mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
import unittest
|
|
|
|
from caffe2.python import core, workspace, tt_core
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
|
|
class TestTTSVD(hu.HypothesisTestCase):
|
|
def test_full_tt_svd(self):
|
|
size = 256
|
|
np.random.seed(1234)
|
|
X = np.expand_dims(
|
|
np.random.rand(size).astype(np.float32), axis=0)
|
|
W = np.random.rand(size, size).astype(np.float32)
|
|
b = np.zeros(size).astype(np.float32)
|
|
inp_sizes = [4, 4, 4, 4]
|
|
out_sizes = [4, 4, 4, 4]
|
|
|
|
op_fc = core.CreateOperator(
|
|
"FC",
|
|
["X", "W", "b"],
|
|
["Y"],
|
|
)
|
|
workspace.FeedBlob("X", X)
|
|
workspace.FeedBlob("W", W)
|
|
workspace.FeedBlob("b", b)
|
|
workspace.RunOperatorOnce(op_fc)
|
|
Y_fc = workspace.FetchBlob("Y").flatten()
|
|
|
|
# Testing TT-decomposition with high ranks
|
|
full_tt_ranks = [1, 16, 256, 16, 1]
|
|
full_cores = tt_core.matrix_to_tt(W, inp_sizes, out_sizes,
|
|
full_tt_ranks)
|
|
|
|
full_op_tt = core.CreateOperator(
|
|
"TT",
|
|
["X", "b", "cores"],
|
|
["Y"],
|
|
inp_sizes=inp_sizes,
|
|
out_sizes=out_sizes,
|
|
tt_ranks=full_tt_ranks,
|
|
)
|
|
workspace.FeedBlob("X", X)
|
|
workspace.FeedBlob("b", b)
|
|
workspace.FeedBlob("cores", full_cores)
|
|
workspace.RunOperatorOnce(full_op_tt)
|
|
Y_full_tt = workspace.FetchBlob("Y").flatten()
|
|
|
|
assert(len(Y_fc) == len(Y_full_tt))
|
|
self.assertAlmostEquals(np.linalg.norm(Y_fc - Y_full_tt), 0, delta=1e-3)
|
|
|
|
# Testing TT-decomposition with minimal ranks
|
|
sparse_tt_ranks = [1, 1, 1, 1, 1]
|
|
sparse_cores = tt_core.matrix_to_tt(W, inp_sizes, out_sizes,
|
|
sparse_tt_ranks)
|
|
|
|
sparse_op_tt = core.CreateOperator(
|
|
"TT",
|
|
["X", "b", "cores"],
|
|
["Y"],
|
|
inp_sizes=inp_sizes,
|
|
out_sizes=out_sizes,
|
|
tt_ranks=sparse_tt_ranks,
|
|
)
|
|
workspace.FeedBlob("X", X)
|
|
workspace.FeedBlob("b", b)
|
|
workspace.FeedBlob("cores", sparse_cores)
|
|
workspace.RunOperatorOnce(sparse_op_tt)
|
|
Y_sparse_tt = workspace.FetchBlob("Y").flatten()
|
|
|
|
assert(len(Y_fc) == len(Y_sparse_tt))
|
|
self.assertAlmostEquals(np.linalg.norm(Y_fc - Y_sparse_tt),
|
|
39.974, delta=1e-3)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|