Files
pytorch/docs/source/scripts/build_activation_images.py
PyTorch MergeBot 99f2491af9 Revert "Use absolute path path.resolve() -> path.absolute() (#129409)"
This reverts commit 45411d1fc9a2b6d2f891b6ab0ae16409719e09fc.

Reverted https://github.com/pytorch/pytorch/pull/129409 on behalf of https://github.com/jeanschmidt due to Breaking internal CI, @albanD please help get this PR merged ([comment](https://github.com/pytorch/pytorch/pull/129409#issuecomment-2571316444))
2025-01-04 14:17:20 +00:00

82 lines
2.1 KiB
Python

"""
This script will generate input-out plots for all of the activation
functions. These are for use in the documentation, and potentially in
online tutorials.
"""
from pathlib import Path
import matplotlib
from matplotlib import pyplot as plt
import torch
matplotlib.use("Agg")
# Create a directory for the images, if it doesn't exist
ACTIVATION_IMAGE_PATH = Path(__file__).parent / "activation_images"
if not ACTIVATION_IMAGE_PATH.exists():
ACTIVATION_IMAGE_PATH.mkdir()
# In a refactor, these ought to go into their own module or entry
# points so we can generate this list programmatically
functions = [
torch.nn.ELU(),
torch.nn.Hardshrink(),
torch.nn.Hardtanh(),
torch.nn.Hardsigmoid(),
torch.nn.Hardswish(),
torch.nn.LeakyReLU(negative_slope=0.1),
torch.nn.LogSigmoid(),
torch.nn.PReLU(),
torch.nn.ReLU(),
torch.nn.ReLU6(),
torch.nn.RReLU(),
torch.nn.SELU(),
torch.nn.SiLU(),
torch.nn.Mish(),
torch.nn.CELU(),
torch.nn.GELU(),
torch.nn.Sigmoid(),
torch.nn.Softplus(),
torch.nn.Softshrink(),
torch.nn.Softsign(),
torch.nn.Tanh(),
torch.nn.Tanhshrink(),
]
def plot_function(function, **args):
"""
Plot a function on the current plot. The additional arguments may
be used to specify color, alpha, etc.
"""
xrange = torch.arange(-7.0, 7.0, 0.01) # We need to go beyond 6 for ReLU6
plt.plot(xrange.numpy(), function(xrange).detach().numpy(), **args)
# Step through all the functions
for function in functions:
function_name = function._get_name()
plot_path = ACTIVATION_IMAGE_PATH / f"{function_name}.png"
if not plot_path.exists():
# Start a new plot
plt.clf()
plt.grid(color="k", alpha=0.2, linestyle="--")
# Plot the current function
plot_function(function)
plt.title(function)
plt.xlabel("Input")
plt.ylabel("Output")
plt.xlim([-7, 7])
plt.ylim([-7, 7])
# And save it
plt.savefig(plot_path)
print(f"Saved activation image for {function_name} at {plot_path}")