mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/88365 Approved by: https://github.com/Chillee
583 lines
22 KiB
Python
583 lines
22 KiB
Python
import contextlib
|
|
import ctypes
|
|
import inspect
|
|
import sys
|
|
import types
|
|
from abc import ABC
|
|
from typing import Any, Dict
|
|
|
|
import torch._C
|
|
|
|
import torch.jit
|
|
from torch import _utils_internal
|
|
|
|
# Query `hasattr` only once.
|
|
|
|
_SET_GLOBAL_FLAGS = hasattr(sys, "getdlopenflags") and hasattr(sys, "setdlopenflags")
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def dl_open_guard():
|
|
"""
|
|
Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a
|
|
shared library to load custom operators.
|
|
"""
|
|
if _SET_GLOBAL_FLAGS:
|
|
old_flags = sys.getdlopenflags()
|
|
sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL)
|
|
yield
|
|
if _SET_GLOBAL_FLAGS:
|
|
sys.setdlopenflags(old_flags)
|
|
|
|
|
|
def has_key(op, k):
|
|
return (
|
|
torch._C._dispatch_has_kernel_for_dispatch_key(op.name(), k)
|
|
or k in op.py_kernels
|
|
)
|
|
|
|
|
|
# TODO(voz) We are missing an entire axis of registration - Modes for the python key
|
|
class PyOperatorABC(ABC):
|
|
def __call__(self, *args, **kwargs):
|
|
pass
|
|
|
|
def py_impl(self, dispatch_key, fn):
|
|
pass
|
|
|
|
def name(self):
|
|
pass
|
|
|
|
|
|
is_included_in_alias = torch._C._dispatch_is_included_in_alias
|
|
|
|
DispatchKey = torch._C.DispatchKey
|
|
|
|
# Equivalent to computeDispatchTableEntryWithDebug
|
|
def resolve_key(op: PyOperatorABC, k: DispatchKey): # type: ignore[valid-type]
|
|
# 1. (Direct) operator registration
|
|
if has_key(op, k):
|
|
return k
|
|
# 2.1 Use CompositeExplicitAutogradNonFunctional kernel if available
|
|
cand = DispatchKey.CompositeExplicitAutogradNonFunctional
|
|
if (k == DispatchKey.Undefined or is_included_in_alias(k, cand)) and has_key(
|
|
op, cand
|
|
):
|
|
return cand
|
|
# 2.2 Use CompositeExplicitAutograd kernel if available
|
|
cand = DispatchKey.CompositeExplicitAutograd
|
|
if (k == DispatchKey.Undefined or is_included_in_alias(k, cand)) and has_key(
|
|
op, cand
|
|
):
|
|
return cand
|
|
has_backend_kernel = torch._C._dispatch_has_kernel_for_any_dispatch_key(
|
|
op.name(), torch._C._dispatch_get_backend_keyset_from_autograd(k)
|
|
) or has_key(op, DispatchKey.CompositeExplicitAutograd)
|
|
# 2.3. Use CompositeImplicitAutograd kernel if available
|
|
cand = DispatchKey.CompositeImplicitAutogradNestedTensor
|
|
if (
|
|
(k != DispatchKey.Undefined and is_included_in_alias(k, cand))
|
|
and has_key(op, cand)
|
|
and not has_backend_kernel
|
|
):
|
|
return cand
|
|
cand = DispatchKey.CompositeImplicitAutograd
|
|
if (k == DispatchKey.Undefined or is_included_in_alias(k, cand)) and has_key(
|
|
op, cand
|
|
):
|
|
if (
|
|
k == DispatchKey.AutogradOther
|
|
and torch._C._dispatch_has_kernel_for_any_dispatch_key(
|
|
op.name(), torch._C._dispatch_autogradother_backends
|
|
)
|
|
):
|
|
raise RuntimeError("ambiguous autogradother kernel")
|
|
elif not has_backend_kernel:
|
|
return cand
|
|
# 2.4. For autograd backend keys, use kernel from DispatchKey::Autograd if available
|
|
cand = DispatchKey.Autograd
|
|
if is_included_in_alias(k, cand) and has_key(op, cand):
|
|
return cand
|
|
# Backend fallback
|
|
if torch._C._dispatch_has_backend_fallback(k):
|
|
# The dispatch key itself will implicitly route to backend fallback.
|
|
# This is probably not great for the pure Python implementation.
|
|
return k
|
|
raise NotImplementedError(f"could not find kernel for {op} at dispatch key {k}")
|
|
|
|
|
|
pyop_namespace = {}
|
|
|
|
|
|
class PyOperator(PyOperatorABC):
|
|
def __init__(self, name):
|
|
self._name = name
|
|
self.table = {}
|
|
self.python_key_mode_table = {}
|
|
|
|
# Make _OPNamespace not scream, this whole name based association needs a good hard look
|
|
self.__name__ = name
|
|
pyop_namespace[name] = self
|
|
|
|
def fallthrough(self, dispatch_key):
|
|
self.table[dispatch_key] = self._fallthrough_fn(self, dispatch_key)
|
|
|
|
def py_impl(self, dispatch_key_or_mode):
|
|
def inner(fn):
|
|
if inspect.isclass(dispatch_key_or_mode) and issubclass(
|
|
dispatch_key_or_mode, torch.utils._python_dispatch.TorchDispatchMode
|
|
):
|
|
mode = dispatch_key_or_mode
|
|
assert mode not in self.python_key_mode_table
|
|
# TODO(voz): Should we replace setting torch._C.DispatchKey.Python entirely with setting mode keys?
|
|
self.python_key_mode_table[mode] = fn
|
|
return fn
|
|
|
|
dispatch_key = dispatch_key_or_mode
|
|
assert (
|
|
dispatch_key != torch._C.DispatchKey.Python
|
|
), "Please register a mode for the torch._C.DispatchKey.Python key instead."
|
|
assert isinstance(dispatch_key, torch._C.DispatchKey)
|
|
assert dispatch_key not in self.table
|
|
self.table[dispatch_key] = fn
|
|
return fn
|
|
|
|
return inner
|
|
|
|
def dispatch(self, dispatch_key, *args, **kwargs):
|
|
from torch.utils._python_dispatch import _get_current_dispatch_mode
|
|
|
|
if dispatch_key == torch._C.DispatchKey.Python:
|
|
# TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
|
|
curr_mode = type(_get_current_dispatch_mode())
|
|
assert (
|
|
curr_mode is not None
|
|
), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
|
|
assert (
|
|
curr_mode in self.python_key_mode_table
|
|
), f"Current active mode {curr_mode} not registered"
|
|
# TODO(voz): The idea behind this is that we do not yet support dispatch by key + mode, only key.
|
|
return self.python_key_mode_table[curr_mode](*args, **kwargs)
|
|
|
|
assert dispatch_key in self.table
|
|
return self.table[dispatch_key](*args, **kwargs)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
flat_args = _to_flat_tuple(args, kwargs)
|
|
if torch.overrides.has_torch_function(flat_args):
|
|
return torch.overrides.handle_torch_function(
|
|
self, flat_args, *args, **kwargs
|
|
)
|
|
|
|
dispatch_key_set = _compute_keyset(args, kwargs)
|
|
return self.dispatch(dispatch_key_set.highestPriorityTypeId(), *args, **kwargs)
|
|
|
|
def name(self):
|
|
return self.name
|
|
|
|
# TODO(voz): Should rewrite fallthrough register as the impl for keys we do not specify
|
|
# as opposed to being this sort of explicit thing where ops are a little too key aware...
|
|
def _fallthrough_fn(self, operator, dispatch_key):
|
|
def inner(*args, **kwargs):
|
|
all_keys_after_current = torch._C._dispatch_keyset_full_after(dispatch_key)
|
|
all_keys_after_current_masked = all_keys_after_current & _compute_keyset(
|
|
args, kwargs
|
|
)
|
|
return self.dispatch(
|
|
all_keys_after_current_masked.highestPriorityTypeId(), *args, **kwargs
|
|
)
|
|
|
|
return inner
|
|
|
|
|
|
def _to_flat_tuple(args, kwargs):
|
|
flat_args, _ = torch.utils._pytree.tree_flatten(args)
|
|
flat_kwargs, _ = torch.utils._pytree.tree_flatten(kwargs)
|
|
flat_all = flat_args + flat_kwargs
|
|
return flat_all
|
|
|
|
|
|
def _compute_keyset(args, kwargs):
|
|
tensors = _get_tensors(args, kwargs)
|
|
return key_extractor(tensors)
|
|
|
|
|
|
def _get_tensors(args, kwargs):
|
|
flat_all = _to_flat_tuple(args, kwargs)
|
|
tensor_args = [t for t in flat_all if isinstance(t, torch.Tensor)]
|
|
return tuple(tensor_args)
|
|
|
|
|
|
# Note - this should maintain identical impl to the C++ dispatcher key extraction logic
|
|
# at ATen/core/dispatch/DispatchKeyExtractor.h
|
|
def key_extractor(tensors):
|
|
key_set = torch._C._dispatch_tls_local_include_set()
|
|
for tensor in tensors:
|
|
key_set = key_set | torch._C._dispatch_keys(tensor)
|
|
key_set = key_set - torch._C._dispatch_tls_local_exclude_set()
|
|
return key_set
|
|
|
|
|
|
# Each OpOverload object contains pointer to a a specific operator overload, a pointer to the parent `OpOverloadPacket` object.
|
|
# You can obtain an OpOverload object through attribute query on OpOverloadPacket.
|
|
class OpOverload(PyOperatorABC):
|
|
def __init__(self, overloadpacket, op, op_dk, schema, tags):
|
|
self._op = op
|
|
self._op_dk = op_dk
|
|
self._schema = schema
|
|
self._overloadpacket = overloadpacket
|
|
self._tags = tags
|
|
self._overloadname = (
|
|
"default" if schema.overload_name == "" else schema.overload_name
|
|
)
|
|
self._name = self._schema.name
|
|
if schema.overload_name:
|
|
self._name += "." + schema.overload_name
|
|
self.py_kernels: Dict[torch._C.DispatchKey, Any] = {} # type: ignore[name-defined]
|
|
self.__name__ = "{}.{}".format(
|
|
self._schema.name.split("::")[1], self._overloadname
|
|
)
|
|
# TODO(voz): Lots of shared logic around python_key_mode_table, maybe pull into base...
|
|
self.python_key_mode_table = {}
|
|
self.__module__ = overloadpacket.__module__
|
|
op.__module__ = overloadpacket.__module__
|
|
self.__qualname__ = self._name
|
|
self.__annotations__ = {}
|
|
|
|
# it's a no-op since OpOverload object is immutable and must be unique for a given op overload.
|
|
def __deepcopy__(self, memo=None):
|
|
return self
|
|
|
|
def __repr__(self):
|
|
return "<OpOverload(op='{}.{}', overload='{}')>".format(
|
|
*self._schema.name.split("::"), self._overloadname
|
|
)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self._op(*args, **kwargs or {})
|
|
|
|
def __hash__(self):
|
|
return hash(self._op)
|
|
|
|
# `my_namespace.my_op_name.overload_name`
|
|
def __str__(self):
|
|
return "{}.{}.{}".format(*self._schema.name.split("::"), self._overloadname)
|
|
|
|
@property
|
|
def namespace(self):
|
|
return self._schema.name.split("::")[0]
|
|
|
|
def decompose(self, *args, **kwargs):
|
|
dk = torch._C.DispatchKey.CompositeImplicitAutograd
|
|
if dk in self.py_kernels:
|
|
# NB: This branch is not too necessary anymore, because we can
|
|
# apply Python CompositeImplicitAutograd *before* tracing
|
|
# using Python dispatcher (also taking advantage of the autograd
|
|
# formula). But it's included for completeness
|
|
return self.py_kernels[dk](*args, **kwargs)
|
|
elif torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), dk):
|
|
return self._op_dk(dk, *args, **kwargs)
|
|
else:
|
|
return NotImplemented
|
|
|
|
def py_impl(self, dispatch_key_or_mode):
|
|
def inner(fn):
|
|
if inspect.isclass(dispatch_key_or_mode) and issubclass(
|
|
dispatch_key_or_mode, torch.utils._python_dispatch.TorchDispatchMode
|
|
):
|
|
mode = dispatch_key_or_mode
|
|
assert mode not in self.python_key_mode_table
|
|
# TODO(voz): Should we replace setting torch._C.DispatchKey.Python entirely with setting mode keys?
|
|
self.python_key_mode_table[mode] = fn
|
|
return fn
|
|
|
|
assert isinstance(dispatch_key_or_mode, torch._C.DispatchKey)
|
|
assert (
|
|
dispatch_key_or_mode != torch._C.DispatchKey.Python
|
|
), "Please register a mode for the torch._C.DispatchKey.Python key instead."
|
|
|
|
if dispatch_key_or_mode in self.py_kernels:
|
|
raise RuntimeError(
|
|
f"Trying to override a python impl for {dispatch_key_or_mode} on operator {self._name}"
|
|
)
|
|
self.py_kernels[dispatch_key_or_mode] = fn
|
|
return fn
|
|
|
|
return inner
|
|
|
|
# This implements the pre-computation logic for the Python dispatcher.
|
|
def __getattr__(self, attr):
|
|
if len(attr) == 0 or not attr[0].isupper():
|
|
raise AttributeError()
|
|
|
|
try:
|
|
key = torch._C._dispatch_key_parse(attr)
|
|
except Exception as e:
|
|
raise AttributeError()
|
|
|
|
if key == torch._C.DispatchKey.Python:
|
|
if not self.python_key_mode_table:
|
|
setattr(self, attr, key)
|
|
return key
|
|
|
|
def handler(*args, **kwargs):
|
|
from torch.utils._python_dispatch import _get_current_dispatch_mode
|
|
|
|
# TODO: We also need to handle tensor subclasses here
|
|
# TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
|
|
curr_mode = type(_get_current_dispatch_mode())
|
|
assert (
|
|
curr_mode is not None
|
|
), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
|
|
if curr_mode not in self.python_key_mode_table:
|
|
# TODO: This path is slow, should generally encourage this
|
|
# case to not happen
|
|
return self._op_dk(key, *args, **kwargs)
|
|
# TODO(voz): The idea behind this is that we do not yet support dispatch by key + mode, only key.
|
|
return self.python_key_mode_table[curr_mode](*args, **kwargs)
|
|
|
|
setattr(self, attr, handler)
|
|
return handler
|
|
|
|
key = resolve_key(self, key)
|
|
r = self.py_kernels.get(key, key)
|
|
setattr(self, attr, r)
|
|
return r
|
|
|
|
def name(self):
|
|
return self._name
|
|
|
|
@property
|
|
def overloadpacket(self):
|
|
return self._overloadpacket
|
|
|
|
@property
|
|
def op(self):
|
|
return self._op
|
|
|
|
@property
|
|
def tags(self):
|
|
return self._tags
|
|
|
|
# TODO: add more methods to expose information about input and output arguments
|
|
|
|
|
|
# OpOverloadPacket class contains pointer to a base unresolved operator that doesn't correspond to a specific operator
|
|
# You can obtain an OpOverload object through attribute query.
|
|
class OpOverloadPacket:
|
|
def __init__(self, qualified_op_name, op_name, op, overload_names):
|
|
# These attributes are accessible on the object through the properties
|
|
# defined below but are immutable
|
|
self._qualified_op_name = qualified_op_name
|
|
self.__name__ = op_name
|
|
self._op = op
|
|
self._overload_names = overload_names
|
|
|
|
# it's a no-op since OpOverloadPacket object is immutable and must be unique for a given op.
|
|
def __deepcopy__(self, memo=None):
|
|
return self
|
|
|
|
def __repr__(self):
|
|
return "<OpOverloadPacket(op='{}.{}')>".format(
|
|
*self._qualified_op_name.split("::")
|
|
)
|
|
|
|
def __hash__(self):
|
|
return hash(self._op)
|
|
|
|
def __str__(self):
|
|
return "{}.{}".format(*self._qualified_op_name.split("::"))
|
|
|
|
@property
|
|
def op(self):
|
|
return self._op
|
|
|
|
def __getattr__(self, key):
|
|
# It is not a valid op_name when __file__ is passed in
|
|
if key == "__file__":
|
|
return "torch.ops"
|
|
|
|
# ensure that query for dunder attributes that does not exist on
|
|
# opoverloadpacket but instead exists on the self._op object does not unnecessarily call
|
|
# `_get_operation_overload` (which is an expensive operation).
|
|
# This is done to prevent any potential slowdown. This list can be extended
|
|
# if there exists other attributes like `__name__` that only exist on self._op and not on the
|
|
# opoverloadpacket.
|
|
# This is ok since we are guaranteed that an overload name for an aten op can't start with '__'
|
|
try:
|
|
if key.startswith("__"):
|
|
return getattr(self._op, key)
|
|
except AttributeError:
|
|
# for consistency because it seems weird to
|
|
# throw an attribute error with a message containing
|
|
# an object name different from the one the attribute
|
|
# query was performed on.
|
|
raise AttributeError(
|
|
"'{}' can't have an overload name beginning with '__' and the "
|
|
"underlying op {} has no attribute {} either.".format(
|
|
str(self), str(self._op), key
|
|
)
|
|
) from None
|
|
|
|
try:
|
|
# This is ok since we are guaranteed that an overload name for an aten op can't be 'default'
|
|
use_key = "" if key == "default" else key
|
|
# TODO: disallow access to overloads registered by JIT
|
|
op_, op_dk_, tags = torch._C._get_operation_overload(
|
|
self._qualified_op_name, use_key
|
|
)
|
|
schema = torch._C._get_schema(self._qualified_op_name, use_key)
|
|
overload = OpOverload(self, op_, op_dk_, schema, tags)
|
|
# cache the overload object
|
|
setattr(self, key, overload)
|
|
return overload
|
|
except RuntimeError:
|
|
raise AttributeError(
|
|
"The underlying op of '{}' has no overload name '{}'".format(
|
|
str(self), key
|
|
)
|
|
) from None
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
# overloading __call__ to ensure torch.ops.foo.bar()
|
|
# is still callable from JIT
|
|
# We save the function ptr as the `op` attribute on
|
|
# OpOverloadPacket to access it here.
|
|
return self._op(*args, **kwargs or {})
|
|
|
|
# TODO: use this to make a __dir__
|
|
def overloads(self):
|
|
return [n if n else "default" for n in self._overload_names]
|
|
|
|
|
|
# Resolution of torch.fn is different from torch.ops.aten.fn
|
|
# torch.fn uses the Python argparser, matches with the
|
|
# appropriate schema, and calls into the unboxed version of the method
|
|
# torch.ops.aten.fn resolution is done via the mechanism defined in JIT.
|
|
# JIT creates a stack of all the overloads and then tries to match the
|
|
# correct one at runtime and always calls into the boxed version of the method
|
|
# Autograd codegen creates VariableType, TracerType,
|
|
# inplace or view type and python bindings.
|
|
# Aten codegen generates tensor methods for the the tensor class.
|
|
|
|
# _OpNamespace is a subclass of ModuleType because the torch script
|
|
# allows attribute lookups on modules only. Since we want torch.ops.foo.bar()
|
|
# to work from script, we need to ensure ops and foo are modules
|
|
|
|
|
|
class _OpNamespace(types.ModuleType):
|
|
"""
|
|
An op namespace to dynamically bind Operators into Python.
|
|
|
|
Say a user has created a custom Operator called "my_namespace::my_op". To
|
|
call this op, the user will write torch.ops.my_namespace.my_op(...).
|
|
At startup, this operation will not yet be bound into Python. Instead, the
|
|
following sequence of magic tricks will occur:
|
|
1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method
|
|
on the `torch.ops` object, which will create a new `_OpNamespace`
|
|
object called `my_namespace` and set it as an attribute on the `ops`
|
|
object.
|
|
2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on
|
|
the `my_namespace` object, which will retrieve the operation via
|
|
`torch.get_operation`, a function bound from C++, and then in a similar
|
|
fashion bind this new object onto the `my_namespace` object.
|
|
3. `torch.ops.my_namespace.my_op(...)` then calls this new operation
|
|
and subsequent accesses will incur no further lookup (the namespace and
|
|
operation will already exist).
|
|
"""
|
|
|
|
def __init__(self, name):
|
|
super(_OpNamespace, self).__init__("torch.ops." + name)
|
|
self.name = name
|
|
|
|
def __getattr__(self, op_name):
|
|
# It is not a valid op_name when __file__ is passed in
|
|
if op_name == "__file__":
|
|
return "torch.ops"
|
|
elif op_name == "__origin__":
|
|
raise AttributeError()
|
|
|
|
# Get the op `my_namespace::my_op` if available. This will also check
|
|
# for overloads and raise an exception if there are more than one.
|
|
namespace_name = self.name
|
|
qualified_op_name = "{}::{}".format(namespace_name, op_name)
|
|
try:
|
|
op, overload_names = torch._C._jit_get_operation(qualified_op_name)
|
|
except RuntimeError as e:
|
|
# Turn this into AttributeError so getattr(obj, key, default)
|
|
# works (this is called by TorchScript with __origin__)
|
|
raise AttributeError(
|
|
f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
|
|
) from e
|
|
|
|
# let the script frontend know that op is identical to the builtin op
|
|
# with qualified_op_name
|
|
torch.jit._builtins._register_builtin(op, qualified_op_name)
|
|
op.__module__ = self.__module__ + "." + namespace_name
|
|
opoverloadpacket = OpOverloadPacket(
|
|
qualified_op_name, op_name, op, overload_names
|
|
)
|
|
opoverloadpacket.__module__ = self.__module__ + "." + namespace_name
|
|
# cache the opoverloadpacket to ensure that each op corresponds to
|
|
# a unique OpOverloadPacket object
|
|
setattr(self, op_name, opoverloadpacket)
|
|
return opoverloadpacket
|
|
|
|
|
|
class _PyOpNamespace(_OpNamespace):
|
|
def __init__(self):
|
|
super(_PyOpNamespace, self).__init__("torch.ops")
|
|
self.pyop_namespace = pyop_namespace
|
|
|
|
|
|
class _Ops(types.ModuleType):
|
|
__file__ = "_ops.py"
|
|
|
|
def __init__(self):
|
|
super(_Ops, self).__init__("torch.ops")
|
|
self.loaded_libraries = set()
|
|
self.pyops = _PyOpNamespace()
|
|
|
|
def __getattr__(self, name):
|
|
# Check if the name is a pyop
|
|
if name in self.pyops.pyop_namespace:
|
|
return self.pyops.pyop_namespace[name]
|
|
|
|
# Here we are creating `torch.ops.my_namespace`
|
|
namespace = _OpNamespace(name)
|
|
setattr(self, name, namespace)
|
|
return namespace
|
|
|
|
def load_library(self, path):
|
|
"""
|
|
Loads a shared library from the given path into the current process.
|
|
|
|
The library being loaded may run global initialization code to register
|
|
custom operators with the PyTorch JIT runtime. This allows dynamically
|
|
loading custom operators. For this, you should compile your operator
|
|
and the static registration code into a shared library object, and then
|
|
call ``torch.ops.load_library('path/to/libcustom.so')`` to load the
|
|
shared object.
|
|
|
|
After the library is loaded, it is added to the
|
|
``torch.ops.loaded_libraries`` attribute, a set that may be inspected
|
|
for the paths of all libraries loaded using this function.
|
|
|
|
Args:
|
|
path (str): A path to a shared library to load.
|
|
"""
|
|
if sys.executable == "torch_deploy":
|
|
return
|
|
|
|
path = _utils_internal.resolve_library_path(path)
|
|
with dl_open_guard():
|
|
# Import the shared library into the process, thus running its
|
|
# static (global) initialization code in order to register custom
|
|
# operators with the JIT.
|
|
ctypes.CDLL(path)
|
|
self.loaded_libraries.add(path)
|
|
|
|
|
|
# The ops "namespace"
|
|
ops = _Ops()
|