)
|
|
# partial spec
|
|
partial_spec = DTensorSpec(mesh_1d, partial_placement, global_tensor_meta)
|
|
|
|
# make sure reshard cost is 0 for the same spec redistribute
|
|
for spec in [shard_spec, replica_spec, partial_spec]:
|
|
cost = redistribute_cost(spec, spec)
|
|
self.assertEqual(cost, 0)
|
|
|
|
# shard -> replicate
|
|
allgather_cost = redistribute_cost(shard_spec, replica_spec)
|
|
# partial -> shard
|
|
reduce_scatter_cost = redistribute_cost(partial_spec, shard_spec)
|
|
# partial -> replicate
|
|
allreduce_cost = redistribute_cost(partial_spec, replica_spec)
|
|
self.assertEqual(allgather_cost, reduce_scatter_cost)
|
|
self.assertTrue(allreduce_cost + 1 < allgather_cost + reduce_scatter_cost)
|
|
# shard to partial
|
|
cost = redistribute_cost(shard_spec, partial_spec)
|
|
self.assertEqual(cost, float("inf"))
|
|
|
|
def test_redistribute_cost_latency(self):
|
|
# test cost model on addmm op
|
|
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
|
|
|
|
mesh = self.build_device_mesh()
|
|
shard0_placement = (Shard(0),)
|
|
partial_placement = (Partial(),)
|
|
shard1_placement = (Shard(1),)
|
|
|
|
shard0_tensor_meta = self._extract_tensor_meta(torch.randn(8))
|
|
partial_tensor_meta = self._extract_tensor_meta(torch.randn(50, 6))
|
|
shard1_tensor_meta = self._extract_tensor_meta(torch.randn(6, 8))
|
|
|
|
# shard spec
|
|
shard0_spec = DTensorSpec(mesh, shard0_placement, shard0_tensor_meta)
|
|
# replica spec
|
|
partial_spec = DTensorSpec(mesh, partial_placement, partial_tensor_meta)
|
|
# partial spec
|
|
shard1_spec = DTensorSpec(mesh, shard1_placement, shard1_tensor_meta)
|
|
|
|
op_schema = OpSchema(
|
|
torch.ops.aten.addmm.default,
|
|
(
|
|
OpStrategy([PlacementStrategy(shard0_spec)]),
|
|
OpStrategy([PlacementStrategy(partial_spec)]),
|
|
OpStrategy([PlacementStrategy(shard1_spec)]),
|
|
),
|
|
{},
|
|
)
|
|
|
|
output_strategy = addmm_strategy(mesh, op_schema)
|
|
strategy_costs = {}
|
|
for strategy in output_strategy.strategies:
|
|
redistribute_cost = sum(chain.from_iterable(strategy.redistribute_cost))
|
|
strategy_costs[str(strategy)] = redistribute_cost
|
|
|
|
# assert that cost model counts for collective latency (i.e. multiple comm is penalized)
|
|
self.assertTrue(
|
|
strategy_costs["(S(0), R, S(1)) -> S(1)"]
|
|
< strategy_costs["(R, S(0), R) -> S(0)"]
|
|
)
|
|
# assert a single allreduce is the best one
|
|
self.assertEqual(
|
|
strategy_costs["(S(0), R, S(1)) -> S(1)"], min(strategy_costs.values())
|
|
)
|
|
|
|
def test_redistribute_cost_mesh_2d(self):
|
|
mesh_2d = DeviceMesh(
|
|
self.device_type, torch.arange(self.world_size).reshape(2, 2)
|
|
)
|
|
shard_placement = (Shard(0), Shard(0))
|
|
replica_placement = (Replicate(), Replicate())
|
|
partial_placement = (Partial(), Partial())
|
|
|
|
global_tensor = torch.randn(8, 8)
|
|
global_tensor_meta = self._extract_tensor_meta(global_tensor)
|
|
|
|
# shard spec
|
|
shard_spec = DTensorSpec(mesh_2d, shard_placement, global_tensor_meta)
|
|
# replica spec
|
|
replica_spec = DTensorSpec(mesh_2d, replica_placement, global_tensor_meta)
|
|
# partial spec
|
|
partial_spec = DTensorSpec(mesh_2d, partial_placement, global_tensor_meta)
|
|
|
|
# make sure reshard cost is 0 for the same spec redistribute
|
|
for spec in [shard_spec, replica_spec, partial_spec]:
|
|
cost = redistribute_cost(spec, spec)
|
|
self.assertEqual(cost, 0)
|
|
|
|
# shard -> replicate
|
|
allgather_cost = redistribute_cost(shard_spec, replica_spec)
|
|
# partial -> replicate
|
|
allreduce_cost = redistribute_cost(partial_spec, replica_spec)
|
|
# partial -> shard
|
|
reduce_scatter_cost = redistribute_cost(partial_spec, shard_spec)
|
|
self.assertTrue(allreduce_cost > allgather_cost)
|
|
self.assertTrue(allreduce_cost > reduce_scatter_cost)
|
|
|
|
def test_mm_strategies(self):
|
|
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
|
|
|
|
mesh = self.build_device_mesh()
|
|
lhs_tensor = torch.randn(6, 8)
|
|
rhs_tensor = torch.randn(8, 12)
|
|
lhs_tensor_meta = self._extract_tensor_meta(lhs_tensor)
|
|
rhs_tensor_meta = self._extract_tensor_meta(rhs_tensor)
|
|
|
|
mm_combs = (
|
|
(Shard(0), Replicate()),
|
|
(Replicate(), Shard(1)),
|
|
(Shard(1), Shard(0)),
|
|
(Replicate(), Replicate()),
|
|
)
|
|
for lhs, rhs in mm_combs:
|
|
lhs_spec = DTensorSpec(mesh, (lhs,), lhs_tensor_meta)
|
|
rhs_spec = DTensorSpec(mesh, (rhs,), rhs_tensor_meta)
|
|
|
|
op_schema = OpSchema(
|
|
torch.ops.aten.mm.default,
|
|
(
|
|
OpStrategy([PlacementStrategy(lhs_spec)]),
|
|
OpStrategy([PlacementStrategy(rhs_spec)]),
|
|
),
|
|
{},
|
|
)
|
|
# test the strategy
|
|
res_strategies = mm_strategy(mesh, op_schema)
|
|
|
|
for strtgy in res_strategies.strategies:
|
|
if strtgy.input_specs == (lhs_spec, rhs_spec):
|
|
self.assertEqual(strtgy.redistribute_cost, [[0.0], [0.0]])
|
|
break
|
|
|
|
op_schema = OpSchema(
|
|
torch.ops.aten.mm.default,
|
|
(lhs_spec, rhs_spec),
|
|
{},
|
|
)
|
|
# test sharding prop
|
|
output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding_non_cached(
|
|
op_schema
|
|
)
|
|
self.assertFalse(output_sharding.needs_redistribute)
|
|
|
|
def test_bmm_strategies(self):
|
|
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
|
|
|
|
mesh = self.build_device_mesh()
|
|
lhs_tensor = torch.randn(8, 6, 8)
|
|
rhs_tensor = torch.randn(8, 8, 12)
|
|
lhs_tensor_meta = self._extract_tensor_meta(lhs_tensor)
|
|
rhs_tensor_meta = self._extract_tensor_meta(rhs_tensor)
|
|
|
|
bmm_combs = (
|
|
(Shard(0), Shard(0)),
|
|
(Shard(1), Replicate()),
|
|
(Replicate(), Shard(2)),
|
|
(Shard(2), Shard(1)),
|
|
(Replicate(), Replicate()),
|
|
)
|
|
for lhs, rhs in bmm_combs:
|
|
lhs_spec = DTensorSpec(mesh, (lhs,), lhs_tensor_meta)
|
|
rhs_spec = DTensorSpec(mesh, (rhs,), rhs_tensor_meta)
|
|
|
|
op_schema = OpSchema(
|
|
torch.ops.aten.bmm.default,
|
|
(
|
|
OpStrategy([PlacementStrategy(lhs_spec)]),
|
|
OpStrategy([PlacementStrategy(rhs_spec)]),
|
|
),
|
|
{},
|
|
)
|
|
# test the strategy
|
|
res_strategies = bmm_strategy(mesh, op_schema)
|
|
|
|
for strtgy in res_strategies.strategies:
|
|
if strtgy.input_specs == (lhs_spec, rhs_spec):
|
|
self.assertEqual(strtgy.redistribute_cost, [[0.0], [0.0]])
|
|
break
|
|
|
|
op_schema = OpSchema(
|
|
torch.ops.aten.bmm.default,
|
|
(lhs_spec, rhs_spec),
|
|
{},
|
|
)
|
|
# test sharding prop
|
|
output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding_non_cached(
|
|
op_schema
|
|
)
|
|
self.assertFalse(output_sharding.needs_redistribute)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|