mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35531 Differential Revision: D20693581 Pulled By: anjali411 fbshipit-source-id: d53e26b4175452fa00b287efbfceea18104c1364
350 lines
12 KiB
C++
350 lines
12 KiB
C++
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/utils/tensor_numpy.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
|
|
#ifndef USE_NUMPY
|
|
namespace torch { namespace utils {
|
|
PyObject* tensor_to_numpy(const at::Tensor& tensor) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
at::Tensor tensor_from_numpy(PyObject* obj) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
bool is_numpy_int(PyObject* obj) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
bool is_numpy_scalar(PyObject* obj) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
}}
|
|
#else
|
|
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/TensorUtils.h>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
|
|
using namespace at;
|
|
using namespace torch::autograd;
|
|
|
|
namespace torch { namespace utils {
|
|
|
|
static std::vector<npy_intp> to_numpy_shape(IntArrayRef x) {
|
|
// shape and stride conversion from int64_t to npy_intp
|
|
auto nelem = x.size();
|
|
auto result = std::vector<npy_intp>(nelem);
|
|
for (size_t i = 0; i < nelem; i++) {
|
|
result[i] = static_cast<npy_intp>(x[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::vector<int64_t> to_aten_shape(int ndim, npy_intp* values) {
|
|
// shape and stride conversion from npy_intp to int64_t
|
|
auto result = std::vector<int64_t>(ndim);
|
|
for (int i = 0; i < ndim; i++) {
|
|
result[i] = static_cast<int64_t>(values[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::vector<int64_t> seq_to_aten_shape(PyObject *py_seq) {
|
|
int ndim = PySequence_Length(py_seq);
|
|
if (ndim == -1) {
|
|
throw TypeError("shape and strides must be sequences");
|
|
}
|
|
auto result = std::vector<int64_t>(ndim);
|
|
for (int i = 0; i < ndim; i++) {
|
|
auto item = THPObjectPtr(PySequence_GetItem(py_seq, i));
|
|
if (!item) throw python_error();
|
|
|
|
result[i] = PyLong_AsLongLong(item);
|
|
if (result[i] == -1 && PyErr_Occurred()) throw python_error();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
PyObject* tensor_to_numpy(const at::Tensor& tensor) {
|
|
if (tensor.device().type() != DeviceType::CPU) {
|
|
throw TypeError(
|
|
"can't convert %s device type tensor to numpy. Use Tensor.cpu() to "
|
|
"copy the tensor to host memory first.", tensor.device().str().c_str());
|
|
}
|
|
if (tensor.layout() != Layout::Strided) {
|
|
throw TypeError(
|
|
"can't convert %s layout tensor to numpy."
|
|
"convert the tensor to a strided layout first.", c10::str(tensor.layout()).c_str());
|
|
}
|
|
if (tensor.requires_grad()) {
|
|
throw std::runtime_error(
|
|
"Can't call numpy() on Variable that requires grad. "
|
|
"Use var.detach().numpy() instead.");
|
|
}
|
|
auto dtype = aten_to_numpy_dtype(tensor.scalar_type());
|
|
auto sizes = to_numpy_shape(tensor.sizes());
|
|
auto strides = to_numpy_shape(tensor.strides());
|
|
// NumPy strides use bytes. Torch strides use element counts.
|
|
auto element_size_in_bytes = tensor.element_size();
|
|
for (auto& stride : strides) {
|
|
stride *= element_size_in_bytes;
|
|
}
|
|
|
|
auto array = THPObjectPtr(PyArray_New(
|
|
&PyArray_Type,
|
|
tensor.dim(),
|
|
sizes.data(),
|
|
dtype,
|
|
strides.data(),
|
|
tensor.data_ptr(),
|
|
0,
|
|
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE,
|
|
nullptr));
|
|
if (!array) return nullptr;
|
|
|
|
// TODO: This attempts to keep the underlying memory alive by setting the base
|
|
// object of the ndarray to the tensor and disabling resizes on the storage.
|
|
// This is not sufficient. For example, the tensor's storage may be changed
|
|
// via Tensor.set_, which can free the underlying memory.
|
|
PyObject* py_tensor = THPVariable_Wrap(tensor);
|
|
if (!py_tensor) throw python_error();
|
|
if (PyArray_SetBaseObject((PyArrayObject*)array.get(), py_tensor) == -1) {
|
|
return nullptr;
|
|
}
|
|
// Use the private storage API
|
|
tensor.storage().unsafeGetStorageImpl()->set_resizable(false);
|
|
|
|
return array.release();
|
|
}
|
|
|
|
at::Tensor tensor_from_numpy(PyObject* obj) {
|
|
if (!PyArray_Check(obj)) {
|
|
throw TypeError("expected np.ndarray (got %s)", Py_TYPE(obj)->tp_name);
|
|
}
|
|
auto array = (PyArrayObject*)obj;
|
|
|
|
if (!PyArray_ISWRITEABLE(array)) {
|
|
TORCH_WARN_ONCE(
|
|
"The given NumPy array is not writeable, and PyTorch does "
|
|
"not support non-writeable tensors. This means you can write to the "
|
|
"underlying (supposedly non-writeable) NumPy array using the tensor. "
|
|
"You may want to copy the array to protect its data or make it writeable "
|
|
"before converting it to a tensor. This type of warning will be "
|
|
"suppressed for the rest of this program.");
|
|
|
|
}
|
|
|
|
int ndim = PyArray_NDIM(array);
|
|
auto sizes = to_aten_shape(ndim, PyArray_DIMS(array));
|
|
auto strides = to_aten_shape(ndim, PyArray_STRIDES(array));
|
|
// NumPy strides use bytes. Torch strides use element counts.
|
|
auto element_size_in_bytes = PyArray_ITEMSIZE(array);
|
|
for (auto& stride : strides) {
|
|
if (stride%element_size_in_bytes != 0) {
|
|
throw ValueError(
|
|
"given numpy array strides not a multiple of the element byte size. "
|
|
"Copy the numpy array to reallocate the memory.");
|
|
}
|
|
stride /= element_size_in_bytes;
|
|
}
|
|
|
|
size_t storage_size = 1;
|
|
for (int i = 0; i < ndim; i++) {
|
|
if (strides[i] < 0) {
|
|
throw ValueError(
|
|
"At least one stride in the given numpy array is negative, "
|
|
"and tensors with negative strides are not currently supported. "
|
|
"(You can probably work around this by making a copy of your array "
|
|
" with array.copy().) ");
|
|
}
|
|
// XXX: this won't work for negative strides
|
|
storage_size += (sizes[i] - 1) * strides[i];
|
|
}
|
|
|
|
void* data_ptr = PyArray_DATA(array);
|
|
if (!PyArray_EquivByteorders(PyArray_DESCR(array)->byteorder, NPY_NATIVE)) {
|
|
throw ValueError(
|
|
"given numpy array has byte order different from the native byte order. "
|
|
"Conversion between byte orders is currently not supported.");
|
|
}
|
|
Py_INCREF(obj);
|
|
return at::from_blob(
|
|
data_ptr,
|
|
sizes,
|
|
strides,
|
|
[obj](void* data) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
Py_DECREF(obj);
|
|
},
|
|
at::device(kCPU).dtype(numpy_dtype_to_aten(PyArray_TYPE(array)))
|
|
);
|
|
}
|
|
|
|
int aten_to_numpy_dtype(const ScalarType scalar_type) {
|
|
switch (scalar_type) {
|
|
case kDouble: return NPY_DOUBLE;
|
|
case kFloat: return NPY_FLOAT;
|
|
case kHalf: return NPY_HALF;
|
|
case kComplexDouble: return NPY_COMPLEX128;
|
|
case kComplexFloat: return NPY_COMPLEX64;
|
|
case kLong: return NPY_INT64;
|
|
case kInt: return NPY_INT32;
|
|
case kShort: return NPY_INT16;
|
|
case kChar: return NPY_INT8;
|
|
case kByte: return NPY_UINT8;
|
|
case kBool: return NPY_BOOL;
|
|
default:
|
|
throw TypeError("Got unsupported ScalarType %s", toString(scalar_type));
|
|
}
|
|
}
|
|
|
|
ScalarType numpy_dtype_to_aten(int dtype) {
|
|
switch (dtype) {
|
|
case NPY_DOUBLE: return kDouble;
|
|
case NPY_FLOAT: return kFloat;
|
|
case NPY_HALF: return kHalf;
|
|
case NPY_COMPLEX64: return kComplexFloat;
|
|
case NPY_COMPLEX128: return kComplexDouble;
|
|
case NPY_INT16: return kShort;
|
|
case NPY_INT8: return kChar;
|
|
case NPY_UINT8: return kByte;
|
|
case NPY_BOOL: return kBool;
|
|
default:
|
|
// Workaround: MSVC does not support two switch cases that have the same value
|
|
if (dtype == NPY_INT || dtype == NPY_INT32) {
|
|
// To cover all cases we must use NPY_INT because
|
|
// NPY_INT32 is an alias which maybe equal to:
|
|
// - NPY_INT, when sizeof(int) = 4 and sizeof(long) = 8
|
|
// - NPY_LONG, when sizeof(int) = 4 and sizeof(long) = 4
|
|
return kInt;
|
|
} else if (dtype == NPY_LONGLONG || dtype == NPY_INT64) {
|
|
// NPY_INT64 is an alias which maybe equal to:
|
|
// - NPY_LONG, when sizeof(long) = 8 and sizeof(long long) = 8
|
|
// - NPY_LONGLONG, when sizeof(long) = 4 and sizeof(long long) = 8
|
|
return kLong;
|
|
} else {
|
|
break; // break as if this is one of the cases above because this is only a workaround
|
|
}
|
|
}
|
|
auto pytype = THPObjectPtr(PyArray_TypeObjectFromType(dtype));
|
|
if (!pytype) throw python_error();
|
|
throw TypeError(
|
|
"can't convert np.ndarray of type %s. The only supported types are: "
|
|
"float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool.",
|
|
((PyTypeObject*)pytype.get())->tp_name);
|
|
}
|
|
|
|
bool is_numpy_int(PyObject* obj) {
|
|
return PyArray_IsScalar((obj), Integer);
|
|
}
|
|
|
|
bool is_numpy_scalar(PyObject* obj) {
|
|
return is_numpy_int(obj) || PyArray_IsScalar(obj, Floating);
|
|
}
|
|
|
|
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
|
|
auto cuda_dict = THPObjectPtr(PyObject_GetAttrString(obj, "__cuda_array_interface__"));
|
|
TORCH_INTERNAL_ASSERT(cuda_dict);
|
|
|
|
if (!PyDict_Check(cuda_dict)) {
|
|
throw TypeError("`__cuda_array_interface__` must be a dict");
|
|
}
|
|
|
|
// Extract the `obj.__cuda_array_interface__['shape']` attribute
|
|
std::vector<int64_t> sizes;
|
|
{
|
|
PyObject *py_shape = PyDict_GetItemString(cuda_dict, "shape");
|
|
if (py_shape == nullptr) {
|
|
throw TypeError("attribute `shape` must exist");
|
|
}
|
|
sizes = seq_to_aten_shape(py_shape);
|
|
}
|
|
|
|
// Extract the `obj.__cuda_array_interface__['typestr']` attribute
|
|
ScalarType dtype;
|
|
int dtype_size_in_bytes;
|
|
{
|
|
PyObject *py_typestr = PyDict_GetItemString(cuda_dict, "typestr");
|
|
if (py_typestr == nullptr) {
|
|
throw TypeError("attribute `typestr` must exist");
|
|
}
|
|
PyArray_Descr *descr;
|
|
if(!PyArray_DescrConverter(py_typestr, &descr)) {
|
|
throw ValueError("cannot parse `typestr`");
|
|
}
|
|
dtype = numpy_dtype_to_aten(descr->type_num);
|
|
dtype_size_in_bytes = descr->elsize;
|
|
TORCH_INTERNAL_ASSERT(dtype_size_in_bytes > 0);
|
|
}
|
|
|
|
// Extract the `obj.__cuda_array_interface__['data']` attribute
|
|
void *data_ptr;
|
|
{
|
|
PyObject *py_data = PyDict_GetItemString(cuda_dict, "data");
|
|
if (py_data == nullptr) {
|
|
throw TypeError("attribute `shape` data exist");
|
|
}
|
|
if(!PyTuple_Check(py_data) || PyTuple_GET_SIZE(py_data) != 2) {
|
|
throw TypeError("`data` must be a 2-tuple of (int, bool)");
|
|
}
|
|
data_ptr = PyLong_AsVoidPtr(PyTuple_GET_ITEM(py_data, 0));
|
|
if (data_ptr == nullptr && PyErr_Occurred()) {
|
|
throw python_error();
|
|
}
|
|
int read_only = PyObject_IsTrue(PyTuple_GET_ITEM(py_data, 1));
|
|
if (read_only == -1) {
|
|
throw python_error();
|
|
}
|
|
if (read_only) {
|
|
throw TypeError("the read only flag is not supported, should always be False");
|
|
}
|
|
}
|
|
|
|
// Extract the `obj.__cuda_array_interface__['strides']` attribute
|
|
std::vector<int64_t> strides;
|
|
{
|
|
PyObject *py_strides = PyDict_GetItemString(cuda_dict, "strides");
|
|
if (py_strides != nullptr && py_strides != Py_None) {
|
|
if (PySequence_Length(py_strides) == -1 || PySequence_Length(py_strides) != sizes.size()) {
|
|
throw TypeError("strides must be a sequence of the same length as shape");
|
|
}
|
|
strides = seq_to_aten_shape(py_strides);
|
|
|
|
// __cuda_array_interface__ strides use bytes. Torch strides use element counts.
|
|
for (auto& stride : strides) {
|
|
if (stride%dtype_size_in_bytes != 0) {
|
|
throw ValueError(
|
|
"given array strides not a multiple of the element byte size. "
|
|
"Make a copy of the array to reallocate the memory.");
|
|
}
|
|
stride /= dtype_size_in_bytes;
|
|
}
|
|
} else {
|
|
strides = at::detail::defaultStrides(sizes);
|
|
}
|
|
}
|
|
|
|
Py_INCREF(obj);
|
|
return at::from_blob(
|
|
data_ptr,
|
|
sizes,
|
|
strides,
|
|
[obj](void* data) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
Py_DECREF(obj);
|
|
},
|
|
at::device(kCUDA).dtype(dtype)
|
|
);
|
|
}
|
|
}} // namespace torch::utils
|
|
|
|
#endif // USE_NUMPY
|