Files
pytorch/torch/_dynamo/skipfiles.py
Yanbo Liang 986ad3bfa6 [2/N] Dynamo supports skip by function & removes skipfiles circular import (#110835)
Several improvements for skipfiles:
* Add ```FUNC_INLINELIST``` to support function level skip/inline check.
  * Use ```fn.__code__``` to match function since we can't get the function object sometimes.
* Use python module string name for ```FILE_INLINELIST``` and ```SUBMODULE_INLINELIST```.
  * Use filename to match file and python module, which can fundamentally resolved the circular import issues introduced by skipfiles.
  * Use ```TYPE_CHECKING``` to ensure the python module string name is correct.
* Add unit tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110835
Approved by: https://github.com/ezyang
2023-10-12 00:44:41 +00:00

419 lines
12 KiB
Python

import _collections_abc
import _weakrefset
import abc
import collections
import contextlib
import copy
import copyreg
import dataclasses
import enum
import functools
import importlib
import inspect
import linecache
import logging
import multiprocessing
import operator
import os
import posixpath
import random
import re
import selectors
import signal
import tempfile
import threading
import tokenize
import traceback
import types
import typing
import unittest
import weakref
from typing import Optional
import torch
import torch._inductor.test_operators
import torch.distributed
import torch.utils._content_store
from .utils import getfile
from .variables.functions import (
NestedUserFunctionVariable,
UserFunctionVariable,
UserMethodVariable,
)
"""
A note on skipfiles:
Dynamo consults this file to determine whether function should be inlined or skipped.
A skip applies at the frame boundary, meaning dynamo either triggers a graph break
at the beginning of the frame or attempts to trace/inline the whole frame. When skipping
a frame, recursively called frames are still traced by dynamo unless also skipped.
Skipfiles (skipped at the file level instead of function level) still apply on a
frame-by-frame boundary as dynamo traces, but apply to all functions in that file.
@skip is a helper decorator that can be applied to your function to cause it to be
included here.
Dynamo skip/inline rules & priorities are defined as follows:
* Inline is the default behavior and will be used unless explicitly skipped.
* Dynamo has two SKIPLIST: BUILTIN_SKIPLIST and THIRDPARTY_SKIPLIST.
* BUILTIN_SKIPLIST contains builtin python modules, such as abc, collections, etc.
* THIRDPARTY_SKIPLIST contains common third party libraries, such as numpy, pandas, etc.
* Functions in these two SKIPLISTs are always skipped, except when they are explicitly
put into the three INLINELIST: FUNC_INLINELIST, FILE_INLINELIST and SUBMODULE_INLINELIST.
* PyTorch(torch) is in the BUILTIN_SKIPLIST by default, but there are many cases
where we want inline the functions under torch namespace. We should add them
into one of the three *_INLINELIST to make dynamo inline those functions.
* If you call functions under skipped modules/files, Dynamo will wrap these functions
as SkipFilesVariable. There are a few functions(e.g, collections.OrderedDict) that
we have special handling at SkipFilesVariable.call_function.
Overall: *_INLINELIST has precedence over *_SKIPLIST has precedence over DEFAULT (inline)
To figure out what the behavior is, check the following list in order:
* FUNC_INLINELIST (Inline if YES)
* FILE_INLINELIST (Inline if YES)
* SUBMODULE_INLINELIST (Inline if YES)
* BUILTIN_SKIPLIST & THIRDPARTY_SKIPLIST (Skip if YES)
* Inline by default
In general, if you want to force inline a function or module, please consider adding
the function's file or python module to FILE_INLINELIST first.
Use the FUNC_INLINELIST only when there are other functions under the same file that
you don't want to inline.
In the future, we will consolidate FILE_INLINELIST and SUBMODULE_INLINELIST into one list
as we use the same logic (filename.startswith) to determine if a file or module is skipped.
"""
BUILTIN_SKIPLIST = (
abc,
collections,
contextlib,
copy,
copyreg,
dataclasses,
enum,
functools,
importlib,
inspect,
linecache,
logging,
multiprocessing,
operator,
os,
posixpath,
random,
re,
selectors,
signal,
tempfile,
threading,
tokenize,
torch, # torch/* is skipped by default unless specified in FILE_INLINELIST or SUBMODULE_INLINELIST
traceback,
types,
typing,
unittest,
weakref,
_collections_abc,
_weakrefset,
)
# third party libraries skiplist is defined by str, because users may not use these libraries.
# we should use lazy import & skip in the future.
THIRDPARTY_SKIPLIST = (
"functorch",
"fx2trt_oss",
"intel_extension_for_pytorch",
"networkx",
"numpy",
"omegaconf",
"onnx",
"onnxruntime",
"onnx_tf",
"pandas",
"sklearn",
"tabulate",
"tensorflow",
"tensorrt",
"torch2trt",
"tqdm",
"tree",
"tvm",
"xarray",
)
def _strip_init_py(s):
return re.sub(r"__init__.py$", "", s)
def _module_dir(m: types.ModuleType):
return _strip_init_py(m.__file__)
# TODO: Add a decoractor for easily adding functions to FUNC_INLINELIST
# after resolving all circular import issues.
FUNC_INLINELIST = {
"torch._constrain_as_size",
"torch._constrain_as_value",
}
# Force inline functions in these files or directories, even they are in *_SKIPLIST.
# We are using python module name instead of file or directory object to avoid circular dependency.
# Please keep this sorted alphabetically.
# TODO: Merge FILE_INLINELIST into SUBMODULE_INLINELIST.
FILE_INLINELIST = {
"torch._dynamo._trace_wrapped_higher_order_op",
"torch._dynamo.comptime",
"torch._dynamo.external_utils",
"torch._dynamo.polyfill",
"torch._export.db.examples",
"torch._export.wrappers",
"torch._functorch.apis",
"torch._functorch.deprecated",
"torch._higher_order_ops.cond",
"torch._inductor.test_operators",
"torch.ao.quantization.pt2e.eval_utils",
"torch.ao.quantization.pt2e.qat_utils",
"torch.ao.quantization.pt2e.representation.rewrite",
"torch.ao.quantization.pt2e.utils",
"torch.ao.quantization.quantizer.xnnpack_quantizer",
"torch.nn.modules.container",
"torch.optim._functional",
"torch.random",
"torch.utils._content_store",
"torch.utils._foreach_utils",
}
if torch.distributed.is_available():
FILE_INLINELIST |= {
"torch.distributed._tensor.api",
"torch.distributed._tensor.device_mesh",
"torch.distributed.algorithms._checkpoint.checkpoint_wrapper",
"torch.distributed.tensor.parallel._data_parallel_utils",
"torch.distributed.tensor.parallel._utils",
"torch.distributed.tensor.parallel.style",
}
# Include optimizer code for tracing
FILE_INLINELIST |= {
str(obj.__module__) for obj in torch.optim.__dict__.values() if inspect.isclass(obj)
}
# TODO: consolidate SUBMODULE_INLINELIST and FILE_INLINELIST into one list
# Force inline functions under these modules, even the modules is in *_SKIPLIST.
SUBMODULE_INLINELIST = {
"torch._refs",
"torch._prims",
"torch._decomp",
"torch.ao.nn",
"torch.distributions",
"torch.fx._pytree",
"torch.nn",
"torch.sparse",
"torch.testing",
"torch.utils._contextlib",
"torch.utils._pytree",
}
if torch.distributed.is_available():
SUBMODULE_INLINELIST.add("torch.distributed._functional_collectives")
# TODO: support adding bound method into this list
@functools.lru_cache(None)
def get_func_inlinelist():
inlinelist = set()
for f in FUNC_INLINELIST:
module_name, fn_name = f.rsplit(".", 1)
m = importlib.import_module(module_name)
fn = getattr(m, fn_name)
inlinelist.add(fn.__code__)
return inlinelist
@functools.lru_cache(None)
def get_file_inlinelist():
inlinelist = set()
for f in FILE_INLINELIST:
inlinelist.add(_module_dir(torch) + f[len("torch.") :].replace(".", "/"))
return inlinelist
@functools.lru_cache(None)
def get_submodule_inlinelist():
inlinelist = set()
for m in SUBMODULE_INLINELIST:
inlinelist.add(_module_dir(torch) + m[len("torch.") :].replace(".", "/"))
return inlinelist
# skip some standard python builtin libs
SKIP_DIRS = [
"<frozen importlib",
"<__array_function__ internals>",
] + [_module_dir(m) for m in BUILTIN_SKIPLIST]
SKIP_DIRS_RE = None
is_fbcode = importlib.import_module("torch._inductor.config").is_fbcode()
# Skip fbcode paths(including torch.package paths) containing
# one of the following strings.
FBCODE_SKIP_DIRS = {
"torchrec/distributed",
"torchrec/fb/distributed",
"caffe2/torch/fb/sparsenn/pooled_embeddings_modules.py",
}
FBCODE_SKIP_DIRS_RE = re.compile(f".*({'|'.join(map(re.escape, FBCODE_SKIP_DIRS))})")
def _recompile_re():
global SKIP_DIRS_RE
SKIP_DIRS_RE = re.compile(f"^({'|'.join(map(re.escape, SKIP_DIRS))})")
def add(import_name: str):
if isinstance(import_name, types.ModuleType):
return add(import_name.__name__)
assert isinstance(import_name, str)
module_spec = importlib.util.find_spec(import_name)
if not module_spec:
return
origin = module_spec.origin
if origin is None:
return
global SKIP_DIRS_RE
SKIP_DIRS.append(_strip_init_py(origin))
_recompile_re()
@dataclasses.dataclass
class SkipResult:
skipped: bool
reason: Optional[str]
# TODO(ybliang): This is a temp function, we should consolidate this with check_file.
def _check_file_inner(filename, allow_torch=False):
"""Should skip this file?"""
if filename is None:
return SkipResult(True, "filename is None")
if any(filename.startswith(d) for d in get_file_inlinelist()):
return SkipResult(
False,
"inlined according skipfiles.FILE_INLINELIST",
)
# TODO(ybliang): the is_torch check should be consolidate with is_torch_inline_allowed
if allow_torch and is_torch(filename):
return SkipResult(
False,
"inlined according skipfiles.is_torch",
)
if is_fbcode and bool(FBCODE_SKIP_DIRS_RE.match(filename)):
return SkipResult(
True,
"skipped according skipfiles.FBCODE_SKIP_DIRS",
)
if bool(SKIP_DIRS_RE.match(filename)):
return SkipResult(True, "skipped according skipfiles.SKIP_DIRS")
else:
return SkipResult(False, "inlined by default")
def check_file(filename, allow_torch=False, extra_check=False):
result = _check_file_inner(filename, allow_torch)
if extra_check and result.skipped and is_torch_inline_allowed(filename):
return SkipResult(
False,
"inlined according skipfiles.is_torch_inline_allowed returning True",
)
else:
return result
"""
This is the main entry point to determine whether an object (function) should be inlined or skipped.
Let's illustrate the logic with an example:
@torch.compile
def f1(x, y):
......
f2(x, y)
......
def f2(x, y):
......
f3(x, y)
......
def f3(x, y):
......
There are mainly three call sites of check/check_verbose:
* The compile region entrance (like function f1), the correspoinding code is located at eval_frame.py.
* When tracing the recursively called functions (like function f2 and f3).
* Dynamo decides inline/skip everytime it encounters a new recursively function call, and the call site
is in InliningInstructionTranslator.check_inlineable of symbolic_convert.py.
* If f2 is skipped by Dynamo, when evaluating the frame of f3, Dynamo need the inline/skip check again
and the call site is in catch_errors_wrapper.catch_errors of eval_frame.py.
* For global variables and function arguments, Dynamo needs to decide if they are wrapped as SkipFilesVariable in builder.py.
"""
def check_verbose(obj, allow_torch=False, extra_check=False):
if isinstance(
obj, (UserFunctionVariable, UserMethodVariable, NestedUserFunctionVariable)
):
filename = obj.get_filename()
obj = obj.get_code()
elif isinstance(obj, types.CodeType):
filename = obj.co_filename
elif isinstance(obj, (types.FunctionType, types.MethodType)):
filename = getfile(obj)
obj = obj.__code__
else:
filename = getfile(obj)
if obj in get_func_inlinelist():
return SkipResult(
False,
"inlined according skipfiles.FUNC_INLINELIST",
)
return check_file(filename, allow_torch, extra_check)
def check(obj, allow_torch=False, extra_check=False):
return check_verbose(obj, allow_torch, extra_check).skipped
# skip common third party libs
for _name in THIRDPARTY_SKIPLIST:
add(_name)
_recompile_re()
def is_torch_inline_allowed(filename):
return any(filename.startswith(d) for d in get_submodule_inlinelist())
@functools.lru_cache(None)
def dynamo_dir():
import torch._dynamo
return _module_dir(torch._dynamo)
def is_torch(filename):
if filename.startswith(dynamo_dir()):
return False
return filename.startswith(_module_dir(torch))