mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
…c10d Fixes a broken header filters from #90699 and applies a few more clang-tidy fixes that are relevant from c10 and c10d. The header filter pattern was actually broken and the clang-tidy include pattern was redundant. Also fixed a few bugs in torch/distributed/c10d Pull Request resolved: https://github.com/pytorch/pytorch/pull/91178 Approved by: https://github.com/ezyang
2878 lines
90 KiB
C++
2878 lines
90 KiB
C++
#include <c10/util/Exception.h>
|
|
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
|
|
|
|
#ifdef USE_C10D_GLOO
|
|
|
|
#include <torch/csrc/distributed/c10d/GlooDeviceFactory.hpp>
|
|
#include <torch/csrc/distributed/c10d/PrefixStore.hpp>
|
|
#include <chrono>
|
|
#include <exception>
|
|
#include <ratio>
|
|
#include <tuple>
|
|
|
|
#ifdef _WIN32
|
|
#include <gloo/common/win.h>
|
|
#include <winsock2.h>
|
|
#include <ws2tcpip.h>
|
|
#else
|
|
#include <netdb.h>
|
|
#include <sys/socket.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <sys/types.h>
|
|
|
|
#include <type_traits>
|
|
|
|
#include <gloo/allgather.h>
|
|
#include <gloo/allgatherv.h>
|
|
#include <gloo/allreduce.h>
|
|
#include <gloo/alltoall.h>
|
|
#include <gloo/alltoallv.h>
|
|
#include <gloo/barrier.h>
|
|
#include <gloo/broadcast.h>
|
|
#include <gloo/gather.h>
|
|
#include <gloo/reduce.h>
|
|
#include <gloo/scatter.h>
|
|
|
|
#include <ATen/SparseTensorUtils.h>
|
|
#include <ATen/ThreadLocalState.h>
|
|
|
|
#include <c10/util/StringUtil.h>
|
|
#include <c10/util/intrusive_ptr.h>
|
|
#include <c10/util/irange.h>
|
|
#include <gloo/config.h>
|
|
#include <gloo/rendezvous/context.h>
|
|
#include <gloo/rendezvous/prefix_store.h>
|
|
|
|
#ifdef _WIN32
|
|
#define GENERATE_ALL_TYPES(type, func, ...) \
|
|
switch (type) { \
|
|
case ::at::ScalarType::Float: \
|
|
func<float>(__VA_ARGS__); \
|
|
break; \
|
|
case ::at::ScalarType::Double: \
|
|
func<double>(__VA_ARGS__); \
|
|
break; \
|
|
case ::at::ScalarType::Half: \
|
|
func<gloo::float16>(__VA_ARGS__); \
|
|
break; \
|
|
case ::at::ScalarType::Char: \
|
|
func<int8_t>(__VA_ARGS__); \
|
|
break; \
|
|
case ::at::ScalarType::Byte: \
|
|
func<uint8_t>(__VA_ARGS__); \
|
|
break; \
|
|
case ::at::ScalarType::Int: \
|
|
func<int32_t>(__VA_ARGS__); \
|
|
break; \
|
|
case ::at::ScalarType::Long: \
|
|
func<int64_t>(__VA_ARGS__); \
|
|
break; \
|
|
default: \
|
|
TORCH_CHECK(false, "Invalid scalar type"); \
|
|
}
|
|
|
|
#define HOST_NAME_MAX 256
|
|
#else
|
|
#define GENERATE_ALL_TYPES(type, func, args...) \
|
|
switch (type) { \
|
|
case ::at::ScalarType::Float: \
|
|
func<float>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Double: \
|
|
func<double>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Half: \
|
|
func<gloo::float16>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Char: \
|
|
func<int8_t>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Byte: \
|
|
func<uint8_t>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Int: \
|
|
func<int32_t>(args); \
|
|
break; \
|
|
case ::at::ScalarType::Long: \
|
|
func<int64_t>(args); \
|
|
break; \
|
|
default: \
|
|
TORCH_CHECK(false, "Invalid scalar type"); \
|
|
}
|
|
#endif
|
|
|
|
namespace c10d {
|
|
|
|
namespace {
|
|
|
|
constexpr int kBytes = 8;
|
|
|
|
using steady_clock_time_point =
|
|
std::chrono::time_point<std::chrono::steady_clock>;
|
|
|
|
std::chrono::milliseconds getRemainingTime(
|
|
steady_clock_time_point startTime,
|
|
const std::chrono::milliseconds& timeout,
|
|
bool waitAllRanks) {
|
|
if (waitAllRanks) {
|
|
// See Note in monitoredBarrier
|
|
return timeout;
|
|
}
|
|
auto elapsedTime = std::chrono::steady_clock::now() - startTime;
|
|
auto remainingMillis = timeout -
|
|
std::chrono::duration_cast<std::chrono::milliseconds>(elapsedTime);
|
|
|
|
// If no more remaining time, return -1 to indicate to caller.
|
|
if (remainingMillis.count() <= 0) {
|
|
return std::chrono::milliseconds(-1);
|
|
}
|
|
|
|
return remainingMillis;
|
|
}
|
|
|
|
// Emit a LOG(ERROR) and throws using TORCH_CHECK with the given messages.
|
|
void logAndThrow(
|
|
const std::string& logMessage,
|
|
const std::string& errorMessage) {
|
|
LOG(ERROR) << logMessage;
|
|
TORCH_CHECK(false, errorMessage);
|
|
}
|
|
|
|
// For monitoredBarrier, checks remaining time left to finish processing ranks
|
|
// and throws error if timeout.
|
|
void checkRemainingTime(
|
|
const std::chrono::milliseconds& monitoredBarrierTimeout,
|
|
const std::chrono::milliseconds& remainingTime,
|
|
const std::vector<int>& processedRanks,
|
|
int currentRank) {
|
|
const std::string kNoRemainingTimeError = c10::str(
|
|
"Rank ",
|
|
currentRank,
|
|
" timed out in monitoredBarrier after ",
|
|
monitoredBarrierTimeout.count(),
|
|
" ms.");
|
|
if (remainingTime.count() < 0) {
|
|
std::string rankInfo;
|
|
if (processedRanks.size() > 0) {
|
|
rankInfo = c10::str(
|
|
"Successfully processed ranks: ", c10::Join(", ", processedRanks));
|
|
} else {
|
|
rankInfo = "No ranks successfully processed in monitoredBarrier.";
|
|
}
|
|
auto error = c10::str(kNoRemainingTimeError, "\n", rankInfo);
|
|
logAndThrow(error, error);
|
|
}
|
|
}
|
|
|
|
typedef void (*ReduceFunc)(void*, const void*, const void*, size_t);
|
|
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<!std::is_integral<T>::value, int>::type = 0>
|
|
ReduceFunc toFunction(const ReduceOp& r) {
|
|
switch (r) {
|
|
case ReduceOp::SUM:
|
|
return ReduceFunc(&::gloo::sum<T>);
|
|
case ReduceOp::PRODUCT:
|
|
return ReduceFunc(&::gloo::product<T>);
|
|
case ReduceOp::MIN:
|
|
return ReduceFunc(&::gloo::min<T>);
|
|
case ReduceOp::MAX:
|
|
return ReduceFunc(&::gloo::max<T>);
|
|
case ReduceOp::BAND:
|
|
TORCH_CHECK(false, "Cannot use ReduceOp.BAND with non-integral dtype");
|
|
break;
|
|
case ReduceOp::BOR:
|
|
TORCH_CHECK(false, "Cannot use ReduceOp.BOR with non-integral dtype");
|
|
break;
|
|
case ReduceOp::BXOR:
|
|
TORCH_CHECK(false, "Cannot use ReduceOp.BXOR with non-integral dtype");
|
|
break;
|
|
case ReduceOp::AVG:
|
|
TORCH_CHECK(false, "Cannot use ReduceOp.AVG with Gloo");
|
|
break;
|
|
case ReduceOp::PREMUL_SUM:
|
|
TORCH_CHECK(false, "Cannot use ReduceOp.PREMUL_SUM with Gloo");
|
|
break;
|
|
case ReduceOp::UNUSED:
|
|
break;
|
|
}
|
|
|
|
TORCH_CHECK(false, "Unhandled ReduceOp");
|
|
}
|
|
|
|
// Bitwise AND with SFINAE guard for integral types.
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
void band(void* c, const void* a, const void* b, size_t n) {
|
|
auto tc = static_cast<T*>(c);
|
|
auto ta = static_cast<const T*>(a);
|
|
auto tb = static_cast<const T*>(b);
|
|
for (const auto i : c10::irange(n)) {
|
|
tc[i] = ta[i] & tb[i];
|
|
}
|
|
}
|
|
|
|
// Bitwise OR with SFINAE guard for integral types.
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
void bor(void* c, const void* a, const void* b, size_t n) {
|
|
auto tc = static_cast<T*>(c);
|
|
auto ta = static_cast<const T*>(a);
|
|
auto tb = static_cast<const T*>(b);
|
|
for (const auto i : c10::irange(n)) {
|
|
tc[i] = ta[i] | tb[i];
|
|
}
|
|
}
|
|
|
|
// Bitwise XOR with SFINAE guard for integral types.
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
void bxor(void* c, const void* a, const void* b, size_t n) {
|
|
auto tc = static_cast<T*>(c);
|
|
auto ta = static_cast<const T*>(a);
|
|
auto tb = static_cast<const T*>(b);
|
|
for (const auto i : c10::irange(n)) {
|
|
tc[i] = ta[i] ^ tb[i];
|
|
}
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
ReduceFunc toFunction(const ReduceOp& r) {
|
|
switch (r) {
|
|
case ReduceOp::SUM:
|
|
return ReduceFunc(&::gloo::sum<T>);
|
|
case ReduceOp::PRODUCT:
|
|
return ReduceFunc(&::gloo::product<T>);
|
|
case ReduceOp::MIN:
|
|
return ReduceFunc(&::gloo::min<T>);
|
|
case ReduceOp::MAX:
|
|
return ReduceFunc(&::gloo::max<T>);
|
|
case ReduceOp::BAND:
|
|
return ReduceFunc(&band<T>);
|
|
case ReduceOp::BOR:
|
|
return ReduceFunc(&bor<T>);
|
|
case ReduceOp::BXOR:
|
|
return ReduceFunc(&bxor<T>);
|
|
case ReduceOp::AVG:
|
|
TORCH_CHECK(false, "Cannot use ReduceOp.AVG with Gloo");
|
|
break;
|
|
case ReduceOp::PREMUL_SUM:
|
|
TORCH_CHECK(false, "Cannot use ReduceOp.PREMUL_SUM with Gloo");
|
|
break;
|
|
case ReduceOp::UNUSED:
|
|
break;
|
|
}
|
|
|
|
TORCH_CHECK(false, "Unhandled ReduceOp");
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setInputs(O& opts, std::vector<at::Tensor>& tensors) {
|
|
opts.setInputs(getDataPointers<T>(tensors), tensors[0].numel());
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setInput(O& opts, at::Tensor& tensor) {
|
|
opts.setInput(getDataPointer<T>(tensor), tensor.numel());
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setInput(O& opts, at::Tensor& tensor, std::vector<size_t>& counts) {
|
|
opts.setInput(getDataPointer<T>(tensor), counts);
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setInput(O& opts, at::Tensor& tensor, std::vector<int64_t>& counts) {
|
|
opts.setInput(getDataPointer<T>(tensor), counts);
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setOutputs(O& opts, std::vector<at::Tensor>& tensors) {
|
|
opts.setOutputs(getDataPointers<T>(tensors), tensors[0].numel());
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setOutput(O& opts, at::Tensor& tensor) {
|
|
opts.setOutput(getDataPointer<T>(tensor), tensor.numel());
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setOutput(O& opts, at::Tensor& tensor, std::vector<size_t>& counts) {
|
|
opts.setOutput(getDataPointer<T>(tensor), counts);
|
|
}
|
|
|
|
template <typename T, typename O>
|
|
void setOutput(O& opts, at::Tensor& tensor, std::vector<int64_t>& counts) {
|
|
opts.setOutput(getDataPointer<T>(tensor), counts);
|
|
}
|
|
|
|
at::Tensor pinnedLike(at::Tensor& tensor) {
|
|
auto* allocator = at::detail::getCUDAHooks().getPinnedMemoryAllocator();
|
|
auto storage = c10::Storage(
|
|
c10::Storage::use_byte_size_t(),
|
|
at::detail::computeStorageNbytes(
|
|
tensor.sizes(), tensor.strides(), tensor.dtype().itemsize()),
|
|
allocator,
|
|
/*resizable=*/false);
|
|
return at::empty({0}, tensor.options().device(at::kCPU))
|
|
.set_(storage, 0, tensor.sizes(), tensor.strides());
|
|
}
|
|
|
|
// This function initializes a vector of CUDA streams, one for every
|
|
// tensor in the input tensor vector, and ensures that these streams are
|
|
// synchronized with the current default streams. This is needed so
|
|
// that new work on the new streams is serialized w.r.t. all operations
|
|
// on the tensors.
|
|
void initializeStreamsEvents(
|
|
const std::vector<at::Tensor>& tensors,
|
|
std::vector<c10::Stream>& streams,
|
|
std::vector<c10::Event>& events) {
|
|
streams.reserve(tensors.size());
|
|
events.reserve(tensors.size());
|
|
for (const auto i : c10::irange(tensors.size())) {
|
|
c10::Device device = tensors[i].device();
|
|
c10::impl::VirtualGuardImpl impl(device.type());
|
|
// Record event on current stream
|
|
events.emplace_back(device.type());
|
|
events[i].record(impl.getStream(device));
|
|
// Get a non-default stream to execute asynchronous CUDA operations
|
|
// on for this device. This ensures that the default stream used
|
|
// by the caller is not occupied by c10d related operations.
|
|
streams.push_back(
|
|
impl.getStreamFromGlobalPool(device, /*isHighPriority=*/true));
|
|
// Ensure the new stream is synchronized with the current stream.
|
|
events[i].block(streams[i]);
|
|
|
|
// `tensors` are created on a different stream. Hence, they must record
|
|
// new streams in this Work to prevent being freed before the Work finishes.
|
|
if (tensors[i].is_sparse()) {
|
|
if (tensors[i].is_coalesced()) {
|
|
impl.recordDataPtrOnStream(
|
|
tensors[i].indices().storage().data_ptr(), streams[i]);
|
|
impl.recordDataPtrOnStream(
|
|
tensors[i].values().storage().data_ptr(), streams[i]);
|
|
} else {
|
|
// We will need to coalesce first, which means new tensors will
|
|
// be allocated on the streams we just allocated, and there
|
|
// is no need to record them separately.
|
|
}
|
|
} else {
|
|
impl.recordDataPtrOnStream(tensors[i].storage().data_ptr(), streams[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function initializes a vector of CUDA streams, one per device,
|
|
// and ensures that these streams are synchronized with the current default
|
|
// streams. It is assumed that the tensors in the nested tensor vectors are
|
|
// on the same device.
|
|
void initializeStreamsEvents(
|
|
std::vector<std::vector<at::Tensor>>& tensors,
|
|
std::vector<c10::Stream>& streams,
|
|
std::vector<c10::Event>& events) {
|
|
// Ensure that the tensors in the nested tensor vectors are on the same
|
|
// device.
|
|
for (const auto& tensorgroup : tensors) {
|
|
const auto device_id = tensorgroup[0].device().index();
|
|
for (const auto& tensor : tensorgroup) {
|
|
if (tensor.device().index() != device_id) {
|
|
TORCH_CHECK(
|
|
false,
|
|
"tensors in the nested tensor vectors need to "
|
|
"be on the same device");
|
|
}
|
|
}
|
|
}
|
|
|
|
streams.reserve(tensors.size());
|
|
events.reserve(tensors.size());
|
|
for (const auto i : c10::irange(tensors.size())) {
|
|
c10::Device device = tensors[i][0].device();
|
|
c10::impl::VirtualGuardImpl impl(device.type());
|
|
// Record event on current stream
|
|
events.emplace_back(device.type());
|
|
events[i].record(impl.getStream(device));
|
|
// Get a non-default stream to execute asynchronous CUDA operations
|
|
// on for this output. This ensures that the default stream used
|
|
// by the caller is not occupied by c10d related operations.
|
|
streams.push_back(
|
|
impl.getStreamFromGlobalPool(device, /*isHighPriority=*/true));
|
|
// Ensure the new stream is synchronized with the current stream.
|
|
events[i].block(streams[i]);
|
|
|
|
for (at::Tensor& tensor : tensors[i]) {
|
|
// `tensors` are created on a different stream. Hence, they must record
|
|
// new streams in this Work to prevent being freed before the Work
|
|
// finishes.
|
|
impl.recordDataPtrOnStream(tensor.storage().data_ptr(), streams[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
const auto kLoopbackAddress = "127.0.0.1";
|
|
|
|
} // namespace
|
|
|
|
// static
|
|
void ProcessGroupGloo::AsyncWork::execute(c10::intrusive_ptr<AsyncWork> work) {
|
|
if (work->recordFunctionBeforeCallback_) {
|
|
work->recordFunctionBeforeCallback_();
|
|
}
|
|
try {
|
|
work->run();
|
|
} catch (...) {
|
|
work->finishWorkGlooError(std::current_exception());
|
|
return;
|
|
}
|
|
|
|
// FIXME: We need to call it here since Future completion requires all
|
|
// the work to be synchronized to CUDA.
|
|
work->synchronize();
|
|
work->finishWorkGloo();
|
|
}
|
|
|
|
std::vector<at::Tensor> ProcessGroupGloo::AsyncWork::result() {
|
|
TORCH_CHECK(
|
|
isCompleted(),
|
|
"Work needs to be completed before calling result(). "
|
|
"Should call wait() before result().");
|
|
TORCH_CHECK(
|
|
outputTensors_.size() <= 1,
|
|
"work result does not support list of lists, use .getFuture() and value()");
|
|
return outputTensors_.size() == 0 ? std::vector<at::Tensor>()
|
|
: outputTensors_.at(0);
|
|
}
|
|
|
|
c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupGloo::AsyncWork::
|
|
getFuture() {
|
|
return future_;
|
|
}
|
|
|
|
namespace {
|
|
c10::intrusive_ptr<c10::ivalue::Future> createFutureAsOutput(
|
|
const std::vector<std::vector<at::Tensor>>& outputTensors) {
|
|
if (outputTensors.size() > 1) {
|
|
return c10::make_intrusive<c10::ivalue::Future>(
|
|
c10::ListType::create(c10::ListType::create(c10::TensorType::get())));
|
|
}
|
|
return c10::make_intrusive<c10::ivalue::Future>(
|
|
c10::ListType::create(c10::TensorType::get()));
|
|
}
|
|
|
|
void returnFutureWithOutput(
|
|
c10::intrusive_ptr<c10::ivalue::Future>& future,
|
|
const std::vector<std::vector<at::Tensor>>& outputTensors) {
|
|
if (outputTensors.size() == 0) {
|
|
future->markCompleted(c10::IValue(std::vector<at::Tensor>()));
|
|
return;
|
|
}
|
|
if (outputTensors.size() > 1) {
|
|
future->markCompleted(c10::IValue(outputTensors));
|
|
return;
|
|
}
|
|
future->markCompleted(c10::IValue(outputTensors[0]));
|
|
}
|
|
} // namespace
|
|
|
|
inline void ProcessGroupGloo::AsyncWork::recordAsyncWorkProfilingInfo(
|
|
const char* profilingTitle,
|
|
const c10::optional<std::vector<at::Tensor>>& inputTensors) {
|
|
auto recordingFunction =
|
|
std::make_shared<at::RecordFunction>(at::RecordScope::USER_SCOPE);
|
|
if (recordingFunction->isActive()) {
|
|
std::function<void()> before_handler =
|
|
[inputTensors, profilingTitle, recordingFunction]() {
|
|
// The work will be started and completed by different threads.
|
|
recordingFunction->_setAsync();
|
|
std::vector<c10::IValue> inputs;
|
|
if (inputTensors) {
|
|
inputs.reserve(inputTensors->size());
|
|
for (const auto& tensor : *inputTensors) {
|
|
inputs.emplace_back(tensor);
|
|
}
|
|
}
|
|
recordingFunction->before(
|
|
profilingTitle,
|
|
c10::ArrayRef<const c10::IValue>(inputs.data(), inputs.size()));
|
|
};
|
|
recordFunctionBeforeCallback_ = at::wrapPropagateTLSState(before_handler);
|
|
std::function<void()> end_handler = [recordingFunction]() {
|
|
recordingFunction->end();
|
|
};
|
|
recordFunctionEndCallback_ = at::wrapPropagateTLSState(end_handler);
|
|
}
|
|
}
|
|
|
|
ProcessGroupGloo::AsyncWork::AsyncWork(
|
|
std::vector<std::vector<at::Tensor>> outputTensors,
|
|
const char* profilingTitle,
|
|
const c10::optional<std::vector<at::Tensor>>& inputTensors)
|
|
// Profiler: Pass nullptr as profilingTitle to parent constructor to
|
|
// replace default profiler implementation with async version that reports
|
|
// correct timestamps for work that is asynchronously executed.
|
|
: Work(-1, OpType::UNKNOWN, nullptr, inputTensors),
|
|
outputTensors_(std::move(outputTensors)),
|
|
future_(createFutureAsOutput(outputTensors)) {
|
|
if (profilingTitle != nullptr) {
|
|
recordAsyncWorkProfilingInfo(profilingTitle, inputTensors);
|
|
}
|
|
}
|
|
|
|
void ProcessGroupGloo::AsyncWork::finishWorkGlooError(std::exception_ptr eptr) {
|
|
future_->setError(eptr);
|
|
finish(eptr);
|
|
}
|
|
|
|
void ProcessGroupGloo::AsyncWork::finishWorkGloo() {
|
|
returnFutureWithOutput(future_, outputTensors_);
|
|
finish();
|
|
}
|
|
|
|
ProcessGroupGloo::SendWork::SendWork(
|
|
at::Tensor& tensor,
|
|
std::unique_ptr<::gloo::transport::UnboundBuffer> buffer)
|
|
: Work(
|
|
-1,
|
|
OpType::SEND,
|
|
"gloo:send",
|
|
c10::optional<std::vector<at::Tensor>>({tensor})),
|
|
tensor_(tensor),
|
|
buffer_(std::move(buffer)) {}
|
|
|
|
bool ProcessGroupGloo::SendWork::wait(std::chrono::milliseconds timeout) {
|
|
bool sendCompleted = false;
|
|
std::exception_ptr exception{nullptr};
|
|
try {
|
|
if (timeout == kNoTimeout) {
|
|
sendCompleted = buffer_->waitSend();
|
|
} else {
|
|
sendCompleted = buffer_->waitSend(timeout);
|
|
}
|
|
} catch (...) {
|
|
exception = std::current_exception();
|
|
}
|
|
|
|
// Completes the Work object and throws the exception.
|
|
finishAndThrow(exception);
|
|
return sendCompleted;
|
|
}
|
|
|
|
void ProcessGroupGloo::SendWork::abort() {
|
|
buffer_->abortWaitSend();
|
|
}
|
|
|
|
ProcessGroupGloo::RecvWork::RecvWork(
|
|
at::Tensor& tensor,
|
|
std::unique_ptr<::gloo::transport::UnboundBuffer> buffer,
|
|
const char* profilingTitle)
|
|
: Work(
|
|
-1,
|
|
OpType::UNKNOWN,
|
|
profilingTitle,
|
|
c10::optional<std::vector<at::Tensor>>({tensor})),
|
|
tensor_(tensor),
|
|
buffer_(std::move(buffer)),
|
|
srcRank_(-1) {}
|
|
|
|
int ProcessGroupGloo::RecvWork::sourceRank() const {
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
return srcRank_;
|
|
}
|
|
|
|
bool ProcessGroupGloo::RecvWork::wait(std::chrono::milliseconds timeout) {
|
|
bool recvCompleted = false;
|
|
std::exception_ptr exception{nullptr};
|
|
try {
|
|
if (timeout == kNoTimeout) {
|
|
recvCompleted = buffer_->waitRecv(&srcRank_);
|
|
} else {
|
|
recvCompleted = buffer_->waitRecv(&srcRank_, timeout);
|
|
}
|
|
} catch (...) {
|
|
exception = std::current_exception();
|
|
}
|
|
|
|
// Completes the Work object and throws the exception.
|
|
finishAndThrow(exception);
|
|
return recvCompleted;
|
|
}
|
|
|
|
void ProcessGroupGloo::RecvWork::abort() {
|
|
buffer_->abortWaitRecv();
|
|
}
|
|
|
|
ProcessGroupGloo::Options::Options(std::chrono::milliseconds timeout)
|
|
: Backend::Options(GLOO_BACKEND_NAME, timeout), threads(2) {}
|
|
|
|
namespace {
|
|
|
|
void socketInitialize() {
|
|
#ifdef _WIN32
|
|
::gloo::init_winsock();
|
|
#endif
|
|
}
|
|
|
|
// Gloo assumes that this machine's hostname can always be resolved
|
|
// to an address. If it doesn't it throws a runtime error saying
|
|
// that it can't be resolved. Instead of catching it, we choose
|
|
// to proactively check if an address can be resolved, so we can
|
|
// gracefully fall back to an alternative if it doesn't.
|
|
bool doesHostnameResolveToUsableAddress(const std::string& hostname) {
|
|
socketInitialize();
|
|
struct addrinfo hints {};
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
struct addrinfo* result = nullptr;
|
|
auto rv = getaddrinfo(hostname.c_str(), nullptr, &hints, &result);
|
|
if (rv < 0) {
|
|
return false;
|
|
}
|
|
struct addrinfo* rp = nullptr;
|
|
for (rp = result; rp != nullptr; rp = rp->ai_next) {
|
|
auto fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
|
|
if (fd == -1) {
|
|
continue;
|
|
}
|
|
rv = bind(fd, rp->ai_addr, rp->ai_addrlen);
|
|
#ifdef _WIN32
|
|
closesocket(fd);
|
|
#else
|
|
close(fd);
|
|
#endif
|
|
if (rv == -1) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
freeaddrinfo(result);
|
|
return rp != nullptr;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
|
|
createDeviceForInterface(const std::string& interface_name) {
|
|
return ::c10d::GlooDeviceFactory::makeDeviceForInterface(interface_name);
|
|
}
|
|
|
|
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
|
|
createDeviceForHostname(const std::string& hostname) {
|
|
TORCH_CHECK(
|
|
doesHostnameResolveToUsableAddress(hostname),
|
|
"Cannot resolve ",
|
|
hostname,
|
|
" to a (local) address");
|
|
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname);
|
|
}
|
|
|
|
#if defined(__linux__) || defined(_WIN32)
|
|
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
|
|
createDefaultDevice() {
|
|
// Use the hostname to resolve the network address to
|
|
// use. Note: if the hostname does not resolve to an address (e.g.
|
|
// because of misconfigured /etc/hosts file), this will not work.
|
|
socketInitialize();
|
|
std::array<char, HOST_NAME_MAX> hostname{};
|
|
auto rv = gethostname(hostname.data(), HOST_NAME_MAX);
|
|
if (rv != 0) {
|
|
throw std::system_error(errno, std::system_category());
|
|
}
|
|
|
|
// Use this machine's hostname if it resolves to an address.
|
|
if (doesHostnameResolveToUsableAddress(hostname.data())) {
|
|
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname.data());
|
|
}
|
|
|
|
// Otherwise, use the loopback address.
|
|
TORCH_WARN_ONCE(
|
|
"Unable to resolve hostname to a (local) address. ",
|
|
"Using the loopback address as fallback. ",
|
|
"Manually set the network interface to bind to with GLOO_SOCKET_IFNAME.");
|
|
return createDeviceForHostname(kLoopbackAddress);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __APPLE__
|
|
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
|
|
createDefaultDevice() {
|
|
// Use the hostname to resolve the network address to
|
|
// use. Note: if the hostname does not resolve to an address (e.g.
|
|
// because of misconfigured /etc/hosts file), this will not work.
|
|
const auto hostNameMax = sysconf(_SC_HOST_NAME_MAX);
|
|
auto hostname = std::unique_ptr<char[]>(new char[hostNameMax]);
|
|
auto rv = gethostname(hostname.get(), hostNameMax);
|
|
if (rv != 0) {
|
|
throw std::system_error(errno, std::system_category());
|
|
}
|
|
|
|
// Use this machine's hostname if it resolves to an address.
|
|
if (doesHostnameResolveToUsableAddress(hostname.get())) {
|
|
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname.get());
|
|
}
|
|
|
|
// Otherwise, use the loopback address.
|
|
TORCH_WARN_ONCE(
|
|
"Unable to resolve hostname to a (local) address. ",
|
|
"Using the loopback address as fallback. ",
|
|
"Manually set the network interface to bind to with GLOO_SOCKET_IFNAME.");
|
|
return createDeviceForHostname(kLoopbackAddress);
|
|
}
|
|
#endif
|
|
|
|
ProcessGroupGloo::ProcessGroupGloo(
|
|
const c10::intrusive_ptr<Store>& store,
|
|
int rank,
|
|
int size,
|
|
c10::intrusive_ptr<Options> options)
|
|
: Backend(rank, size),
|
|
store_(new GlooStore(store)),
|
|
options_(options),
|
|
stop_(false),
|
|
collectiveCounter_(0) {
|
|
auto& devices = options->devices;
|
|
if (devices.empty()) {
|
|
TORCH_CHECK(false, "No device(s) specified");
|
|
}
|
|
|
|
// Create and connect a context for every device.
|
|
//
|
|
// Note that the same device can be specified multiple times, either
|
|
// the same object, or the same logical device as different objects.
|
|
// Either mode is fine and only has performance implications.
|
|
//
|
|
// Using the same object multiple times means all contexts share a
|
|
// single I/O thread. If you use different objects for the same
|
|
// logical device they will have independent I/O threads. The latter
|
|
// option is needed if you have a fast NIC that cannot be saturated
|
|
// by a single I/O thread.
|
|
//
|
|
contexts_.reserve(options->devices.size());
|
|
for (const auto i : c10::irange(options->devices.size())) {
|
|
auto context = std::make_shared<::gloo::rendezvous::Context>(rank_, size_);
|
|
auto store = ::gloo::rendezvous::PrefixStore(std::to_string(i), *store_);
|
|
context->setTimeout(options->timeout);
|
|
context->connectFullMesh(store, options->devices[i]);
|
|
contexts_.push_back(std::move(context));
|
|
}
|
|
|
|
// Every worker thread stores the AsyncWork object it's currently
|
|
// working on in the workInProgress_ vector. It must have size equal
|
|
// to the number of workers such that they can simply index into it
|
|
// using the worker index they are started with.
|
|
workInProgress_.resize(options->threads);
|
|
|
|
threads_.resize(options->threads);
|
|
for (const auto i : c10::irange(threads_.size())) {
|
|
threads_[i] = std::thread(&ProcessGroupGloo::runLoop, this, i);
|
|
}
|
|
|
|
init();
|
|
}
|
|
|
|
ProcessGroupGloo::~ProcessGroupGloo() {
|
|
std::unique_lock<std::mutex> lock(workMutex_);
|
|
workConsumeCV_.wait(lock, [&] { return workQueue_.empty(); });
|
|
|
|
// Queue is empty, signal stop
|
|
stop_ = true;
|
|
|
|
// Release lock to allow threads to terminate
|
|
lock.unlock();
|
|
|
|
workProduceCV_.notify_all();
|
|
|
|
// Wait for worker threads to terminate
|
|
for (auto& thread : threads_) {
|
|
thread.join();
|
|
}
|
|
}
|
|
|
|
uint32_t ProcessGroupGloo::nextTag() {
|
|
return collectiveCounter_++;
|
|
}
|
|
|
|
std::shared_ptr<::gloo::Context> ProcessGroupGloo::getContext(uint32_t tag) {
|
|
return contexts_[tag % contexts_.size()];
|
|
}
|
|
|
|
void ProcessGroupGloo::runLoop(int workerIndex) {
|
|
std::unique_lock<std::mutex> lock(workMutex_);
|
|
|
|
while (!stop_) {
|
|
if (workQueue_.empty()) {
|
|
workProduceCV_.wait(lock);
|
|
continue;
|
|
}
|
|
|
|
auto work = std::move(workQueue_.front());
|
|
workQueue_.pop_front();
|
|
workInProgress_[workerIndex] = work;
|
|
lock.unlock();
|
|
|
|
// Notify after releasing the lock so that the waiter
|
|
// does not immediately block.
|
|
workConsumeCV_.notify_one();
|
|
|
|
AsyncWork::execute(std::move(work));
|
|
lock.lock();
|
|
workInProgress_[workerIndex].reset();
|
|
}
|
|
}
|
|
|
|
void ProcessGroupGloo::enqueue(c10::intrusive_ptr<AsyncWork> work) {
|
|
std::unique_lock<std::mutex> lock(workMutex_);
|
|
// Bump collective counter
|
|
if (sequenceNum_) {
|
|
sequenceNum_->increment();
|
|
}
|
|
workQueue_.push_back(std::move(work));
|
|
lock.unlock();
|
|
|
|
// Notify after releasing the lock so that the waiter
|
|
// does not immediately block.
|
|
workProduceCV_.notify_one();
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncBroadcastWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncBroadcastWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
int rootRank,
|
|
int rootTensor,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork({inputs}, "gloo:broadcast", inputs),
|
|
context(context),
|
|
inputs(inputs),
|
|
rootRank(rootRank),
|
|
rootTensor(rootTensor),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> inputs;
|
|
const int rootRank;
|
|
const int rootTensor;
|
|
const uint32_t tag;
|
|
|
|
void broadcast(at::Tensor& tensor) {
|
|
const auto& scalarType = tensor.scalar_type();
|
|
gloo::BroadcastOptions opts(context);
|
|
opts.setRoot(rootRank);
|
|
opts.setTag(tag);
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, tensor);
|
|
gloo::broadcast(opts);
|
|
}
|
|
|
|
void run() override {
|
|
broadcast(inputs[rootTensor]);
|
|
|
|
// Copy to non-root tensors
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
if (i == static_cast<size_t>(rootTensor)) {
|
|
continue;
|
|
}
|
|
inputs[i].copy_(inputs[rootTensor]);
|
|
}
|
|
}
|
|
};
|
|
|
|
class AsyncBroadcastCUDAWork : public AsyncBroadcastWork {
|
|
public:
|
|
AsyncBroadcastCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
int rootRank,
|
|
int rootTensor,
|
|
uint32_t tag)
|
|
: AsyncBroadcastWork(context, inputs, rootRank, rootTensor, tag) {
|
|
initializeStreamsEvents(inputs, streams, events);
|
|
|
|
// Create pinned host side tensors.
|
|
tmp = pinnedLike(inputs[rootTensor]);
|
|
c10::OptionalStreamGuard guard;
|
|
if (context->rank == rootRank) {
|
|
guard.reset_stream(streams[rootTensor]);
|
|
tmp.copy_(inputs[rootTensor], /* non_blocking */ true);
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operation if applicable.
|
|
if (context->rank == rootRank) {
|
|
streams[rootTensor].synchronize();
|
|
}
|
|
|
|
// Run broadcast on host side tensors.
|
|
broadcast(tmp);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(streams[i]);
|
|
inputs[i].copy_(tmp, /* non_blocking */ true);
|
|
events[i].record(streams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
c10::Device device = inputs[i].device();
|
|
events[i].block(
|
|
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
|
|
}
|
|
}
|
|
|
|
at::Tensor tmp;
|
|
std::vector<c10::Stream> streams;
|
|
std::vector<c10::Event> events;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::broadcast(
|
|
std::vector<at::Tensor>& inputs,
|
|
const BroadcastOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::broadcast: " + msg);
|
|
};
|
|
|
|
assertRootRank(invalidArgument, opts.rootRank, size_);
|
|
assertRootTensor(invalidArgument, opts.rootTensor, inputs.size());
|
|
assertDense(invalidArgument, inputs);
|
|
assertTypeAndSizesMatch(invalidArgument, inputs);
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
break;
|
|
case at::kCUDA:
|
|
// If the user gave us a CUDA tensor then CUDA must be loaded.
|
|
TORCH_INTERNAL_ASSERT(at::hasCUDA());
|
|
break;
|
|
default:
|
|
invalidArgument(c10::str("unsupported device type ", device.type()));
|
|
}
|
|
|
|
c10::intrusive_ptr<AsyncBroadcastWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = c10::make_intrusive<AsyncBroadcastWork>(
|
|
std::move(context), inputs, opts.rootRank, opts.rootTensor, tag);
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = c10::make_intrusive<AsyncBroadcastCUDAWork>(
|
|
std::move(context), inputs, opts.rootRank, opts.rootTensor, tag);
|
|
} else {
|
|
TORCH_CHECK(false, "Invalid backend");
|
|
}
|
|
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncAllreduceWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncAllreduceWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork({inputs}, "gloo:all_reduce", inputs),
|
|
context(context),
|
|
inputs(inputs),
|
|
reduceOp(reduceOp),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> inputs;
|
|
const ReduceOp reduceOp;
|
|
const uint32_t tag;
|
|
|
|
void allreduce(std::vector<at::Tensor>& tensors) {
|
|
const auto& scalarType = tensors[0].scalar_type();
|
|
gloo::AllreduceOptions opts(context);
|
|
opts.setReduceFunction(getFunction(scalarType, reduceOp));
|
|
opts.setTag(tag);
|
|
GENERATE_ALL_TYPES(scalarType, setOutputs, opts, tensors);
|
|
gloo::allreduce(opts);
|
|
}
|
|
|
|
void run() override {
|
|
allreduce(inputs);
|
|
}
|
|
|
|
template <typename T>
|
|
void getFunction(gloo::AllreduceOptions::Func& fn, const ReduceOp op) {
|
|
fn = toFunction<T>(op);
|
|
}
|
|
|
|
gloo::AllreduceOptions::Func getFunction(
|
|
const at::ScalarType& dtype,
|
|
const ReduceOp op) {
|
|
gloo::AllreduceOptions::Func fn;
|
|
GENERATE_ALL_TYPES(dtype, getFunction, fn, op);
|
|
return fn;
|
|
}
|
|
};
|
|
|
|
class AsyncAllreduceCoalescedWork : public AsyncAllreduceWork {
|
|
public:
|
|
AsyncAllreduceCoalescedWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: AsyncAllreduceWork(context, inputs, reduceOp, tag) {}
|
|
|
|
void run() override {
|
|
allreduceCoalesced(inputs);
|
|
}
|
|
|
|
private:
|
|
void allreduceCoalesced(std::vector<at::Tensor>& tensors) {
|
|
// reduce coalesced, flattened tensors.
|
|
at::Tensor coalescedTensor = flattenDenseTensors(tensors);
|
|
std::vector<at::Tensor> allreduceInput = {coalescedTensor};
|
|
allreduce(allreduceInput);
|
|
|
|
// separate and reshape tensors.
|
|
size_t offset = 0;
|
|
for (at::Tensor& tensor : tensors) {
|
|
const int64_t tensorNumel = tensor.numel();
|
|
const c10::IntArrayRef tensorShape = tensor.sizes();
|
|
tensor.copy_(coalescedTensor.slice(0, offset, offset + tensorNumel)
|
|
.view(tensorShape));
|
|
offset += tensorNumel;
|
|
}
|
|
}
|
|
};
|
|
|
|
class AsyncSparseAllreduceWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncSparseAllreduceWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork({inputs}, "gloo:sparse_all_reduce", inputs),
|
|
context(context),
|
|
inputs(inputs),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> inputs;
|
|
const uint32_t tag;
|
|
|
|
// We share dimensionality about the sparse tensors before collecting
|
|
// their contents. We assume here that the maximum number of sparse
|
|
// and dense dimensions is 4. This is stored in a contiguous piece of
|
|
// memory so that we can easily run allgather on it.
|
|
//
|
|
// The layout of this memory is as follows:
|
|
//
|
|
// - [0:4]: sparse dims
|
|
// - [4:8]: dense dims
|
|
// - [8]: nnz
|
|
//
|
|
class SparseTensorMetadata {
|
|
public:
|
|
static constexpr auto dim = 9;
|
|
|
|
// Construct from an existing metadata tensor to facilitate structured
|
|
// access to metadata from peers, after gathering it.
|
|
explicit SparseTensorMetadata(at::Tensor metadata)
|
|
: metadata_(metadata), data_(metadata_.data_ptr<int64_t>()) {
|
|
AT_ASSERT(metadata.scalar_type() == at::kLong);
|
|
AT_ASSERT(metadata.dim() == 1);
|
|
AT_ASSERT(metadata.size(0) == dim);
|
|
}
|
|
|
|
// Populate the metadata.
|
|
void populate_from_sparse_tensor(const at::Tensor& tensor) {
|
|
const auto sparse_dim = tensor.sparse_dim();
|
|
AT_ASSERT(sparse_dim <= 4);
|
|
for (const auto i : c10::irange(4)) {
|
|
if (i < sparse_dim) {
|
|
data_[i] = tensor.size(i);
|
|
}
|
|
}
|
|
const auto dense_dim = tensor.dense_dim();
|
|
AT_ASSERT(dense_dim <= 4);
|
|
for (const auto i : c10::irange(4)) {
|
|
if (i < dense_dim) {
|
|
data_[i + 4] = tensor.size(sparse_dim + i);
|
|
}
|
|
}
|
|
data_[8] = tensor._nnz();
|
|
}
|
|
|
|
std::vector<int64_t> sizes() const {
|
|
std::vector<int64_t> sizes;
|
|
// Sparse sizes
|
|
for (const auto i : c10::irange(4)) {
|
|
if (data_[i] <= 0) {
|
|
break;
|
|
}
|
|
sizes.push_back(data_[i]);
|
|
}
|
|
// Dense sizes
|
|
for (const auto i : c10::irange(4, 8)) {
|
|
if (data_[i] <= 0) {
|
|
break;
|
|
}
|
|
sizes.push_back(data_[i]);
|
|
}
|
|
return sizes;
|
|
}
|
|
|
|
int64_t nnz() const {
|
|
return data_[8];
|
|
}
|
|
|
|
protected:
|
|
at::Tensor metadata_;
|
|
int64_t* data_;
|
|
};
|
|
|
|
// Sparse allreduce is implemented with allgather on indices and values.
|
|
// Every process then sums the resulting sparse tensors locally.
|
|
// The nnz for sparse tensors may be different across processes, so first
|
|
// we run allgather on the nnz, and then allgather with max(nnz).
|
|
at::Tensor allreduce(std::vector<at::Tensor>& tensors) {
|
|
// TODO: This is a massive hack! There is some confusion about
|
|
// Variable/Tensor inside the body of this function. Turning off
|
|
// grad smooths over the confusion for now. This fixes
|
|
// test/test_c10d_gloo.py ProcessGroupGlooTest.test_sparse_allreduce_basics
|
|
//
|
|
// The correct fix is to stop allocating tensors that are not variables,
|
|
// but to conveniently do this c10d must depend on torch not ATen
|
|
at::AutoDispatchBelowAutograd guard;
|
|
auto input = tensors[0];
|
|
|
|
// Perform local reduction if we have multiple inputs.
|
|
for (const auto i : c10::irange(1, tensors.size())) {
|
|
input += tensors[i];
|
|
}
|
|
|
|
// Need to coalesce before we can access indices and values.
|
|
input = input.coalesce();
|
|
|
|
// Gather metadata information from all ranks.
|
|
auto metadata = allgather_metadata(input);
|
|
|
|
// Sanity check dimensionality across ranks.
|
|
{
|
|
const auto expected = metadata[context->rank].sizes();
|
|
for (const auto i : c10::irange(context->size)) {
|
|
if (i == context->rank) {
|
|
continue;
|
|
}
|
|
const auto actual = metadata[i].sizes();
|
|
TORCH_CHECK(actual == expected, "Sparse dimensions do not match");
|
|
}
|
|
}
|
|
|
|
// Gather all indices and all values.
|
|
auto indices = allgather_indices(input, metadata);
|
|
auto values = allgather_values(input, metadata);
|
|
|
|
// Perform global reduction.
|
|
AT_ASSERT(static_cast<int>(indices.size()) == context->size);
|
|
AT_ASSERT(static_cast<int>(values.size()) == context->size);
|
|
auto output = at::sparse_coo_tensor(
|
|
indices[0], values[0], input.sizes(), input.options());
|
|
for (const auto i : c10::irange(1, context->size)) {
|
|
output += at::sparse_coo_tensor(
|
|
indices[i], values[i], input.sizes(), input.options());
|
|
}
|
|
|
|
// Coalesce for good measure.
|
|
return output.coalesce();
|
|
}
|
|
|
|
void run() override {
|
|
auto output = allreduce(inputs);
|
|
|
|
// This copy is needed when we run a multi-gpu version of reduce (multiple
|
|
// inputs per rank).
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
inputs[i].copy_(output);
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<SparseTensorMetadata> allgather_metadata(
|
|
const at::Tensor& tensor) {
|
|
auto buffer =
|
|
at::zeros({context->size, SparseTensorMetadata::dim}, at::kLong);
|
|
|
|
// Prepare metadata vector (1 entry per rank)
|
|
std::vector<SparseTensorMetadata> metadata;
|
|
metadata.reserve(context->size);
|
|
for (const auto i : c10::irange(context->size)) {
|
|
metadata.emplace_back(buffer.select(0, i));
|
|
}
|
|
|
|
// Populate data for this rank
|
|
metadata[context->rank].populate_from_sparse_tensor(tensor);
|
|
|
|
// Allgather metadata
|
|
gloo::AllgatherOptions opts(context);
|
|
opts.setOutput(buffer.data_ptr<int64_t>(), buffer.numel());
|
|
opts.setTag(tag);
|
|
gloo::allgather(opts);
|
|
|
|
return metadata;
|
|
}
|
|
|
|
std::vector<at::Tensor> allgather_indices(
|
|
const at::Tensor& tensor,
|
|
const std::vector<SparseTensorMetadata>& metadata) {
|
|
const auto sparseDim = tensor.sparse_dim();
|
|
|
|
std::vector<size_t> counts(context->size);
|
|
int64_t totalSize = 0;
|
|
for (const auto i : c10::irange(metadata.size())) {
|
|
counts[i] = metadata[i].nnz() * sparseDim;
|
|
totalSize += counts[i];
|
|
}
|
|
|
|
auto output = at::empty({totalSize}, at::kLong);
|
|
|
|
// tensors copied from cuda may not be contiguous, get a contiguous
|
|
// tensor before use its data_ptr
|
|
auto input = tensor.indices().contiguous();
|
|
|
|
// Allgatherv indices.
|
|
gloo::AllgathervOptions opts(context);
|
|
opts.setInput(input.data_ptr<int64_t>(), input.numel());
|
|
opts.setOutput(output.data_ptr<int64_t>(), counts);
|
|
opts.setTag(tag);
|
|
gloo::allgatherv(opts);
|
|
|
|
// Compile indices tensor per rank.
|
|
std::vector<at::Tensor> indices;
|
|
indices.reserve(metadata.size());
|
|
size_t offset = 0;
|
|
for (const auto& i : metadata) {
|
|
const auto nnz = i.nnz();
|
|
const auto numel = sparseDim * nnz;
|
|
indices.push_back(
|
|
output.narrow(0, offset, numel).reshape({sparseDim, nnz}));
|
|
offset += numel;
|
|
}
|
|
|
|
return indices;
|
|
}
|
|
|
|
std::vector<at::Tensor> allgather_values(
|
|
const at::Tensor& tensor,
|
|
const std::vector<SparseTensorMetadata>& metadata) {
|
|
// There are nnz #dense_dim()-dimensional tensors per rank.
|
|
const auto valueShape = tensor.sizes().slice(tensor.sparse_dim());
|
|
size_t denseNumel = 1;
|
|
for (auto dim : valueShape) {
|
|
denseNumel *= dim;
|
|
}
|
|
|
|
std::vector<size_t> counts(context->size);
|
|
int64_t totalSize = 0;
|
|
for (const auto i : c10::irange(metadata.size())) {
|
|
counts[i] = metadata[i].nnz() * denseNumel;
|
|
totalSize += counts[i];
|
|
}
|
|
|
|
auto output = at::empty({totalSize}, tensor.scalar_type());
|
|
|
|
// Allgatherv indices.
|
|
gloo::AllgathervOptions opts(context);
|
|
// tensors copied from cuda may not be contiguous, get a contiguous
|
|
// tensor before use its data_ptr
|
|
at::Tensor valueTensor = tensor.values().contiguous();
|
|
GENERATE_ALL_TYPES(valueTensor.scalar_type(), setInput, opts, valueTensor);
|
|
GENERATE_ALL_TYPES(
|
|
valueTensor.scalar_type(), setOutput, opts, output, counts);
|
|
opts.setTag(tag);
|
|
gloo::allgatherv(opts);
|
|
|
|
// Compile values tensor per rank.
|
|
std::vector<at::Tensor> values;
|
|
values.reserve(metadata.size());
|
|
size_t offset = 0;
|
|
for (const auto& i : metadata) {
|
|
const auto nnz = i.nnz();
|
|
const auto numel = denseNumel * nnz;
|
|
auto tensorShape = std::vector<int64_t>({(int64_t)nnz});
|
|
std::copy(
|
|
valueShape.begin(),
|
|
valueShape.end(),
|
|
std::back_inserter(tensorShape));
|
|
values.push_back(output.narrow(0, offset, numel).reshape(tensorShape));
|
|
offset += numel;
|
|
}
|
|
|
|
return values;
|
|
}
|
|
};
|
|
|
|
class AsyncAllreduceCUDAWork : public AsyncAllreduceWork {
|
|
public:
|
|
AsyncAllreduceCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: AsyncAllreduceWork(context, inputs, reduceOp, tag) {
|
|
initializeStreamsEvents(inputs, streams, events);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmp.reserve(inputs.size());
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(streams[i]);
|
|
tmp.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
streams[i].synchronize();
|
|
}
|
|
|
|
// Run allreduce on host side tensors.
|
|
allreduce(tmp);
|
|
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(streams[i]);
|
|
inputs[i].copy_(tmp[i], /* non_blocking */ true);
|
|
events[i].record(streams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
c10::Device device = inputs[i].device();
|
|
events[i].block(
|
|
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmp;
|
|
std::vector<c10::Stream> streams;
|
|
std::vector<c10::Event> events;
|
|
};
|
|
|
|
class AsyncSparseAllreduceCUDAWork : public AsyncSparseAllreduceWork {
|
|
public:
|
|
AsyncSparseAllreduceCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
uint32_t tag)
|
|
: AsyncSparseAllreduceWork(context, inputs, tag) {
|
|
initializeStreamsEvents(inputs, streams, events);
|
|
|
|
// Kick off copy from CUDA tensors to CPU tensors.
|
|
// Note that both coalescing the sparse tensor and copying it to CPU
|
|
// memory must be performed asynchronously, or we block the caller.
|
|
tmp.reserve(inputs.size());
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(streams[i]);
|
|
tmp.push_back(
|
|
inputs[i].coalesce().to(at::DeviceType::CPU, /*non_blocking=*/true));
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
streams[i].synchronize();
|
|
}
|
|
|
|
// Run allreduce on host side tensors.
|
|
auto output = allreduce(tmp);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(streams[i]);
|
|
inputs[i].copy_(output, /*non_blocking=*/true);
|
|
events[i].record(streams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
c10::Device device = inputs[i].device();
|
|
events[i].block(
|
|
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmp;
|
|
std::vector<c10::Stream> streams;
|
|
std::vector<c10::Event> events;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::allreduce(
|
|
std::vector<at::Tensor>& inputs,
|
|
const AllreduceOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::allreduce: " + msg);
|
|
};
|
|
|
|
assertNonEmpty(invalidArgument, inputs);
|
|
assertLayoutMatch(invalidArgument, inputs);
|
|
assertTypeAndSizesMatch(invalidArgument, inputs);
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
break;
|
|
case at::kCUDA:
|
|
// If the user gave us a CUDA tensor then CUDA must be loaded.
|
|
TORCH_INTERNAL_ASSERT(at::hasCUDA());
|
|
break;
|
|
default:
|
|
invalidArgument(c10::str("unsupported device type ", device.type()));
|
|
}
|
|
|
|
const auto& layout = inputs[0].layout();
|
|
if (layout == c10::kSparse && opts.reduceOp != ReduceOp::SUM) {
|
|
invalidArgument(
|
|
"unsupported reduction operation "
|
|
"(allreduce of sparse tensors only works with ReduceOp.SUM)");
|
|
}
|
|
|
|
c10::intrusive_ptr<AsyncWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
if (layout == c10::kStrided) {
|
|
work = c10::make_intrusive<AsyncAllreduceWork>(
|
|
std::move(context), inputs, opts.reduceOp, tag);
|
|
} else if (layout == c10::kSparse) {
|
|
work = c10::make_intrusive<AsyncSparseAllreduceWork>(
|
|
std::move(context), inputs, tag);
|
|
} else {
|
|
invalidArgument("unsupported layout");
|
|
}
|
|
} else if (device.type() == at::kCUDA) {
|
|
if (layout == c10::kStrided) {
|
|
work = c10::make_intrusive<AsyncAllreduceCUDAWork>(
|
|
std::move(context), inputs, opts.reduceOp, tag);
|
|
} else if (layout == c10::kSparse) {
|
|
work = c10::make_intrusive<AsyncSparseAllreduceCUDAWork>(
|
|
std::move(context), inputs, tag);
|
|
} else {
|
|
invalidArgument("unsupported layout");
|
|
}
|
|
} else {
|
|
TORCH_CHECK(false, "Invalid backend");
|
|
}
|
|
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::allreduce_coalesced(
|
|
std::vector<at::Tensor>& tensors,
|
|
const AllreduceCoalescedOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::allreduce_coalesced: " + msg);
|
|
};
|
|
assertNonEmpty(invalidArgument, tensors);
|
|
|
|
// tensors will be flattened and concatenated (coalesced). This means that
|
|
// input
|
|
// tensors must have the same device, layout and type.
|
|
assertLayoutMatch(invalidArgument, tensors);
|
|
if (!std::all_of(tensors.begin(), tensors.end(), [&](at::Tensor& t) {
|
|
return t.options().type_equal(tensors[0].options());
|
|
})) {
|
|
invalidArgument("tensors must all have the same type");
|
|
}
|
|
if (!std::all_of(tensors.begin(), tensors.end(), [&](at::Tensor& t) {
|
|
return t.device() == tensors[0].device();
|
|
})) {
|
|
invalidArgument("tensors must all be on the same device");
|
|
}
|
|
|
|
const c10::Device& device = tensors[0].device();
|
|
const c10::Layout& layout = tensors[0].layout();
|
|
|
|
// invalid arguments are detected early here before any calls to nextTag()
|
|
// which result in the collectiveCounter_ being incremented.
|
|
switch (device.type()) {
|
|
case c10::kCPU:
|
|
break;
|
|
default:
|
|
invalidArgument(c10::str("unsupported device type ", device.type()));
|
|
}
|
|
|
|
switch (layout) {
|
|
case c10::kStrided:
|
|
break;
|
|
default:
|
|
invalidArgument("unsupported layout");
|
|
}
|
|
|
|
c10::intrusive_ptr<AsyncWork> work;
|
|
const uint32_t tag = nextTag();
|
|
std::shared_ptr<gloo::Context> context = getContext(tag);
|
|
if (device.type() == c10::kCPU) {
|
|
if (layout == c10::kStrided) {
|
|
work = c10::make_intrusive<AsyncAllreduceCoalescedWork>(
|
|
std::move(context), tensors, opts.reduceOp, tag);
|
|
} else {
|
|
invalidArgument("unsupported layout");
|
|
}
|
|
} else {
|
|
TORCH_CHECK(false, "Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncReduceWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncReduceWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
int rootRank,
|
|
int rootTensor,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork({inputs}, "gloo:reduce", inputs),
|
|
context(context),
|
|
inputs(inputs),
|
|
rootRank(rootRank),
|
|
rootTensor(rootTensor),
|
|
reduceOp(reduceOp),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> inputs;
|
|
const int rootRank;
|
|
const int rootTensor;
|
|
const ReduceOp reduceOp;
|
|
const uint32_t tag;
|
|
|
|
void reduce(std::vector<at::Tensor>& tensors) {
|
|
const auto& scalarType = tensors[0].scalar_type();
|
|
gloo::ReduceOptions opts(context);
|
|
opts.setRoot(rootRank);
|
|
opts.setTag(tag);
|
|
opts.setReduceFunction(getFunction(scalarType, reduceOp));
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, tensors[0]);
|
|
gloo::reduce(opts);
|
|
}
|
|
|
|
void run() override {
|
|
reduce(inputs);
|
|
}
|
|
|
|
protected:
|
|
template <typename T>
|
|
void getFunction(gloo::ReduceOptions::Func& fn, const ReduceOp op) {
|
|
fn = toFunction<T>(op);
|
|
}
|
|
|
|
gloo::ReduceOptions::Func getFunction(
|
|
const at::ScalarType& dtype,
|
|
const ReduceOp op) {
|
|
gloo::ReduceOptions::Func fn;
|
|
GENERATE_ALL_TYPES(dtype, getFunction, fn, op);
|
|
return fn;
|
|
}
|
|
};
|
|
|
|
class AsyncReduceCUDAWork : public AsyncReduceWork {
|
|
public:
|
|
AsyncReduceCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& inputs,
|
|
int rootRank,
|
|
int rootTensor,
|
|
ReduceOp reduceOp,
|
|
uint32_t tag)
|
|
: AsyncReduceWork(context, inputs, rootRank, rootTensor, reduceOp, tag) {
|
|
initializeStreamsEvents(inputs, streams, events);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmp.reserve(inputs.size());
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(streams[i]);
|
|
tmp.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
streams[i].synchronize();
|
|
}
|
|
|
|
// Run reduce on host side tensors.
|
|
reduce(tmp);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(streams[i]);
|
|
inputs[i].copy_(tmp[i], /* non_blocking */ true);
|
|
events[i].record(streams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
c10::Device device = inputs[i].device();
|
|
events[i].block(
|
|
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmp;
|
|
std::vector<c10::Stream> streams;
|
|
std::vector<c10::Event> events;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::reduce(
|
|
std::vector<at::Tensor>& inputs,
|
|
const ReduceOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::reduce: " + msg);
|
|
};
|
|
|
|
assertRootRank(invalidArgument, opts.rootRank, size_);
|
|
assertRootTensor(invalidArgument, opts.rootTensor, inputs.size());
|
|
assertSingleElement(invalidArgument, inputs);
|
|
assertDense(invalidArgument, inputs);
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
break;
|
|
case at::kCUDA:
|
|
// If the user gave us a CUDA tensor then CUDA must be loaded.
|
|
TORCH_INTERNAL_ASSERT(at::hasCUDA());
|
|
break;
|
|
default:
|
|
invalidArgument(c10::str("unsupported device type ", device.type()));
|
|
}
|
|
|
|
c10::intrusive_ptr<AsyncReduceWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = c10::make_intrusive<AsyncReduceWork>(
|
|
std::move(context),
|
|
inputs,
|
|
opts.rootRank,
|
|
opts.rootTensor,
|
|
opts.reduceOp,
|
|
tag);
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = c10::make_intrusive<AsyncReduceCUDAWork>(
|
|
std::move(context),
|
|
inputs,
|
|
opts.rootRank,
|
|
opts.rootTensor,
|
|
opts.reduceOp,
|
|
tag);
|
|
} else {
|
|
TORCH_CHECK(false, "Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncAllgatherWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncAllgatherWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork(outputs, "gloo:all_gather", inputs),
|
|
context(context),
|
|
outputs(outputs),
|
|
inputs(inputs),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<std::vector<at::Tensor>> outputs;
|
|
std::vector<at::Tensor> inputs;
|
|
const uint32_t tag;
|
|
|
|
void allgather(
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs) {
|
|
const auto& scalarType = inputs[0].scalar_type();
|
|
gloo::AllgatherOptions opts(context);
|
|
opts.setTag(tag);
|
|
|
|
// Use single flattened input tensor.
|
|
at::Tensor flatInputTensor = flattenDenseTensors(inputs);
|
|
GENERATE_ALL_TYPES(scalarType, setInput, opts, flatInputTensor);
|
|
|
|
// Use single flat output tensor.
|
|
// The first dimension corresponds to the index into outputs[N],
|
|
// so copying into the actual output later is easy.
|
|
at::Tensor flatOutputTensor = newLikeFlat(outputs[0]);
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
|
|
gloo::allgather(opts);
|
|
|
|
// Unflatten into output tensors.
|
|
for (auto& outputgroup : outputs) {
|
|
for (const auto j : c10::irange(outputgroup.size())) {
|
|
outputgroup[j].copy_(flatOutputTensor[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
allgather(outputs, inputs);
|
|
}
|
|
};
|
|
|
|
// Note: current CUDA implementation holds the assumption that the
|
|
// tensors in the nested output tensor vectors are on the same device.
|
|
class AsyncAllgatherCUDAWork : public AsyncAllgatherWork {
|
|
public:
|
|
AsyncAllgatherCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
uint32_t tag)
|
|
: AsyncAllgatherWork(context, outputs, inputs, tag) {
|
|
initializeStreamsEvents(inputs, inputStreams, inputEvents);
|
|
initializeStreamsEvents(outputs, outputStreams, outputEvents);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmpInputs.reserve(inputs.size());
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(inputStreams[i]);
|
|
tmpInputs.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
|
|
}
|
|
|
|
tmpOutputs.resize(outputs.size());
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
tmpOutputs[i].reserve(outputs[i].size());
|
|
for (const auto j : c10::irange(outputs[i].size())) {
|
|
tmpOutputs[i].push_back(pinnedLike(outputs[i][j]));
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
inputStreams[i].synchronize();
|
|
}
|
|
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
outputStreams[i].synchronize();
|
|
}
|
|
|
|
// Run allgather on host side tensors.
|
|
allgather(tmpOutputs, tmpInputs);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
guard.reset_stream(outputStreams[i]);
|
|
for (const auto j : c10::irange(outputs[i].size())) {
|
|
outputs[i][j].copy_(tmpOutputs[i][j], /* non_blocking */ true);
|
|
}
|
|
outputEvents[i].record(outputStreams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
c10::Device device = outputs[i][0].device();
|
|
outputEvents[i].block(
|
|
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmpInputs;
|
|
std::vector<c10::Stream> inputStreams;
|
|
std::vector<c10::Event> inputEvents;
|
|
|
|
std::vector<std::vector<at::Tensor>> tmpOutputs;
|
|
std::vector<c10::Stream> outputStreams;
|
|
std::vector<c10::Event> outputEvents;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// Note: current CUDA implementation holds the assumption that the
|
|
// tensors in the nested output tensor vectors are on the same device.
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::allgather(
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
const AllgatherOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::allgather: " + msg);
|
|
};
|
|
|
|
if (inputs.size() == 0) {
|
|
invalidArgument("requires non-empty input tensor list");
|
|
}
|
|
|
|
if (inputs.size() != outputs.size()) {
|
|
invalidArgument(
|
|
"requires input/output tensor lists to have the same length");
|
|
}
|
|
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
const auto expected = inputs.size() * getSize();
|
|
const auto actual = outputs[i].size();
|
|
if (actual != expected) {
|
|
invalidArgument(
|
|
"invalid output tensor list at index " + std::to_string(i) +
|
|
" (expected length " + std::to_string(expected) + ", got " +
|
|
std::to_string(actual) + ")");
|
|
}
|
|
}
|
|
|
|
assertDense(invalidArgument, inputs);
|
|
|
|
// Expect all input/output tensors to have the same type and sizes
|
|
const auto& options = inputs[0].options();
|
|
const auto& sizes = inputs[0].sizes();
|
|
assertTypeAndSizesMatch(invalidArgument, inputs, options, sizes);
|
|
for (const auto& output : outputs) {
|
|
assertTypeAndSizesMatch(invalidArgument, output, options, sizes);
|
|
}
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
break;
|
|
case at::kCUDA:
|
|
// If the user gave us a CUDA tensor then CUDA must be loaded.
|
|
TORCH_INTERNAL_ASSERT(at::hasCUDA());
|
|
break;
|
|
default:
|
|
invalidArgument(c10::str("unsupported device type ", device.type()));
|
|
}
|
|
|
|
c10::intrusive_ptr<AsyncAllgatherWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = c10::make_intrusive<AsyncAllgatherWork>(
|
|
std::move(context), outputs, inputs, tag);
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = c10::make_intrusive<AsyncAllgatherCUDAWork>(
|
|
std::move(context), outputs, inputs, tag);
|
|
} else {
|
|
TORCH_CHECK(false, "Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncAllgatherCoalescedWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncAllgatherCoalescedWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& output_lists,
|
|
std::vector<at::Tensor>& input_list,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork(
|
|
output_lists,
|
|
"gloo:all_gather",
|
|
input_list),
|
|
context(context),
|
|
output_lists(output_lists),
|
|
input_list(input_list),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<std::vector<at::Tensor>> output_lists;
|
|
std::vector<at::Tensor> input_list;
|
|
const uint32_t tag;
|
|
|
|
void allgather_coalesced() {
|
|
assert(!output_lists.empty());
|
|
assert(!output_lists[0].empty());
|
|
assert(!input_list.empty());
|
|
|
|
const auto& scalarType = input_list[0].scalar_type();
|
|
gloo::AllgatherOptions opts(context);
|
|
opts.setTag(tag);
|
|
|
|
// Use single flattened input tensor.
|
|
at::Tensor flatInputTensor = flattenDenseTensors(input_list);
|
|
GENERATE_ALL_TYPES(scalarType, setInput, opts, flatInputTensor);
|
|
|
|
// Compute total number of elements we need to allocate for all tensors
|
|
// requested.
|
|
int64_t output_numel = 0;
|
|
for (const auto& t : output_lists[0]) {
|
|
output_numel += t.numel();
|
|
}
|
|
output_numel *= output_lists.size();
|
|
// Use single flat output tensor.
|
|
at::Tensor flatOutputTensor =
|
|
at::empty({output_numel}, output_lists[0][0].options());
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
|
|
gloo::allgather(opts);
|
|
|
|
int64_t current_element = 0;
|
|
for (auto& output_list : output_lists) {
|
|
for (auto& output_tensor : output_list) {
|
|
output_tensor.copy_(
|
|
flatOutputTensor.narrow(0, current_element, output_tensor.numel())
|
|
.reshape(output_tensor.sizes()),
|
|
true);
|
|
current_element += output_tensor.numel();
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
allgather_coalesced();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::allgather_coalesced(
|
|
std::vector<std::vector<at::Tensor>>& output_lists,
|
|
std::vector<at::Tensor>& input_list,
|
|
const AllgatherOptions& /* unused */) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::allgather_coalesced: " + msg);
|
|
};
|
|
|
|
if (input_list.empty()) {
|
|
invalidArgument("requires non-empty input tensor list");
|
|
}
|
|
|
|
if (output_lists.size() != getSize()) {
|
|
invalidArgument("output lists should be equal to world size");
|
|
}
|
|
|
|
assertSameDevice(invalidArgument, input_list);
|
|
|
|
// Expect i'th tensor of each list from 'output_lists' match i'th tensor
|
|
// from 'input_list' in type and size.
|
|
for (const auto& output_list : output_lists) {
|
|
if (output_list.size() != input_list.size()) {
|
|
invalidArgument(
|
|
"invalid output size: (expected length " +
|
|
std::to_string(input_list.size()) + ", got " +
|
|
std::to_string(output_list.size()) + ")");
|
|
}
|
|
for (const auto i : c10::irange(output_list.size())) {
|
|
const auto expected = input_list[i].sizes();
|
|
const auto actual = output_list[i].sizes();
|
|
if (actual != expected) {
|
|
invalidArgument(
|
|
"invalid size of output tensor at index " + std::to_string(i) +
|
|
" (expected length " + toString(expected) + ", got " +
|
|
toString(actual) + ")");
|
|
}
|
|
if (!input_list[i].options().type_equal(output_list[i].options())) {
|
|
invalidArgument(
|
|
"invalid tensor type at index " + std::to_string(i) +
|
|
" (expected " + input_list[i].toString() + ", got " +
|
|
output_list[i].toString() + ")");
|
|
}
|
|
}
|
|
}
|
|
|
|
assertDense(invalidArgument, input_list);
|
|
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
auto work = c10::make_intrusive<AsyncAllgatherCoalescedWork>(
|
|
std::move(context), output_lists, input_list, tag);
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::_allgather_base(
|
|
at::Tensor& /*unused */,
|
|
at::Tensor& /*unused */,
|
|
const AllgatherOptions& /*unused */) {
|
|
TORCH_CHECK(false, "no support for _allgather_base in Gloo process group");
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncGatherWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncGatherWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
int root,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork(outputs, "gloo:gather", inputs),
|
|
context(context),
|
|
outputs(outputs),
|
|
inputs(inputs),
|
|
root(root),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<std::vector<at::Tensor>> outputs;
|
|
std::vector<at::Tensor> inputs;
|
|
const int root;
|
|
const uint32_t tag;
|
|
|
|
void gather(
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs) {
|
|
const auto scalarType = inputs[0].scalar_type();
|
|
gloo::GatherOptions opts(context);
|
|
opts.setRoot(root);
|
|
opts.setTag(tag);
|
|
|
|
// Set single temporary tensor on root process.
|
|
// This is later scattered to the separate output tensors.
|
|
at::Tensor flatOutputTensor;
|
|
if (context->rank == root) {
|
|
flatOutputTensor = newLikeFlat(outputs[0]);
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
|
|
}
|
|
|
|
// Set single input tensor on all processes.
|
|
GENERATE_ALL_TYPES(scalarType, setInput, opts, inputs[0]);
|
|
gloo::gather(opts);
|
|
|
|
// Unflatten into output tensors on root process.
|
|
if (context->rank == root) {
|
|
for (const auto i : c10::irange(outputs[0].size())) {
|
|
outputs[0][i].copy_(flatOutputTensor[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
gather(outputs, inputs);
|
|
}
|
|
};
|
|
|
|
// Note: current CUDA implementation holds the assumptions:
|
|
// - inputs.size() is 1
|
|
// - outputs.size() is 1
|
|
// - the size of the nested output tensors is world size, i.e.,
|
|
// outputs[0].size, is world size
|
|
class AsyncGatherCUDAWork : public AsyncGatherWork {
|
|
public:
|
|
AsyncGatherCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
int root,
|
|
uint32_t tag)
|
|
: AsyncGatherWork(context, outputs, inputs, root, tag) {
|
|
initializeStreamsEvents(inputs, inputStreams, inputEvents);
|
|
initializeStreamsEvents(outputs, outputStreams, outputEvents);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmpInputs.reserve(inputs.size());
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(inputStreams[i]);
|
|
tmpInputs.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
|
|
}
|
|
|
|
tmpOutputs.resize(outputs.size());
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
tmpOutputs[i].reserve(outputs[i].size());
|
|
for (const auto j : c10::irange(outputs[i].size())) {
|
|
tmpOutputs[i].push_back(pinnedLike(outputs[i][j]));
|
|
}
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
inputStreams[i].synchronize();
|
|
}
|
|
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
outputStreams[i].synchronize();
|
|
}
|
|
|
|
// Run gather on host side tensors.
|
|
gather(tmpOutputs, tmpInputs);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
guard.reset_stream(outputStreams[i]);
|
|
for (const auto j : c10::irange(outputs[i].size())) {
|
|
outputs[i][j].copy_(tmpOutputs[i][j], /* non_blocking */ true);
|
|
}
|
|
outputEvents[i].record(outputStreams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
c10::Device device = outputs[i][0].device();
|
|
outputEvents[i].block(
|
|
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmpInputs;
|
|
std::vector<c10::Stream> inputStreams;
|
|
std::vector<c10::Event> inputEvents;
|
|
|
|
std::vector<std::vector<at::Tensor>> tmpOutputs;
|
|
std::vector<c10::Stream> outputStreams;
|
|
std::vector<c10::Event> outputEvents;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::gather(
|
|
std::vector<std::vector<at::Tensor>>& outputs,
|
|
std::vector<at::Tensor>& inputs,
|
|
const GatherOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::gather: " + msg);
|
|
};
|
|
|
|
assertRootRank(invalidArgument, opts.rootRank, size_);
|
|
assertSingleElementInput(invalidArgument, inputs);
|
|
assertDense(invalidArgument, inputs);
|
|
|
|
if (getRank() == opts.rootRank) {
|
|
if (outputs.size() != 1) {
|
|
std::stringstream ss;
|
|
ss << "requires a single-element output list containing a list with "
|
|
<< getSize() << " tensors.";
|
|
invalidArgument(ss.str());
|
|
} else if (outputs[0].size() != static_cast<size_t>(getSize())) {
|
|
std::stringstream ss;
|
|
ss << "Incorrect output list size " << outputs[0].size()
|
|
<< ". Output list size should be " << getSize()
|
|
<< ", same as size of the process group.";
|
|
invalidArgument(ss.str());
|
|
}
|
|
|
|
const auto& options = inputs[0].options();
|
|
const auto& sizes = inputs[0].sizes();
|
|
assertTypeAndSizesMatch(invalidArgument, outputs[0], options, sizes);
|
|
} else {
|
|
if (outputs.size() != 0) {
|
|
invalidArgument("requires empty output on non-root");
|
|
}
|
|
}
|
|
|
|
const auto& device = inputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
break;
|
|
case at::kCUDA:
|
|
// If the user gave us a CUDA tensor then CUDA must be loaded.
|
|
TORCH_INTERNAL_ASSERT(at::hasCUDA());
|
|
break;
|
|
default:
|
|
invalidArgument(c10::str("unsupported device type ", device.type()));
|
|
}
|
|
|
|
c10::intrusive_ptr<AsyncGatherWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = c10::make_intrusive<AsyncGatherWork>(
|
|
std::move(context), outputs, inputs, opts.rootRank, tag);
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = c10::make_intrusive<AsyncGatherCUDAWork>(
|
|
std::move(context), outputs, inputs, opts.rootRank, tag);
|
|
} else {
|
|
TORCH_CHECK(false, "Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncScatterWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncScatterWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs,
|
|
int root,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork(
|
|
{outputs},
|
|
"gloo:scatter",
|
|
inputs.size() > 0
|
|
? c10::optional<std::vector<at::Tensor>>(inputs[0])
|
|
: c10::nullopt),
|
|
context(context),
|
|
outputs(outputs),
|
|
inputs(inputs),
|
|
root(root),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<at::Tensor> outputs;
|
|
std::vector<std::vector<at::Tensor>> inputs;
|
|
const int root;
|
|
const uint32_t tag;
|
|
|
|
void scatter(
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs) {
|
|
const auto scalarType = outputs[0].scalar_type();
|
|
gloo::ScatterOptions opts(context);
|
|
opts.setRoot(root);
|
|
opts.setTag(tag);
|
|
|
|
// Set list of input tensors on root process
|
|
if (context->rank == root) {
|
|
GENERATE_ALL_TYPES(scalarType, setInputs, opts, inputs[0]);
|
|
}
|
|
|
|
// Set single output tensor on all processes
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, outputs[0]);
|
|
gloo::scatter(opts);
|
|
}
|
|
|
|
void run() override {
|
|
scatter(outputs, inputs);
|
|
}
|
|
};
|
|
|
|
class AsyncScatterCUDAWork : public AsyncScatterWork {
|
|
public:
|
|
AsyncScatterCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs,
|
|
int root,
|
|
uint32_t tag)
|
|
: AsyncScatterWork(context, outputs, inputs, root, tag) {
|
|
initializeStreamsEvents(inputs, inputStreams, inputEvents);
|
|
initializeStreamsEvents(outputs, outputStreams, outputEvents);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
tmpInputs.resize(inputs.size());
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
guard.reset_stream(inputStreams[i]);
|
|
tmpInputs[i].reserve(inputs[i].size());
|
|
for (const auto j : c10::irange(inputs[i].size())) {
|
|
tmpInputs[i].push_back(
|
|
pinnedLike(inputs[i][j]).copy_(inputs[i][j], true));
|
|
}
|
|
}
|
|
|
|
tmpOutputs.reserve(outputs.size());
|
|
for (auto& output : outputs) {
|
|
tmpOutputs.push_back(pinnedLike(output));
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
for (const auto i : c10::irange(inputs.size())) {
|
|
inputStreams[i].synchronize();
|
|
}
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
outputStreams[i].synchronize();
|
|
}
|
|
|
|
// Run scatter on host side tensors.
|
|
scatter(tmpOutputs, tmpInputs);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
c10::OptionalStreamGuard guard;
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
guard.reset_stream(outputStreams[i]);
|
|
outputs[i].copy_(tmpOutputs[i], /* non_blocking */ true);
|
|
outputEvents[i].record(outputStreams[i]);
|
|
}
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
c10::Device device = outputs[i].device();
|
|
outputEvents[i].block(
|
|
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
|
|
}
|
|
}
|
|
|
|
std::vector<at::Tensor> tmpOutputs;
|
|
std::vector<c10::Stream> outputStreams;
|
|
std::vector<c10::Event> outputEvents;
|
|
|
|
std::vector<std::vector<at::Tensor>> tmpInputs;
|
|
std::vector<c10::Stream> inputStreams;
|
|
std::vector<c10::Event> inputEvents;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::scatter(
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs,
|
|
const ScatterOptions& opts) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::scatter: " + msg);
|
|
};
|
|
|
|
assertRootRank(invalidArgument, opts.rootRank, size_);
|
|
assertSingleElementOutput(invalidArgument, outputs);
|
|
assertDense(invalidArgument, outputs);
|
|
|
|
if (getRank() == opts.rootRank) {
|
|
if (inputs.size() != 1) {
|
|
std::stringstream ss;
|
|
ss << "requires a single-element input list containing a list with "
|
|
<< getSize() << " tensors";
|
|
invalidArgument(ss.str());
|
|
} else if (inputs[0].size() != static_cast<size_t>(getSize())) {
|
|
std::stringstream ss;
|
|
ss << "Incorrect input list size " << inputs[0].size()
|
|
<< ". Input list size should be " << getSize()
|
|
<< ", same as size of the process group.";
|
|
invalidArgument(ss.str());
|
|
}
|
|
const auto& options = outputs[0].options();
|
|
const auto& sizes = outputs[0].sizes();
|
|
assertTypeAndSizesMatch(invalidArgument, inputs[0], options, sizes);
|
|
} else {
|
|
if (inputs.size() != 0) {
|
|
invalidArgument("requires empty input on non-root");
|
|
}
|
|
}
|
|
|
|
const auto& device = outputs[0].device();
|
|
switch (device.type()) {
|
|
case at::kCPU:
|
|
break;
|
|
case at::kCUDA:
|
|
// If the user gave us a CUDA tensor then CUDA must be loaded.
|
|
TORCH_INTERNAL_ASSERT(at::hasCUDA());
|
|
break;
|
|
default:
|
|
invalidArgument(c10::str("unsupported device type ", device.type()));
|
|
}
|
|
|
|
c10::intrusive_ptr<AsyncScatterWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
if (device.type() == at::kCPU) {
|
|
work = c10::make_intrusive<AsyncScatterWork>(
|
|
std::move(context), outputs, inputs, opts.rootRank, tag);
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = c10::make_intrusive<AsyncScatterCUDAWork>(
|
|
std::move(context), outputs, inputs, opts.rootRank, tag);
|
|
} else {
|
|
TORCH_CHECK(false, "Invalid backend");
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::reduce_scatter(
|
|
std::vector<at::Tensor>& outputs,
|
|
std::vector<std::vector<at::Tensor>>& inputs,
|
|
const ReduceScatterOptions& opts) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo does not support reduce_scatter");
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncAlltoallWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncAlltoallWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
at::Tensor& outputTensor,
|
|
at::Tensor& inputTensor,
|
|
std::vector<int64_t>& outputCounts,
|
|
std::vector<int64_t>& inputCounts,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork(
|
|
{{outputTensor}},
|
|
"gloo:all_to_all",
|
|
c10::optional<std::vector<at::Tensor>>({inputTensor})),
|
|
context(context),
|
|
outputTensor(outputTensor),
|
|
inputTensor(inputTensor),
|
|
outputCounts(std::move(outputCounts)),
|
|
inputCounts(std::move(inputCounts)),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
at::Tensor outputTensor;
|
|
at::Tensor inputTensor;
|
|
std::vector<int64_t> outputCounts;
|
|
std::vector<int64_t> inputCounts;
|
|
const uint32_t tag;
|
|
|
|
void alltoall(at::Tensor& outputTensor, at::Tensor& inputTensor) {
|
|
const auto scalarType = outputTensor.scalar_type();
|
|
if (outputCounts.size() == 0 && inputCounts.size() == 0) {
|
|
// Gloo alltoall
|
|
gloo::AlltoallOptions opts(context);
|
|
opts.setTag(tag);
|
|
GENERATE_ALL_TYPES(scalarType, setInput, opts, inputTensor);
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, outputTensor);
|
|
gloo::alltoall(opts);
|
|
} else {
|
|
// Gloo alltoallv
|
|
c10d::checkSplitSizes(inputCounts, inputTensor, context->size);
|
|
c10d::checkSplitSizes(outputCounts, outputTensor, context->size);
|
|
std::vector<int64_t> sendCounts(context->size);
|
|
std::vector<int64_t> recvCounts(context->size);
|
|
std::vector<int64_t> sendOffsets(context->size);
|
|
std::vector<int64_t> recvOffsets(context->size);
|
|
c10d::computeLengthsAndOffsets(
|
|
inputCounts, inputTensor, &sendCounts, &sendOffsets);
|
|
c10d::computeLengthsAndOffsets(
|
|
outputCounts, outputTensor, &recvCounts, &recvOffsets);
|
|
gloo::AlltoallvOptions opts(context);
|
|
opts.setTag(tag);
|
|
GENERATE_ALL_TYPES(scalarType, setInput, opts, inputTensor, sendCounts);
|
|
GENERATE_ALL_TYPES(scalarType, setOutput, opts, outputTensor, recvCounts);
|
|
gloo::alltoallv(opts);
|
|
}
|
|
}
|
|
|
|
void run() override {
|
|
alltoall(outputTensor, inputTensor);
|
|
}
|
|
};
|
|
|
|
class AsyncAlltoallCUDAWork : public AsyncAlltoallWork {
|
|
public:
|
|
AsyncAlltoallCUDAWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
at::Tensor& outputTensor,
|
|
at::Tensor& inputTensor,
|
|
std::vector<int64_t>& outputCounts,
|
|
std::vector<int64_t>& inputCounts,
|
|
uint32_t tag)
|
|
: AsyncAlltoallWork(
|
|
context,
|
|
outputTensor,
|
|
inputTensor,
|
|
outputCounts,
|
|
inputCounts,
|
|
tag) {
|
|
initializeStreamsEvents({inputTensor}, inputStreams, inputEvents);
|
|
initializeStreamsEvents({outputTensor}, outputStreams, outputEvents);
|
|
|
|
// Kick off copy from CUDA tensors to pinned CPU tensors.
|
|
c10::OptionalStreamGuard guard;
|
|
guard.reset_stream(inputStreams.front());
|
|
cpuInput = pinnedLike(inputTensor).copy_(inputTensor, true);
|
|
|
|
guard.reset_stream(outputStreams.front());
|
|
cpuOutput = pinnedLike(outputTensor);
|
|
}
|
|
|
|
void run() override {
|
|
// Synchronize with copy operations.
|
|
inputStreams.front().synchronize();
|
|
outputStreams.front().synchronize();
|
|
|
|
// Run alltoall on host side tensors.
|
|
alltoall(cpuOutput, cpuInput);
|
|
|
|
// Kick off copy back to the CUDA tensors.
|
|
c10::OptionalStreamGuard guard;
|
|
guard.reset_stream(outputStreams.front());
|
|
outputTensor.copy_(cpuOutput, /* non_blocking */ true);
|
|
outputEvents.front().record(outputStreams.front());
|
|
}
|
|
|
|
void synchronize() override {
|
|
// Synchronize with the copy back to CUDA tensors.
|
|
c10::Device device = outputTensor.device();
|
|
outputEvents.front().block(
|
|
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
|
|
}
|
|
|
|
at::Tensor cpuOutput;
|
|
std::vector<c10::Stream> outputStreams;
|
|
std::vector<c10::Event> outputEvents;
|
|
|
|
at::Tensor cpuInput;
|
|
std::vector<c10::Stream> inputStreams;
|
|
std::vector<c10::Event> inputEvents;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::alltoall_base(
|
|
at::Tensor& outputTensor,
|
|
at::Tensor& inputTensor,
|
|
std::vector<int64_t>& outputCounts,
|
|
std::vector<int64_t>& inputCounts,
|
|
const AllToAllOptions& /* unused */) {
|
|
static auto invalidArgument = [](const std::string& msg) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::alltoall_base: " + msg);
|
|
};
|
|
|
|
TORCH_CHECK(
|
|
outputTensor.device() == inputTensor.device(),
|
|
"output tensor and input tensor must be on the same type of device");
|
|
assertDense(invalidArgument, {outputTensor});
|
|
assertDense(invalidArgument, {inputTensor});
|
|
|
|
const auto& device = outputTensor.device();
|
|
c10::intrusive_ptr<AsyncAlltoallWork> work;
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
|
|
if (device.type() == at::kCPU) {
|
|
work = c10::make_intrusive<AsyncAlltoallWork>(
|
|
std::move(context),
|
|
outputTensor,
|
|
inputTensor,
|
|
outputCounts,
|
|
inputCounts,
|
|
tag);
|
|
} else if (device.type() == at::kCUDA) {
|
|
work = c10::make_intrusive<AsyncAlltoallCUDAWork>(
|
|
std::move(context),
|
|
outputTensor,
|
|
inputTensor,
|
|
outputCounts,
|
|
inputCounts,
|
|
tag);
|
|
} else {
|
|
invalidArgument(c10::str("unsupported device type ", device.type()));
|
|
}
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
at::Tensor& checkSingleTensor(std::vector<at::Tensor>& tensors) {
|
|
if (tensors.size() != 1) {
|
|
TORCH_CHECK(false, "ProcessGroupGloo::send takes a single tensor");
|
|
}
|
|
auto& tensor = tensors[0];
|
|
if (!tensor.is_contiguous()) {
|
|
TORCH_CHECK(false, "input tensor has to be contiguous");
|
|
}
|
|
if (tensor.is_sparse()) {
|
|
TORCH_CHECK(false, "input tensor has to be dense");
|
|
}
|
|
return tensor;
|
|
}
|
|
|
|
uint32_t checkTag(int32_t tag) {
|
|
TORCH_CHECK(tag >= 0, "Tag must be nonnegative");
|
|
return (uint32_t)tag;
|
|
}
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::send(
|
|
std::vector<at::Tensor>& tensors,
|
|
int dstRank,
|
|
int tag) {
|
|
auto& tensor = checkSingleTensor(tensors);
|
|
auto utag = checkTag(tag);
|
|
auto ptr = tensor.data_ptr();
|
|
auto size = tensor.numel() * tensor.element_size();
|
|
|
|
// Construct unbound buffer.
|
|
auto context = getContext(tag);
|
|
auto buf = context->createUnboundBuffer(ptr, size);
|
|
buf->send(dstRank, utag);
|
|
|
|
// The work captures the tensor to prevent it being deallocated and
|
|
// the unbound buffer to synchronize on completion of the send.
|
|
return c10::make_intrusive<SendWork>(tensor, std::move(buf));
|
|
}
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::recv(
|
|
std::vector<at::Tensor>& tensors,
|
|
int srcRank,
|
|
int tag) {
|
|
auto& tensor = checkSingleTensor(tensors);
|
|
auto utag = checkTag(tag);
|
|
auto ptr = tensor.data_ptr();
|
|
auto size = tensor.numel() * tensor.element_size();
|
|
|
|
// Construct unbound buffer.
|
|
auto context = getContext(tag);
|
|
auto buf = context->createUnboundBuffer(ptr, size);
|
|
buf->recv(srcRank, utag);
|
|
|
|
// The work captures the tensor to prevent it being deallocated and
|
|
// the unbound buffer to synchronize on completion of the recv.
|
|
return c10::make_intrusive<RecvWork>(tensor, std::move(buf), "gloo:recv");
|
|
}
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::recvAnysource(
|
|
std::vector<at::Tensor>& tensors,
|
|
int tag) {
|
|
auto& tensor = checkSingleTensor(tensors);
|
|
auto utag = checkTag(tag);
|
|
auto ptr = tensor.data_ptr();
|
|
auto size = tensor.numel() * tensor.element_size();
|
|
|
|
// Construct unbound buffer.
|
|
auto context = getContext(tag);
|
|
auto buf = context->createUnboundBuffer(ptr, size);
|
|
|
|
// Build list of ranks that this operation can recv from. In these
|
|
// bindings we don't differentiate between ranks and can receive
|
|
// from any other process in the group.
|
|
std::vector<int> srcRanks;
|
|
srcRanks.resize(size_);
|
|
for (const auto i : c10::irange(size_)) {
|
|
srcRanks.push_back(i);
|
|
}
|
|
|
|
buf->recv(srcRanks, utag);
|
|
|
|
// The work captures the tensor to prevent it being deallocated and
|
|
// the unbound buffer to synchronize on completion of the recv.
|
|
return c10::make_intrusive<RecvWork>(
|
|
tensor, std::move(buf), "gloo:recvAnySource");
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AsyncBarrierWork : public ProcessGroupGloo::AsyncWork {
|
|
public:
|
|
AsyncBarrierWork(
|
|
const std::shared_ptr<gloo::Context>& context,
|
|
std::vector<c10::weak_intrusive_ptr<AsyncWork>> priorWork,
|
|
uint32_t tag)
|
|
: ProcessGroupGloo::AsyncWork({}, "gloo:barrier", c10::nullopt),
|
|
context(context),
|
|
priorWork(std::move(priorWork)),
|
|
tag(tag) {}
|
|
|
|
std::shared_ptr<gloo::Context> context;
|
|
std::vector<c10::weak_intrusive_ptr<AsyncWork>> priorWork;
|
|
const uint32_t tag;
|
|
|
|
void run() override {
|
|
// Wait on prior work to complete
|
|
for (auto& weakWork : priorWork) {
|
|
auto work = weakWork.lock();
|
|
if (work) {
|
|
work->wait();
|
|
}
|
|
}
|
|
|
|
gloo::BarrierOptions opts(context);
|
|
opts.setTag(tag);
|
|
gloo::barrier(opts);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
c10::intrusive_ptr<Work> ProcessGroupGloo::barrier(const BarrierOptions& opts) {
|
|
std::vector<c10::weak_intrusive_ptr<AsyncWork>> priorWork;
|
|
|
|
// Snapshot all in progress and pending work as weak_ptr.
|
|
// When executing a barrier, we need to ensure that all prior work
|
|
// has completed before completing itself.
|
|
{
|
|
std::unique_lock<std::mutex> lock(workMutex_);
|
|
priorWork.insert(
|
|
priorWork.end(), workInProgress_.begin(), workInProgress_.end());
|
|
priorWork.insert(priorWork.end(), workQueue_.begin(), workQueue_.end());
|
|
}
|
|
|
|
auto tag = nextTag();
|
|
auto context = getContext(tag);
|
|
auto work = c10::make_intrusive<AsyncBarrierWork>(
|
|
std::move(context), std::move(priorWork), tag);
|
|
enqueue(work);
|
|
return work;
|
|
}
|
|
|
|
void ProcessGroupGloo::monitoredBarrier(
|
|
const BarrierOptions& opts,
|
|
bool waitAllRanks) {
|
|
C10_LOG_API_USAGE_ONCE("torch.distributed.monitored_barrier");
|
|
// Use default timeout if no timeout was specified.
|
|
auto monitoredBarrierTimeout =
|
|
(opts.timeout == kUnsetTimeout) ? this->options_->timeout : opts.timeout;
|
|
auto rank = this->getRank();
|
|
auto t1 = nextTag();
|
|
auto t2 = nextTag();
|
|
std::vector<at::Tensor> commTensor = {at::tensor({rank})};
|
|
// only enforce timeout on rank 0. This is so that other ranks aren't timed
|
|
// out first, bringing down the job without reporting which rank timed out.
|
|
if (rank != 0) {
|
|
auto sendWork = send(commTensor, 0, t1);
|
|
auto recvWork = recv(commTensor, 0, t2);
|
|
try {
|
|
sendWork->wait();
|
|
recvWork->wait();
|
|
} catch (const std::exception& e) {
|
|
const std::string error = c10::str(
|
|
"Rank ",
|
|
rank,
|
|
" successfully reached monitoredBarrier, but received errors while waiting",
|
|
" for send/recv from rank 0. Please check rank 0 logs for faulty rank.");
|
|
logAndThrow(
|
|
error, c10::str(error, "\n Original exception: \n", e.what()));
|
|
}
|
|
return;
|
|
}
|
|
auto startTime = std::chrono::steady_clock::now();
|
|
auto worldSize = this->getSize();
|
|
// Mappings of rank to recvWork/sendWork respectively.
|
|
std::map<int, c10::intrusive_ptr<Work>> recvWorkMap;
|
|
std::map<int, c10::intrusive_ptr<Work>> sendWorkMap;
|
|
// Kick off recvWork and wait to unblock sendWork->wait() from non-zero ranks.
|
|
// Failed/hanging ranks will not ack this call, letting rank 0 know about the
|
|
// failure.
|
|
for (const auto dstRank : c10::irange(1, worldSize)) {
|
|
recvWorkMap.insert({dstRank, recv(commTensor, dstRank, t1)});
|
|
}
|
|
|
|
auto waitLoop = [&](const std::map<int, c10::intrusive_ptr<Work>>& works) {
|
|
std::vector<int> processedRanks;
|
|
for (auto& work : works) {
|
|
bool rankResponded = false;
|
|
try {
|
|
// Note: if waitAllRanks=false, we recompute the time remaining in
|
|
// barrier and use this recomputed time in wait(). However, if
|
|
// waitAllRanks=true, we use the original timeout, since if we use
|
|
// up the entire timeout waiting for response from rank n, then we
|
|
// won't have any timeout left to query ranks beginning with n + 1.
|
|
auto remainingTime =
|
|
getRemainingTime(startTime, monitoredBarrierTimeout, waitAllRanks);
|
|
if (!waitAllRanks) {
|
|
checkRemainingTime(
|
|
monitoredBarrierTimeout, remainingTime, processedRanks, rank);
|
|
}
|
|
work.second->wait(remainingTime);
|
|
rankResponded = true;
|
|
} catch (const std::exception& e) {
|
|
const std::string error = c10::str(
|
|
"[Rank 0]: Rank ",
|
|
work.first,
|
|
" failed to pass monitoredBarrier in ",
|
|
monitoredBarrierTimeout.count(),
|
|
" ms");
|
|
if (waitAllRanks) {
|
|
LOG(ERROR) << error;
|
|
} else {
|
|
logAndThrow(
|
|
error, c10::str(error, "\n Original exception: \n", e.what()));
|
|
}
|
|
}
|
|
if (rankResponded) {
|
|
processedRanks.push_back(work.first);
|
|
}
|
|
}
|
|
// If we are collecting all failed ranks, check if we need to throw if
|
|
// some ranks have not responded.
|
|
// Ensure all ranks from 1, ... WORLD_SIZE -1 have been successfully
|
|
// processed.
|
|
auto rankFailure = (processedRanks.size() != size_ - 1);
|
|
if (waitAllRanks && rankFailure) {
|
|
std::vector<int> failedRanks;
|
|
for (const auto i : c10::irange(1, size_)) {
|
|
if (std::find(processedRanks.begin(), processedRanks.end(), i) ==
|
|
processedRanks.end()) {
|
|
failedRanks.push_back(i);
|
|
}
|
|
}
|
|
|
|
TORCH_INTERNAL_ASSERT(!failedRanks.empty());
|
|
const std::string ranksStr = c10::Join(", ", failedRanks);
|
|
const std::string error = c10::str(
|
|
"[Rank 0]: Ranks ",
|
|
ranksStr,
|
|
" failed to pass monitoredBarrier in ",
|
|
monitoredBarrierTimeout.count(),
|
|
" ms");
|
|
logAndThrow(error, error);
|
|
}
|
|
};
|
|
|
|
waitLoop(recvWorkMap);
|
|
// If we've reached here successfully, this means all ranks have acked in
|
|
// monitoredBarrier. Unblock all ranks now by responding to their recv(). This
|
|
// ensures that this is a true barrier in that all ranks exit it successfully
|
|
// or none of them do.
|
|
for (const auto dstRank : c10::irange(1, worldSize)) {
|
|
sendWorkMap.insert({dstRank, send(commTensor, dstRank, t2)});
|
|
}
|
|
|
|
waitLoop(sendWorkMap);
|
|
}
|
|
|
|
void ProcessGroupGloo::setSequenceNumberForGroup() {
|
|
if (rank_ == 0) {
|
|
// Create and broadcast sequence number
|
|
auto seq = 1 + rand();
|
|
sequenceNum_ = c10d::SequenceNum(seq);
|
|
std::vector<char> values = c10d::toVec<char>(seq, kBytes);
|
|
store_->set(kSeqNumStoreKey, values);
|
|
} else {
|
|
// Read rank 0's sequence number from store.
|
|
sequenceNum_ = c10d::SequenceNum();
|
|
store_->wait({kSeqNumStoreKey}, options_->timeout);
|
|
std::vector<char> values = store_->get(kSeqNumStoreKey);
|
|
uint64_t num = c10d::fromVec<char>(values);
|
|
sequenceNum_->set(num);
|
|
}
|
|
}
|
|
|
|
uint64_t ProcessGroupGloo::getSequenceNumberForGroup() {
|
|
if (sequenceNum_ == c10::nullopt) {
|
|
return 0;
|
|
}
|
|
return sequenceNum_->get();
|
|
}
|
|
|
|
} // namespace c10d
|
|
|
|
#endif // USE_C10D_GLOO
|