mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: As per title. Limitations: only for batches of squared full-rank matrices. CC albanD Pull Request resolved: https://github.com/pytorch/pytorch/pull/46284 Reviewed By: zou3519 Differential Revision: D24448266 Pulled By: albanD fbshipit-source-id: d98215166268553a648af6bdec5a32ad601b7814
80 lines
3.2 KiB
Python
80 lines
3.2 KiB
Python
import torch
|
|
|
|
class _LU(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, self, pivot=True, get_infos=False):
|
|
LU, pivots, infos = torch._lu_with_info(self, pivot=pivot, check_errors=(not get_infos))
|
|
ctx.save_for_backward(LU, pivots)
|
|
ctx.mark_non_differentiable(pivots, infos)
|
|
return LU, pivots, infos
|
|
|
|
@staticmethod
|
|
def backward(ctx, LU_grad, pivots_grad, infors_grad):
|
|
"""
|
|
Here we derive the gradients for the LU decomposition.
|
|
LIMITATIONS: square inputs of full rank.
|
|
If not stated otherwise, for tensors A and B,
|
|
`A B` means the matrix product of A and B.
|
|
|
|
Forward AD:
|
|
Note that PyTorch returns packed LU, it is a mapping
|
|
A -> (B:= L + U - I, P), such that A = P L U, and
|
|
P is a permutation matrix, and is non-differentiable.
|
|
|
|
Using B = L + U - I, A = P L U, we get
|
|
|
|
dB = dL + dU and (*)
|
|
P^T dA = dL U + L dU (**)
|
|
|
|
By left/right multiplication of (**) with L^{-1}/U^{-1} we get:
|
|
L^{-1} P^T dA U^{-1} = L^{-1} dL + dU U^{-1}.
|
|
|
|
Note that L^{-1} dL is lower-triangular with zero diagonal,
|
|
and dU U^{-1} is upper-triangular.
|
|
Define 1_U := triu(ones(n, n)), and 1_L := ones(n, n) - 1_U, so
|
|
|
|
L^{-1} dL = 1_L * (L^{-1} P^T dA U^{-1}),
|
|
dU U^{-1} = 1_U * (L^{-1} P^T dA U^{-1}), where * denotes the Hadamard product.
|
|
|
|
Hence we finally get:
|
|
dL = L 1_L * (L^{-1} P^T dA U^{-1}),
|
|
dU = 1_U * (L^{-1} P^T dA U^{-1}) U
|
|
|
|
Backward AD:
|
|
The backward sensitivity is then:
|
|
Tr(B_grad^T dB) = Tr(B_grad^T dL) + Tr(B_grad^T dU) = [1] + [2].
|
|
|
|
[1] = Tr(B_grad^T dL) = Tr(B_grad^T L 1_L * (L^{-1} P^T dA U^{-1}))
|
|
= [using Tr(A (B * C)) = Tr((A * B^T) C)]
|
|
= Tr((B_grad^T L * 1_L^T) L^{-1} P^T dA U^{-1})
|
|
= [cyclic property of trace]
|
|
= Tr(U^{-1} (B_grad^T L * 1_L^T) L^{-1} P^T dA)
|
|
= Tr((P L^{-T} (L^T B_grad * 1_L) U^{-T})^T dA).
|
|
Similar, [2] can be rewritten as:
|
|
[2] = Tr(P L^{-T} (B_grad U^T * 1_U) U^{-T})^T dA, hence
|
|
Tr(A_grad^T dA) = [1] + [2]
|
|
= Tr((P L^{-T} (L^T B_grad * 1_L + B_grad U^T * 1_U) U^{-T})^T dA), so
|
|
A_grad = P L^{-T} (L^T B_grad * 1_L + B_grad U^T * 1_U) U^{-T}.
|
|
|
|
In the code below we use the name `LU` instead of `B`, so that there is no confusion
|
|
in the derivation above between the matrix product and a two-letter variable name.
|
|
"""
|
|
LU, pivots = ctx.saved_tensors
|
|
P, L, U = torch.lu_unpack(LU, pivots)
|
|
|
|
# To make sure MyPy infers types right
|
|
assert (L is not None) and (U is not None)
|
|
|
|
I = LU_grad.new_zeros(LU_grad.shape)
|
|
I.diagonal(dim1=-2, dim2=-1).fill_(1)
|
|
|
|
Lt_inv = torch.triangular_solve(I, L, upper=False).solution.transpose(-1, -2)
|
|
Ut_inv = torch.triangular_solve(I, U, upper=True).solution.transpose(-1, -2)
|
|
|
|
phi_L = (L.transpose(-1, -2) @ LU_grad).tril_()
|
|
phi_L.diagonal(dim1=-2, dim2=-1).fill_(0.0)
|
|
phi_U = (LU_grad @ U.transpose(-1, -2)).triu_()
|
|
|
|
self_grad_perturbed = Lt_inv @ (phi_L + phi_U) @ Ut_inv
|
|
return P @ self_grad_perturbed, None, None
|