mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
This PR includes the GBID weblink whenever a user encounters a graph break. I also had to include the JSON file in setup.py, so it can be part of the files that are packaged in during CI. It also fixes the issue of the hardcoded error messages stripping away one of the '/' in 'https'. Pull Request resolved: https://github.com/pytorch/pytorch/pull/156033 Approved by: https://github.com/williamwen42
1395 lines
47 KiB
Python
1395 lines
47 KiB
Python
# Welcome to the PyTorch setup.py.
|
|
# Environment variables you are probably interested in:
|
|
#
|
|
# DEBUG
|
|
# build with -O0 and -g (debug symbols)
|
|
#
|
|
# REL_WITH_DEB_INFO
|
|
# build with optimizations and -g (debug symbols)
|
|
#
|
|
# USE_CUSTOM_DEBINFO="path/to/file1.cpp;path/to/file2.cpp"
|
|
# build with debug info only for specified files
|
|
#
|
|
# MAX_JOBS
|
|
# maximum number of compile jobs we should use to compile your code
|
|
#
|
|
# USE_CUDA=0
|
|
# disables CUDA build
|
|
#
|
|
# CFLAGS
|
|
# flags to apply to both C and C++ files to be compiled (a quirk of setup.py
|
|
# which we have faithfully adhered to in our build system is that CFLAGS
|
|
# also applies to C++ files (unless CXXFLAGS is set), in contrast to the
|
|
# default behavior of autogoo and cmake build systems.)
|
|
#
|
|
# A specific flag that can be used is
|
|
# -DHAS_TORCH_SHOW_DISPATCH_TRACE
|
|
# build with dispatch trace that can be enabled with
|
|
# TORCH_SHOW_DISPATCH_TRACE=1 at runtime.
|
|
#
|
|
# CC
|
|
# the C/C++ compiler to use
|
|
#
|
|
# CMAKE_FRESH=1
|
|
# force a fresh cmake configuration run, ignoring the existing cmake cache
|
|
#
|
|
# CMAKE_ONLY=1
|
|
# run cmake and stop; do not build the project
|
|
#
|
|
# Environment variables for feature toggles:
|
|
#
|
|
# DEBUG_CUDA=1
|
|
# if used in conjunction with DEBUG or REL_WITH_DEB_INFO, will also
|
|
# build CUDA kernels with -lineinfo --source-in-ptx. Note that
|
|
# on CUDA 12 this may cause nvcc to OOM, so this is disabled by default.
|
|
#
|
|
# USE_CUDNN=0
|
|
# disables the cuDNN build
|
|
#
|
|
# USE_CUSPARSELT=0
|
|
# disables the cuSPARSELt build
|
|
#
|
|
# USE_CUDSS=0
|
|
# disables the cuDSS build
|
|
#
|
|
# USE_CUFILE=0
|
|
# disables the cuFile build
|
|
#
|
|
# USE_FBGEMM=0
|
|
# disables the FBGEMM build
|
|
#
|
|
# USE_KINETO=0
|
|
# disables usage of libkineto library for profiling
|
|
#
|
|
# USE_NUMPY=0
|
|
# disables the NumPy build
|
|
#
|
|
# BUILD_TEST=0
|
|
# disables the test build
|
|
#
|
|
# USE_MKLDNN=0
|
|
# disables use of MKLDNN
|
|
#
|
|
# USE_MKLDNN_ACL
|
|
# enables use of Compute Library backend for MKLDNN on Arm;
|
|
# USE_MKLDNN must be explicitly enabled.
|
|
#
|
|
# MKLDNN_CPU_RUNTIME
|
|
# MKL-DNN threading mode: TBB or OMP (default)
|
|
#
|
|
# USE_STATIC_MKL
|
|
# Prefer to link with MKL statically - Unix only
|
|
# USE_ITT=0
|
|
# disable use of Intel(R) VTune Profiler's ITT functionality
|
|
#
|
|
# USE_NNPACK=0
|
|
# disables NNPACK build
|
|
#
|
|
# USE_DISTRIBUTED=0
|
|
# disables distributed (c10d, gloo, mpi, etc.) build
|
|
#
|
|
# USE_TENSORPIPE=0
|
|
# disables distributed Tensorpipe backend build
|
|
#
|
|
# USE_GLOO=0
|
|
# disables distributed gloo backend build
|
|
#
|
|
# USE_MPI=0
|
|
# disables distributed MPI backend build
|
|
#
|
|
# USE_SYSTEM_NCCL=0
|
|
# disables use of system-wide nccl (we will use our submoduled
|
|
# copy in third_party/nccl)
|
|
#
|
|
# USE_OPENMP=0
|
|
# disables use of OpenMP for parallelization
|
|
#
|
|
# USE_FLASH_ATTENTION=0
|
|
# disables building flash attention for scaled dot product attention
|
|
#
|
|
# USE_MEM_EFF_ATTENTION=0
|
|
# disables building memory efficient attention for scaled dot product attention
|
|
#
|
|
# BUILD_BINARY
|
|
# enables the additional binaries/ build
|
|
#
|
|
# ATEN_AVX512_256=TRUE
|
|
# ATen AVX2 kernels can use 32 ymm registers, instead of the default 16.
|
|
# This option can be used if AVX512 doesn't perform well on a machine.
|
|
# The FBGEMM library also uses AVX512_256 kernels on Xeon D processors,
|
|
# but it also has some (optimized) assembly code.
|
|
#
|
|
# PYTORCH_BUILD_VERSION
|
|
# PYTORCH_BUILD_NUMBER
|
|
# specify the version of PyTorch, rather than the hard-coded version
|
|
# in this file; used when we're building binaries for distribution
|
|
#
|
|
# TORCH_CUDA_ARCH_LIST
|
|
# specify which CUDA architectures to build for.
|
|
# ie `TORCH_CUDA_ARCH_LIST="6.0;7.0"`
|
|
# These are not CUDA versions, instead, they specify what
|
|
# classes of NVIDIA hardware we should generate PTX for.
|
|
#
|
|
# TORCH_XPU_ARCH_LIST
|
|
# specify which XPU architectures to build for.
|
|
# ie `TORCH_XPU_ARCH_LIST="ats-m150,lnl-m"`
|
|
#
|
|
# PYTORCH_ROCM_ARCH
|
|
# specify which AMD GPU targets to build for.
|
|
# ie `PYTORCH_ROCM_ARCH="gfx900;gfx906"`
|
|
#
|
|
# ONNX_NAMESPACE
|
|
# specify a namespace for ONNX built here rather than the hard-coded
|
|
# one in this file; needed to build with other frameworks that share ONNX.
|
|
#
|
|
# BLAS
|
|
# BLAS to be used by Caffe2. Can be MKL, Eigen, ATLAS, FlexiBLAS, or OpenBLAS. If set
|
|
# then the build will fail if the requested BLAS is not found, otherwise
|
|
# the BLAS will be chosen based on what is found on your system.
|
|
#
|
|
# MKL_THREADING
|
|
# MKL threading mode: SEQ, TBB or OMP (default)
|
|
#
|
|
# USE_ROCM_KERNEL_ASSERT=1
|
|
# Enable kernel assert in ROCm platform
|
|
#
|
|
# Environment variables we respect (these environment variables are
|
|
# conventional and are often understood/set by other software.)
|
|
#
|
|
# CUDA_HOME (Linux/OS X)
|
|
# CUDA_PATH (Windows)
|
|
# specify where CUDA is installed; usually /usr/local/cuda or
|
|
# /usr/local/cuda-x.y
|
|
# CUDAHOSTCXX
|
|
# specify a different compiler than the system one to use as the CUDA
|
|
# host compiler for nvcc.
|
|
#
|
|
# CUDA_NVCC_EXECUTABLE
|
|
# Specify a NVCC to use. This is used in our CI to point to a cached nvcc
|
|
#
|
|
# CUDNN_LIB_DIR
|
|
# CUDNN_INCLUDE_DIR
|
|
# CUDNN_LIBRARY
|
|
# specify where cuDNN is installed
|
|
#
|
|
# MIOPEN_LIB_DIR
|
|
# MIOPEN_INCLUDE_DIR
|
|
# MIOPEN_LIBRARY
|
|
# specify where MIOpen is installed
|
|
#
|
|
# NCCL_ROOT
|
|
# NCCL_LIB_DIR
|
|
# NCCL_INCLUDE_DIR
|
|
# specify where nccl is installed
|
|
#
|
|
# ACL_ROOT_DIR
|
|
# specify where Compute Library is installed
|
|
#
|
|
# LIBRARY_PATH
|
|
# LD_LIBRARY_PATH
|
|
# we will search for libraries in these paths
|
|
#
|
|
# ATEN_THREADING
|
|
# ATen parallel backend to use for intra- and inter-op parallelism
|
|
# possible values:
|
|
# OMP - use OpenMP for intra-op and native backend for inter-op tasks
|
|
# NATIVE - use native thread pool for both intra- and inter-op tasks
|
|
#
|
|
# USE_SYSTEM_LIBS (work in progress)
|
|
# Use system-provided libraries to satisfy the build dependencies.
|
|
# When turned on, the following cmake variables will be toggled as well:
|
|
# USE_SYSTEM_CPUINFO=ON
|
|
# USE_SYSTEM_SLEEF=ON
|
|
# USE_SYSTEM_GLOO=ON
|
|
# BUILD_CUSTOM_PROTOBUF=OFF
|
|
# USE_SYSTEM_EIGEN_INSTALL=ON
|
|
# USE_SYSTEM_FP16=ON
|
|
# USE_SYSTEM_PTHREADPOOL=ON
|
|
# USE_SYSTEM_PSIMD=ON
|
|
# USE_SYSTEM_FXDIV=ON
|
|
# USE_SYSTEM_BENCHMARK=ON
|
|
# USE_SYSTEM_ONNX=ON
|
|
# USE_SYSTEM_XNNPACK=ON
|
|
# USE_SYSTEM_PYBIND11=ON
|
|
# USE_SYSTEM_NCCL=ON
|
|
# USE_SYSTEM_NVTX=ON
|
|
#
|
|
# USE_MIMALLOC
|
|
# Static link mimalloc into C10, and use mimalloc in alloc_cpu & alloc_free.
|
|
# By default, It is only enabled on Windows.
|
|
#
|
|
# USE_PRIORITIZED_TEXT_FOR_LD
|
|
# Uses prioritized text form cmake/prioritized_text.txt for LD
|
|
#
|
|
# BUILD_LIBTORCH_WHL
|
|
# Builds libtorch.so and its dependencies as a wheel
|
|
#
|
|
# BUILD_PYTHON_ONLY
|
|
# Builds pytorch as a wheel using libtorch.so from a separate wheel
|
|
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
import sys
|
|
|
|
|
|
if sys.platform == "win32" and sys.maxsize.bit_length() == 31:
|
|
print(
|
|
"32-bit Windows Python runtime is not supported. Please switch to 64-bit Python."
|
|
)
|
|
sys.exit(-1)
|
|
|
|
import platform
|
|
|
|
|
|
python_min_version = (3, 9, 0)
|
|
python_min_version_str = ".".join(map(str, python_min_version))
|
|
if sys.version_info < python_min_version:
|
|
print(
|
|
f"You are using Python {platform.python_version()}. Python >={python_min_version_str} is required."
|
|
)
|
|
sys.exit(-1)
|
|
|
|
import filecmp
|
|
import glob
|
|
import importlib
|
|
import importlib.util
|
|
import json
|
|
import shutil
|
|
import subprocess
|
|
import sysconfig
|
|
import time
|
|
from collections import defaultdict
|
|
|
|
import setuptools.command.build_ext
|
|
import setuptools.command.install
|
|
import setuptools.command.sdist
|
|
from setuptools import Extension, find_packages, setup
|
|
from setuptools.dist import Distribution
|
|
from tools.build_pytorch_libs import build_pytorch
|
|
from tools.generate_torch_version import get_torch_version
|
|
from tools.setup_helpers.cmake import CMake
|
|
from tools.setup_helpers.env import build_type, IS_DARWIN, IS_LINUX, IS_WINDOWS
|
|
from tools.setup_helpers.generate_linker_script import gen_linker_script
|
|
|
|
|
|
def str2bool(value: str | None) -> bool:
|
|
"""Convert environment variables to boolean values."""
|
|
if not value:
|
|
return False
|
|
if not isinstance(value, str):
|
|
raise ValueError(
|
|
f"Expected a string value for boolean conversion, got {type(value)}"
|
|
)
|
|
value = value.strip().lower()
|
|
if value in (
|
|
"1",
|
|
"true",
|
|
"t",
|
|
"yes",
|
|
"y",
|
|
"on",
|
|
"enable",
|
|
"enabled",
|
|
"found",
|
|
):
|
|
return True
|
|
if value in (
|
|
"0",
|
|
"false",
|
|
"f",
|
|
"no",
|
|
"n",
|
|
"off",
|
|
"disable",
|
|
"disabled",
|
|
"notfound",
|
|
"none",
|
|
"null",
|
|
"nil",
|
|
"undefined",
|
|
"n/a",
|
|
):
|
|
return False
|
|
raise ValueError(f"Invalid string value for boolean conversion: {value}")
|
|
|
|
|
|
def _get_package_path(package_name):
|
|
spec = importlib.util.find_spec(package_name)
|
|
if spec:
|
|
# The package might be a namespace package, so get_data may fail
|
|
try:
|
|
loader = spec.loader
|
|
if loader is not None:
|
|
file_path = loader.get_filename() # type: ignore[attr-defined]
|
|
return os.path.dirname(file_path)
|
|
except AttributeError:
|
|
pass
|
|
return None
|
|
|
|
|
|
BUILD_LIBTORCH_WHL = str2bool(os.getenv("BUILD_LIBTORCH_WHL"))
|
|
BUILD_PYTHON_ONLY = str2bool(os.getenv("BUILD_PYTHON_ONLY"))
|
|
|
|
# set up appropriate env variables
|
|
if BUILD_LIBTORCH_WHL:
|
|
# Set up environment variables for ONLY building libtorch.so and not libtorch_python.so
|
|
# functorch is not supported without python
|
|
os.environ["BUILD_FUNCTORCH"] = "OFF"
|
|
|
|
if BUILD_PYTHON_ONLY:
|
|
os.environ["BUILD_LIBTORCHLESS"] = "ON"
|
|
os.environ["LIBTORCH_LIB_PATH"] = f"{_get_package_path('torch')}/lib"
|
|
|
|
################################################################################
|
|
# Parameters parsed from environment
|
|
################################################################################
|
|
|
|
VERBOSE_SCRIPT = str2bool(os.getenv("VERBOSE", "1"))
|
|
RUN_BUILD_DEPS = True
|
|
# see if the user passed a quiet flag to setup.py arguments and respect
|
|
# that in our parts of the build
|
|
EMIT_BUILD_WARNING = False
|
|
RERUN_CMAKE = str2bool(os.getenv("CMAKE_FRESH"))
|
|
CMAKE_ONLY = str2bool(os.getenv("CMAKE_ONLY"))
|
|
filtered_args = []
|
|
for i, arg in enumerate(sys.argv):
|
|
if arg == "--cmake":
|
|
RERUN_CMAKE = True
|
|
continue
|
|
if arg == "--cmake-only":
|
|
# Stop once cmake terminates. Leave users a chance to adjust build
|
|
# options.
|
|
CMAKE_ONLY = True
|
|
continue
|
|
if arg == "rebuild" or arg == "build":
|
|
arg = "build" # rebuild is gone, make it build
|
|
EMIT_BUILD_WARNING = True
|
|
if arg == "--":
|
|
filtered_args += sys.argv[i:]
|
|
break
|
|
if arg == "-q" or arg == "--quiet":
|
|
VERBOSE_SCRIPT = False
|
|
if arg in ["clean", "egg_info", "sdist"]:
|
|
RUN_BUILD_DEPS = False
|
|
filtered_args.append(arg)
|
|
sys.argv = filtered_args
|
|
|
|
if VERBOSE_SCRIPT:
|
|
|
|
def report(*args):
|
|
print(*args)
|
|
|
|
else:
|
|
|
|
def report(*args):
|
|
pass
|
|
|
|
# Make distutils respect --quiet too
|
|
setuptools.distutils.log.warn = report
|
|
|
|
# Constant known variables used throughout this file
|
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
|
lib_path = os.path.join(cwd, "torch", "lib")
|
|
third_party_path = os.path.join(cwd, "third_party")
|
|
|
|
# CMAKE: full path to python library
|
|
if IS_WINDOWS:
|
|
cmake_python_library = "{}/libs/python{}.lib".format(
|
|
sysconfig.get_config_var("prefix"), sysconfig.get_config_var("VERSION")
|
|
)
|
|
# Fix virtualenv builds
|
|
if not os.path.exists(cmake_python_library):
|
|
cmake_python_library = "{}/libs/python{}.lib".format(
|
|
sys.base_prefix, sysconfig.get_config_var("VERSION")
|
|
)
|
|
else:
|
|
cmake_python_library = "{}/{}".format(
|
|
sysconfig.get_config_var("LIBDIR"), sysconfig.get_config_var("INSTSONAME")
|
|
)
|
|
cmake_python_include_dir = sysconfig.get_path("include")
|
|
|
|
|
|
################################################################################
|
|
# Version, create_version_file, and package_name
|
|
################################################################################
|
|
|
|
package_name = os.getenv("TORCH_PACKAGE_NAME", "torch")
|
|
LIBTORCH_PKG_NAME = os.getenv("LIBTORCH_PACKAGE_NAME", "torch_no_python")
|
|
if BUILD_LIBTORCH_WHL:
|
|
package_name = LIBTORCH_PKG_NAME
|
|
|
|
|
|
package_type = os.getenv("PACKAGE_TYPE", "wheel")
|
|
version = get_torch_version()
|
|
report(f"Building wheel {package_name}-{version}")
|
|
|
|
cmake = CMake()
|
|
|
|
|
|
def get_submodule_folders():
|
|
git_modules_path = os.path.join(cwd, ".gitmodules")
|
|
default_modules_path = [
|
|
os.path.join(third_party_path, name)
|
|
for name in [
|
|
"gloo",
|
|
"cpuinfo",
|
|
"onnx",
|
|
"fbgemm",
|
|
"cutlass",
|
|
]
|
|
]
|
|
if not os.path.exists(git_modules_path):
|
|
return default_modules_path
|
|
with open(git_modules_path) as f:
|
|
return [
|
|
os.path.join(cwd, line.split("=", 1)[1].strip())
|
|
for line in f
|
|
if line.strip().startswith("path")
|
|
]
|
|
|
|
|
|
def check_submodules():
|
|
def check_for_files(folder, files):
|
|
if not any(os.path.exists(os.path.join(folder, f)) for f in files):
|
|
report("Could not find any of {} in {}".format(", ".join(files), folder))
|
|
report("Did you run 'git submodule update --init --recursive'?")
|
|
sys.exit(1)
|
|
|
|
def not_exists_or_empty(folder):
|
|
return not os.path.exists(folder) or (
|
|
os.path.isdir(folder) and len(os.listdir(folder)) == 0
|
|
)
|
|
|
|
if str2bool(os.getenv("USE_SYSTEM_LIBS")):
|
|
return
|
|
folders = get_submodule_folders()
|
|
# If none of the submodule folders exists, try to initialize them
|
|
if all(not_exists_or_empty(folder) for folder in folders):
|
|
try:
|
|
report(" --- Trying to initialize submodules")
|
|
start = time.time()
|
|
subprocess.check_call(
|
|
["git", "submodule", "update", "--init", "--recursive"], cwd=cwd
|
|
)
|
|
end = time.time()
|
|
report(f" --- Submodule initialization took {end - start:.2f} sec")
|
|
except Exception:
|
|
report(" --- Submodule initialization failed")
|
|
report("Please run:\n\tgit submodule update --init --recursive")
|
|
sys.exit(1)
|
|
for folder in folders:
|
|
check_for_files(
|
|
folder,
|
|
[
|
|
"CMakeLists.txt",
|
|
"Makefile",
|
|
"setup.py",
|
|
"LICENSE",
|
|
"LICENSE.md",
|
|
"LICENSE.txt",
|
|
],
|
|
)
|
|
check_for_files(
|
|
os.path.join(third_party_path, "fbgemm", "external", "asmjit"),
|
|
["CMakeLists.txt"],
|
|
)
|
|
|
|
|
|
# Windows has very bad support for symbolic links.
|
|
# Instead of using symlinks, we're going to copy files over
|
|
def mirror_files_into_torchgen():
|
|
# (new_path, orig_path)
|
|
# Directories are OK and are recursively mirrored.
|
|
paths = [
|
|
(
|
|
"torchgen/packaged/ATen/native/native_functions.yaml",
|
|
"aten/src/ATen/native/native_functions.yaml",
|
|
),
|
|
("torchgen/packaged/ATen/native/tags.yaml", "aten/src/ATen/native/tags.yaml"),
|
|
("torchgen/packaged/ATen/templates", "aten/src/ATen/templates"),
|
|
("torchgen/packaged/autograd", "tools/autograd"),
|
|
("torchgen/packaged/autograd/templates", "tools/autograd/templates"),
|
|
]
|
|
for new_path, orig_path in paths:
|
|
# Create the dirs involved in new_path if they don't exist
|
|
if not os.path.exists(new_path):
|
|
os.makedirs(os.path.dirname(new_path), exist_ok=True)
|
|
|
|
# Copy the files from the orig location to the new location
|
|
if os.path.isfile(orig_path):
|
|
shutil.copyfile(orig_path, new_path)
|
|
continue
|
|
if os.path.isdir(orig_path):
|
|
if os.path.exists(new_path):
|
|
# copytree fails if the tree exists already, so remove it.
|
|
shutil.rmtree(new_path)
|
|
shutil.copytree(orig_path, new_path)
|
|
continue
|
|
raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`")
|
|
|
|
|
|
# all the work we need to do _before_ setup runs
|
|
def build_deps():
|
|
report("-- Building version " + version)
|
|
check_submodules()
|
|
check_pydep("yaml", "pyyaml")
|
|
build_python = not BUILD_LIBTORCH_WHL
|
|
build_pytorch(
|
|
version=version,
|
|
cmake_python_library=cmake_python_library,
|
|
build_python=build_python,
|
|
rerun_cmake=RERUN_CMAKE,
|
|
cmake_only=CMAKE_ONLY,
|
|
cmake=cmake,
|
|
)
|
|
|
|
if CMAKE_ONLY:
|
|
report(
|
|
'Finished running cmake. Run "ccmake build" or '
|
|
'"cmake-gui build" to adjust build options and '
|
|
'"python setup.py install" to build.'
|
|
)
|
|
sys.exit()
|
|
|
|
# Use copies instead of symbolic files.
|
|
# Windows has very poor support for them.
|
|
sym_files = [
|
|
"tools/shared/_utils_internal.py",
|
|
"torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h",
|
|
"torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h",
|
|
]
|
|
orig_files = [
|
|
"torch/_utils_internal.py",
|
|
"third_party/valgrind-headers/callgrind.h",
|
|
"third_party/valgrind-headers/valgrind.h",
|
|
]
|
|
for sym_file, orig_file in zip(sym_files, orig_files):
|
|
same = False
|
|
if os.path.exists(sym_file):
|
|
if filecmp.cmp(sym_file, orig_file):
|
|
same = True
|
|
else:
|
|
os.remove(sym_file)
|
|
if not same:
|
|
shutil.copyfile(orig_file, sym_file)
|
|
|
|
|
|
################################################################################
|
|
# Building dependent libraries
|
|
################################################################################
|
|
|
|
missing_pydep = """
|
|
Missing build dependency: Unable to `import {importname}`.
|
|
Please install it via `conda install {module}` or `pip install {module}`
|
|
""".strip()
|
|
|
|
|
|
def check_pydep(importname, module):
|
|
try:
|
|
importlib.import_module(importname)
|
|
except ImportError as e:
|
|
raise RuntimeError(
|
|
missing_pydep.format(importname=importname, module=module)
|
|
) from e
|
|
|
|
|
|
class build_ext(setuptools.command.build_ext.build_ext):
|
|
def _embed_libomp(self):
|
|
# Copy libiomp5.dylib/libomp.dylib inside the wheel package on MacOS
|
|
lib_dir = os.path.join(self.build_lib, "torch", "lib")
|
|
libtorch_cpu_path = os.path.join(lib_dir, "libtorch_cpu.dylib")
|
|
if not os.path.exists(libtorch_cpu_path):
|
|
return
|
|
# Parse libtorch_cpu load commands
|
|
otool_cmds = (
|
|
subprocess.check_output(["otool", "-l", libtorch_cpu_path])
|
|
.decode("utf-8")
|
|
.split("\n")
|
|
)
|
|
rpaths, libs = [], []
|
|
for idx, line in enumerate(otool_cmds):
|
|
if line.strip() == "cmd LC_LOAD_DYLIB":
|
|
lib_name = otool_cmds[idx + 2].strip()
|
|
assert lib_name.startswith("name ")
|
|
libs.append(lib_name.split(" ", 1)[1].rsplit("(", 1)[0][:-1])
|
|
|
|
if line.strip() == "cmd LC_RPATH":
|
|
rpath = otool_cmds[idx + 2].strip()
|
|
assert rpath.startswith("path ")
|
|
rpaths.append(rpath.split(" ", 1)[1].rsplit("(", 1)[0][:-1])
|
|
|
|
omplib_path = get_cmake_cache_vars()["OpenMP_libomp_LIBRARY"]
|
|
omplib_name = get_cmake_cache_vars()["OpenMP_C_LIB_NAMES"] + ".dylib"
|
|
omplib_rpath_path = os.path.join("@rpath", omplib_name)
|
|
|
|
# This logic is fragile and checks only two cases:
|
|
# - libtorch_cpu depends on `@rpath/libomp.dylib`e (happens when built inside miniconda environment)
|
|
# - libtorch_cpu depends on `/abs/path/to/libomp.dylib` (happens when built with libomp from homebrew)
|
|
if not any(c in libs for c in [omplib_path, omplib_rpath_path]):
|
|
return
|
|
|
|
# Copy libomp/libiomp5 from rpath locations
|
|
target_lib = os.path.join(self.build_lib, "torch", "lib", omplib_name)
|
|
libomp_relocated = False
|
|
for rpath in rpaths:
|
|
source_lib = os.path.join(rpath, omplib_name)
|
|
if not os.path.exists(source_lib):
|
|
continue
|
|
self.copy_file(source_lib, target_lib)
|
|
# Delete old rpath and add @loader_lib to the rpath
|
|
# This should prevent delocate from attempting to package another instance
|
|
# of OpenMP library in torch wheel as well as loading two libomp.dylib into
|
|
# the address space, as libraries are cached by their unresolved names
|
|
install_name_tool_args = [
|
|
"-rpath",
|
|
rpath,
|
|
"@loader_path",
|
|
]
|
|
libomp_relocated = True
|
|
break
|
|
if not libomp_relocated and os.path.exists(omplib_path):
|
|
self.copy_file(omplib_path, target_lib)
|
|
install_name_tool_args = [
|
|
"-change",
|
|
omplib_path,
|
|
omplib_rpath_path,
|
|
]
|
|
if "@loader_path" not in rpaths:
|
|
install_name_tool_args += [
|
|
"-add_rpath",
|
|
"@loader_path",
|
|
]
|
|
libomp_relocated = True
|
|
if libomp_relocated:
|
|
install_name_tool_args.insert(0, "install_name_tool")
|
|
install_name_tool_args.append(libtorch_cpu_path)
|
|
subprocess.check_call(install_name_tool_args)
|
|
# Copy omp.h from OpenMP_C_FLAGS and copy it into include folder
|
|
omp_cflags = get_cmake_cache_vars()["OpenMP_C_FLAGS"]
|
|
if not omp_cflags:
|
|
return
|
|
for include_dir in [f[2:] for f in omp_cflags.split(" ") if f.startswith("-I")]:
|
|
omp_h = os.path.join(include_dir, "omp.h")
|
|
if not os.path.exists(omp_h):
|
|
continue
|
|
target_omp_h = os.path.join(self.build_lib, "torch", "include", "omp.h")
|
|
self.copy_file(omp_h, target_omp_h)
|
|
break
|
|
|
|
def run(self):
|
|
# Report build options. This is run after the build completes so # `CMakeCache.txt` exists and we can get an
|
|
# accurate report on what is used and what is not.
|
|
cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables())
|
|
if cmake_cache_vars["USE_NUMPY"]:
|
|
report("-- Building with NumPy bindings")
|
|
else:
|
|
report("-- NumPy not found")
|
|
if cmake_cache_vars["USE_CUDNN"]:
|
|
report(
|
|
"-- Detected cuDNN at "
|
|
+ cmake_cache_vars["CUDNN_LIBRARY"]
|
|
+ ", "
|
|
+ cmake_cache_vars["CUDNN_INCLUDE_DIR"]
|
|
)
|
|
else:
|
|
report("-- Not using cuDNN")
|
|
if cmake_cache_vars["USE_CUDA"]:
|
|
report("-- Detected CUDA at " + cmake_cache_vars["CUDA_TOOLKIT_ROOT_DIR"])
|
|
else:
|
|
report("-- Not using CUDA")
|
|
if cmake_cache_vars["USE_XPU"]:
|
|
report("-- Detected XPU runtime at " + cmake_cache_vars["SYCL_LIBRARY_DIR"])
|
|
else:
|
|
report("-- Not using XPU")
|
|
if cmake_cache_vars["USE_MKLDNN"]:
|
|
report("-- Using MKLDNN")
|
|
if cmake_cache_vars["USE_MKLDNN_ACL"]:
|
|
report("-- Using Compute Library for the Arm architecture with MKLDNN")
|
|
else:
|
|
report(
|
|
"-- Not using Compute Library for the Arm architecture with MKLDNN"
|
|
)
|
|
if cmake_cache_vars["USE_MKLDNN_CBLAS"]:
|
|
report("-- Using CBLAS in MKLDNN")
|
|
else:
|
|
report("-- Not using CBLAS in MKLDNN")
|
|
else:
|
|
report("-- Not using MKLDNN")
|
|
if cmake_cache_vars["USE_NCCL"] and cmake_cache_vars["USE_SYSTEM_NCCL"]:
|
|
report(
|
|
"-- Using system provided NCCL library at {}, {}".format(
|
|
cmake_cache_vars["NCCL_LIBRARIES"],
|
|
cmake_cache_vars["NCCL_INCLUDE_DIRS"],
|
|
)
|
|
)
|
|
elif cmake_cache_vars["USE_NCCL"]:
|
|
report("-- Building NCCL library")
|
|
else:
|
|
report("-- Not using NCCL")
|
|
if cmake_cache_vars["USE_DISTRIBUTED"]:
|
|
if IS_WINDOWS:
|
|
report("-- Building without distributed package")
|
|
else:
|
|
report("-- Building with distributed package: ")
|
|
report(
|
|
" -- USE_TENSORPIPE={}".format(cmake_cache_vars["USE_TENSORPIPE"])
|
|
)
|
|
report(" -- USE_GLOO={}".format(cmake_cache_vars["USE_GLOO"]))
|
|
report(" -- USE_MPI={}".format(cmake_cache_vars["USE_OPENMPI"]))
|
|
else:
|
|
report("-- Building without distributed package")
|
|
if cmake_cache_vars["STATIC_DISPATCH_BACKEND"]:
|
|
report(
|
|
"-- Using static dispatch with backend {}".format(
|
|
cmake_cache_vars["STATIC_DISPATCH_BACKEND"]
|
|
)
|
|
)
|
|
if cmake_cache_vars["USE_LIGHTWEIGHT_DISPATCH"]:
|
|
report("-- Using lightweight dispatch")
|
|
|
|
if cmake_cache_vars["USE_ITT"]:
|
|
report("-- Using ITT")
|
|
else:
|
|
report("-- Not using ITT")
|
|
|
|
# Do not use clang to compile extensions if `-fstack-clash-protection` is defined
|
|
# in system CFLAGS
|
|
c_flags = str(os.getenv("CFLAGS", ""))
|
|
if (
|
|
IS_LINUX
|
|
and "-fstack-clash-protection" in c_flags
|
|
and "clang" in os.environ.get("CC", "")
|
|
):
|
|
os.environ["CC"] = str(os.environ["CC"])
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
setuptools.command.build_ext.build_ext.run(self)
|
|
|
|
if IS_DARWIN:
|
|
self._embed_libomp()
|
|
|
|
# Copy the essential export library to compile C++ extensions.
|
|
if IS_WINDOWS:
|
|
build_temp = self.build_temp
|
|
|
|
ext_filename = self.get_ext_filename("_C")
|
|
lib_filename = ".".join(ext_filename.split(".")[:-1]) + ".lib"
|
|
|
|
export_lib = os.path.join(
|
|
build_temp, "torch", "csrc", lib_filename
|
|
).replace("\\", "/")
|
|
|
|
build_lib = self.build_lib
|
|
|
|
target_lib = os.path.join(build_lib, "torch", "lib", "_C.lib").replace(
|
|
"\\", "/"
|
|
)
|
|
|
|
# Create "torch/lib" directory if not exists.
|
|
# (It is not created yet in "develop" mode.)
|
|
target_dir = os.path.dirname(target_lib)
|
|
if not os.path.exists(target_dir):
|
|
os.makedirs(target_dir)
|
|
|
|
self.copy_file(export_lib, target_lib)
|
|
|
|
# In ROCm on Windows case copy rocblas and hipblaslt files into
|
|
# torch/lib/rocblas/library and torch/lib/hipblaslt/library
|
|
if str2bool(os.getenv("USE_ROCM")):
|
|
rocm_dir_path = os.environ.get("ROCM_DIR")
|
|
rocm_bin_path = os.path.join(rocm_dir_path, "bin")
|
|
|
|
rocblas_dir = os.path.join(rocm_bin_path, "rocblas")
|
|
target_rocblas_dir = os.path.join(target_dir, "rocblas")
|
|
os.makedirs(target_rocblas_dir, exist_ok=True)
|
|
self.copy_tree(rocblas_dir, target_rocblas_dir)
|
|
|
|
hipblaslt_dir = os.path.join(rocm_bin_path, "hipblaslt")
|
|
target_hipblaslt_dir = os.path.join(target_dir, "hipblaslt")
|
|
os.makedirs(target_hipblaslt_dir, exist_ok=True)
|
|
self.copy_tree(hipblaslt_dir, target_hipblaslt_dir)
|
|
else:
|
|
report("The specified environment variable does not exist.")
|
|
|
|
def build_extensions(self):
|
|
self.create_compile_commands()
|
|
|
|
# Copy functorch extension
|
|
for i, ext in enumerate(self.extensions):
|
|
if ext.name != "functorch._C":
|
|
continue
|
|
fullname = self.get_ext_fullname(ext.name)
|
|
filename = self.get_ext_filename(fullname)
|
|
fileext = os.path.splitext(filename)[1]
|
|
src = os.path.join(os.path.dirname(filename), "functorch" + fileext)
|
|
dst = os.path.join(os.path.realpath(self.build_lib), filename)
|
|
if os.path.exists(src):
|
|
report(f"Copying {ext.name} from {src} to {dst}")
|
|
dst_dir = os.path.dirname(dst)
|
|
if not os.path.exists(dst_dir):
|
|
os.makedirs(dst_dir)
|
|
self.copy_file(src, dst)
|
|
|
|
setuptools.command.build_ext.build_ext.build_extensions(self)
|
|
|
|
def get_outputs(self):
|
|
outputs = setuptools.command.build_ext.build_ext.get_outputs(self)
|
|
outputs.append(os.path.join(self.build_lib, "caffe2"))
|
|
report(f"setup.py::get_outputs returning {outputs}")
|
|
return outputs
|
|
|
|
def create_compile_commands(self):
|
|
def load(filename):
|
|
with open(filename) as f:
|
|
return json.load(f)
|
|
|
|
ninja_files = glob.glob("build/*compile_commands.json")
|
|
cmake_files = glob.glob("torch/lib/build/*/compile_commands.json")
|
|
all_commands = [entry for f in ninja_files + cmake_files for entry in load(f)]
|
|
|
|
# cquery does not like c++ compiles that start with gcc.
|
|
# It forgets to include the c++ header directories.
|
|
# We can work around this by replacing the gcc calls that python
|
|
# setup.py generates with g++ calls instead
|
|
for command in all_commands:
|
|
if command["command"].startswith("gcc "):
|
|
command["command"] = "g++ " + command["command"][4:]
|
|
|
|
new_contents = json.dumps(all_commands, indent=2)
|
|
contents = ""
|
|
if os.path.exists("compile_commands.json"):
|
|
with open("compile_commands.json") as f:
|
|
contents = f.read()
|
|
if contents != new_contents:
|
|
with open("compile_commands.json", "w") as f:
|
|
f.write(new_contents)
|
|
|
|
|
|
class concat_license_files:
|
|
"""Merge LICENSE and LICENSES_BUNDLED.txt as a context manager
|
|
|
|
LICENSE is the main PyTorch license, LICENSES_BUNDLED.txt is auto-generated
|
|
from all the licenses found in ./third_party/. We concatenate them so there
|
|
is a single license file in the sdist and wheels with all of the necessary
|
|
licensing info.
|
|
"""
|
|
|
|
def __init__(self, include_files=False):
|
|
self.f1 = "LICENSE"
|
|
self.f2 = "third_party/LICENSES_BUNDLED.txt"
|
|
self.include_files = include_files
|
|
|
|
def __enter__(self):
|
|
"""Concatenate files"""
|
|
|
|
old_path = sys.path
|
|
sys.path.append(third_party_path)
|
|
try:
|
|
from build_bundled import create_bundled
|
|
finally:
|
|
sys.path = old_path
|
|
|
|
with open(self.f1) as f1:
|
|
self.bsd_text = f1.read()
|
|
|
|
with open(self.f1, "a") as f1:
|
|
f1.write("\n\n")
|
|
create_bundled(
|
|
os.path.relpath(third_party_path), f1, include_files=self.include_files
|
|
)
|
|
|
|
def __exit__(self, exception_type, exception_value, traceback):
|
|
"""Restore content of f1"""
|
|
with open(self.f1, "w") as f:
|
|
f.write(self.bsd_text)
|
|
|
|
|
|
try:
|
|
from wheel.bdist_wheel import bdist_wheel
|
|
except ImportError:
|
|
# This is useful when wheel is not installed and bdist_wheel is not
|
|
# specified on the command line. If it _is_ specified, parsing the command
|
|
# line will fail before wheel_concatenate is needed
|
|
wheel_concatenate = None
|
|
else:
|
|
# Need to create the proper LICENSE.txt for the wheel
|
|
class wheel_concatenate(bdist_wheel):
|
|
"""check submodules on sdist to prevent incomplete tarballs"""
|
|
|
|
def run(self):
|
|
with concat_license_files(include_files=True):
|
|
super().run()
|
|
|
|
def write_wheelfile(self, *args, **kwargs):
|
|
super().write_wheelfile(*args, **kwargs)
|
|
|
|
if BUILD_LIBTORCH_WHL:
|
|
# Remove extraneneous files in the libtorch wheel
|
|
for root, dirs, files in os.walk(self.bdist_dir):
|
|
for file in files:
|
|
if file.endswith((".a", ".so")) and os.path.isfile(
|
|
os.path.join(self.bdist_dir, file)
|
|
):
|
|
os.remove(os.path.join(root, file))
|
|
elif file.endswith(".py"):
|
|
os.remove(os.path.join(root, file))
|
|
# need an __init__.py file otherwise we wouldn't have a package
|
|
open(os.path.join(self.bdist_dir, "torch", "__init__.py"), "w").close()
|
|
|
|
|
|
class install(setuptools.command.install.install):
|
|
def run(self):
|
|
super().run()
|
|
|
|
|
|
class clean(setuptools.Command):
|
|
user_options = []
|
|
|
|
def initialize_options(self):
|
|
pass
|
|
|
|
def finalize_options(self):
|
|
pass
|
|
|
|
def run(self):
|
|
import glob
|
|
import re
|
|
|
|
with open(".gitignore") as f:
|
|
ignores = f.read()
|
|
pat = re.compile(r"^#( BEGIN NOT-CLEAN-FILES )?")
|
|
for wildcard in filter(None, ignores.split("\n")):
|
|
match = pat.match(wildcard)
|
|
if match:
|
|
if match.group(1):
|
|
# Marker is found and stop reading .gitignore.
|
|
break
|
|
# Ignore lines which begin with '#'.
|
|
else:
|
|
# Don't remove absolute paths from the system
|
|
wildcard = wildcard.lstrip("./")
|
|
|
|
for filename in glob.glob(wildcard):
|
|
try:
|
|
os.remove(filename)
|
|
except OSError:
|
|
shutil.rmtree(filename, ignore_errors=True)
|
|
|
|
|
|
class sdist(setuptools.command.sdist.sdist):
|
|
def run(self):
|
|
with concat_license_files():
|
|
super().run()
|
|
|
|
|
|
def get_cmake_cache_vars():
|
|
try:
|
|
return defaultdict(lambda: False, cmake.get_cmake_cache_variables())
|
|
except FileNotFoundError:
|
|
# CMakeCache.txt does not exist. Probably running "python setup.py clean" over a clean directory.
|
|
return defaultdict(lambda: False)
|
|
|
|
|
|
def configure_extension_build():
|
|
r"""Configures extension build options according to system environment and user's choice.
|
|
|
|
Returns:
|
|
The input to parameters ext_modules, cmdclass, packages, and entry_points as required in setuptools.setup.
|
|
"""
|
|
|
|
cmake_cache_vars = get_cmake_cache_vars()
|
|
|
|
################################################################################
|
|
# Configure compile flags
|
|
################################################################################
|
|
|
|
library_dirs = []
|
|
extra_install_requires = []
|
|
|
|
if IS_WINDOWS:
|
|
# /NODEFAULTLIB makes sure we only link to DLL runtime
|
|
# and matches the flags set for protobuf and ONNX
|
|
extra_link_args = ["/NODEFAULTLIB:LIBCMT.LIB"]
|
|
# /MD links against DLL runtime
|
|
# and matches the flags set for protobuf and ONNX
|
|
# /EHsc is about standard C++ exception handling
|
|
extra_compile_args = ["/MD", "/FS", "/EHsc"]
|
|
else:
|
|
extra_link_args = []
|
|
extra_compile_args = [
|
|
"-Wall",
|
|
"-Wextra",
|
|
"-Wno-strict-overflow",
|
|
"-Wno-unused-parameter",
|
|
"-Wno-missing-field-initializers",
|
|
"-Wno-unknown-pragmas",
|
|
# Python 2.6 requires -fno-strict-aliasing, see
|
|
# http://legacy.python.org/dev/peps/pep-3123/
|
|
# We also depend on it in our code (even Python 3).
|
|
"-fno-strict-aliasing",
|
|
]
|
|
|
|
library_dirs.append(lib_path)
|
|
|
|
main_compile_args = []
|
|
main_libraries = ["torch_python"]
|
|
|
|
main_link_args = []
|
|
main_sources = ["torch/csrc/stub.c"]
|
|
|
|
if BUILD_LIBTORCH_WHL:
|
|
main_libraries = ["torch"]
|
|
main_sources = []
|
|
|
|
if build_type.is_debug():
|
|
if IS_WINDOWS:
|
|
extra_compile_args.append("/Z7")
|
|
extra_link_args.append("/DEBUG:FULL")
|
|
else:
|
|
extra_compile_args += ["-O0", "-g"]
|
|
extra_link_args += ["-O0", "-g"]
|
|
|
|
if build_type.is_rel_with_deb_info():
|
|
if IS_WINDOWS:
|
|
extra_compile_args.append("/Z7")
|
|
extra_link_args.append("/DEBUG:FULL")
|
|
else:
|
|
extra_compile_args += ["-g"]
|
|
extra_link_args += ["-g"]
|
|
|
|
# pypi cuda package that requires installation of cuda runtime, cudnn and cublas
|
|
# should be included in all wheels uploaded to pypi
|
|
pytorch_extra_install_requirements = os.getenv(
|
|
"PYTORCH_EXTRA_INSTALL_REQUIREMENTS", ""
|
|
)
|
|
if pytorch_extra_install_requirements:
|
|
report(
|
|
f"pytorch_extra_install_requirements: {pytorch_extra_install_requirements}"
|
|
)
|
|
extra_install_requires += pytorch_extra_install_requirements.split("|")
|
|
|
|
# Cross-compile for M1
|
|
if IS_DARWIN:
|
|
macos_target_arch = os.getenv("CMAKE_OSX_ARCHITECTURES", "")
|
|
if macos_target_arch in ["arm64", "x86_64"]:
|
|
macos_sysroot_path = os.getenv("CMAKE_OSX_SYSROOT")
|
|
if macos_sysroot_path is None:
|
|
macos_sysroot_path = (
|
|
subprocess.check_output(
|
|
["xcrun", "--show-sdk-path", "--sdk", "macosx"]
|
|
)
|
|
.decode("utf-8")
|
|
.strip()
|
|
)
|
|
extra_compile_args += [
|
|
"-arch",
|
|
macos_target_arch,
|
|
"-isysroot",
|
|
macos_sysroot_path,
|
|
]
|
|
extra_link_args += ["-arch", macos_target_arch]
|
|
|
|
def make_relative_rpath_args(path):
|
|
if IS_DARWIN:
|
|
return ["-Wl,-rpath,@loader_path/" + path]
|
|
elif IS_WINDOWS:
|
|
return []
|
|
else:
|
|
return ["-Wl,-rpath,$ORIGIN/" + path]
|
|
|
|
################################################################################
|
|
# Declare extensions and package
|
|
################################################################################
|
|
|
|
extensions = []
|
|
excludes = ["tools", "tools.*", "caffe2", "caffe2.*"]
|
|
if not cmake_cache_vars["BUILD_FUNCTORCH"]:
|
|
excludes.extend(["functorch", "functorch.*"])
|
|
packages = find_packages(exclude=excludes)
|
|
C = Extension(
|
|
"torch._C",
|
|
libraries=main_libraries,
|
|
sources=main_sources,
|
|
language="c",
|
|
extra_compile_args=main_compile_args + extra_compile_args,
|
|
include_dirs=[],
|
|
library_dirs=library_dirs,
|
|
extra_link_args=extra_link_args
|
|
+ main_link_args
|
|
+ make_relative_rpath_args("lib"),
|
|
)
|
|
extensions.append(C)
|
|
|
|
# These extensions are built by cmake and copied manually in build_extensions()
|
|
# inside the build_ext implementation
|
|
if cmake_cache_vars["BUILD_FUNCTORCH"]:
|
|
extensions.append(
|
|
Extension(name="functorch._C", sources=[]),
|
|
)
|
|
|
|
cmdclass = {
|
|
"bdist_wheel": wheel_concatenate,
|
|
"build_ext": build_ext,
|
|
"clean": clean,
|
|
"install": install,
|
|
"sdist": sdist,
|
|
}
|
|
|
|
entry_points = {
|
|
"console_scripts": [
|
|
"torchrun = torch.distributed.run:main",
|
|
],
|
|
"torchrun.logs_specs": [
|
|
"default = torch.distributed.elastic.multiprocessing:DefaultLogsSpecs",
|
|
],
|
|
}
|
|
|
|
if cmake_cache_vars["USE_DISTRIBUTED"]:
|
|
# Only enable fr_trace command if distributed is enabled
|
|
entry_points["console_scripts"].append(
|
|
"torchfrtrace = tools.flight_recorder.fr_trace:main",
|
|
)
|
|
return extensions, cmdclass, packages, entry_points, extra_install_requires
|
|
|
|
|
|
# post run, warnings, printed at the end to make them more visible
|
|
build_update_message = """
|
|
It is no longer necessary to use the 'build' or 'rebuild' targets
|
|
|
|
To install:
|
|
$ python setup.py install
|
|
To develop locally:
|
|
$ python setup.py develop
|
|
To force cmake to re-generate native build files (off by default):
|
|
$ CMAKE_FRESH=1 python setup.py develop
|
|
"""
|
|
|
|
|
|
def print_box(msg):
|
|
lines = msg.split("\n")
|
|
size = max(len(l) + 1 for l in lines)
|
|
print("-" * (size + 2))
|
|
for l in lines:
|
|
print("|{}{}|".format(l, " " * (size - len(l))))
|
|
print("-" * (size + 2))
|
|
|
|
|
|
def main():
|
|
if BUILD_LIBTORCH_WHL and BUILD_PYTHON_ONLY:
|
|
raise RuntimeError(
|
|
"Conflict: 'BUILD_LIBTORCH_WHL' and 'BUILD_PYTHON_ONLY' can't both be 1. Set one to 0 and rerun."
|
|
)
|
|
install_requires = [
|
|
"filelock",
|
|
"typing-extensions>=4.10.0",
|
|
'setuptools ; python_version >= "3.12"',
|
|
"sympy>=1.13.3",
|
|
"networkx",
|
|
"jinja2",
|
|
"fsspec",
|
|
]
|
|
|
|
if BUILD_PYTHON_ONLY:
|
|
install_requires.append(f"{LIBTORCH_PKG_NAME}=={get_torch_version()}")
|
|
|
|
if str2bool(os.getenv("USE_PRIORITIZED_TEXT_FOR_LD")):
|
|
gen_linker_script(
|
|
filein="cmake/prioritized_text.txt", fout="cmake/linker_script.ld"
|
|
)
|
|
linker_script_path = os.path.abspath("cmake/linker_script.ld")
|
|
os.environ["LDFLAGS"] = os.getenv("LDFLAGS", "") + f" -T{linker_script_path}"
|
|
os.environ["CFLAGS"] = (
|
|
os.getenv("CFLAGS", "") + " -ffunction-sections -fdata-sections"
|
|
)
|
|
os.environ["CXXFLAGS"] = (
|
|
os.getenv("CXXFLAGS", "") + " -ffunction-sections -fdata-sections"
|
|
)
|
|
elif platform.system() == "Linux" and platform.processor() == "aarch64":
|
|
print_box(
|
|
"""
|
|
WARNING: we strongly recommend enabling linker script optimization for ARM + CUDA.
|
|
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
|
|
"""
|
|
)
|
|
|
|
# Parse the command line and check the arguments before we proceed with
|
|
# building deps and setup. We need to set values so `--help` works.
|
|
dist = Distribution()
|
|
dist.script_name = os.path.basename(sys.argv[0])
|
|
dist.script_args = sys.argv[1:]
|
|
try:
|
|
dist.parse_command_line()
|
|
except setuptools.distutils.errors.DistutilsArgError as e:
|
|
print(e)
|
|
sys.exit(1)
|
|
|
|
mirror_files_into_torchgen()
|
|
if RUN_BUILD_DEPS:
|
|
build_deps()
|
|
|
|
(
|
|
extensions,
|
|
cmdclass,
|
|
packages,
|
|
entry_points,
|
|
extra_install_requires,
|
|
) = configure_extension_build()
|
|
install_requires += extra_install_requires
|
|
|
|
extras_require = {
|
|
"optree": ["optree>=0.13.0"],
|
|
"opt-einsum": ["opt-einsum>=3.3"],
|
|
"pyyaml": ["pyyaml"],
|
|
}
|
|
|
|
# Read in README.md for our long_description
|
|
with open(os.path.join(cwd, "README.md"), encoding="utf-8") as f:
|
|
long_description = f.read()
|
|
|
|
version_range_max = max(sys.version_info[1], 13) + 1
|
|
torch_package_data = [
|
|
"py.typed",
|
|
"bin/*",
|
|
"test/*",
|
|
"*.pyi",
|
|
"**/*.pyi",
|
|
"lib/*.pdb",
|
|
"lib/**/*.pdb",
|
|
"lib/*shm*",
|
|
"lib/torch_shm_manager",
|
|
"lib/*.h",
|
|
"lib/**/*.h",
|
|
"include/*.h",
|
|
"include/**/*.h",
|
|
"include/*.hpp",
|
|
"include/**/*.hpp",
|
|
"include/*.cuh",
|
|
"include/**/*.cuh",
|
|
"_inductor/codegen/*.h",
|
|
"_inductor/codegen/aoti_runtime/*.cpp",
|
|
"_inductor/script.ld",
|
|
"_export/serde/*.yaml",
|
|
"_export/serde/*.thrift",
|
|
"share/cmake/ATen/*.cmake",
|
|
"share/cmake/Caffe2/*.cmake",
|
|
"share/cmake/Caffe2/public/*.cmake",
|
|
"share/cmake/Caffe2/Modules_CUDA_fix/*.cmake",
|
|
"share/cmake/Caffe2/Modules_CUDA_fix/upstream/*.cmake",
|
|
"share/cmake/Caffe2/Modules_CUDA_fix/upstream/FindCUDA/*.cmake",
|
|
"share/cmake/Gloo/*.cmake",
|
|
"share/cmake/Tensorpipe/*.cmake",
|
|
"share/cmake/Torch/*.cmake",
|
|
"utils/benchmark/utils/*.cpp",
|
|
"utils/benchmark/utils/valgrind_wrapper/*.cpp",
|
|
"utils/benchmark/utils/valgrind_wrapper/*.h",
|
|
"utils/model_dump/skeleton.html",
|
|
"utils/model_dump/code.js",
|
|
"utils/model_dump/*.mjs",
|
|
"_dynamo/graph_break_registry.json",
|
|
]
|
|
|
|
if not BUILD_LIBTORCH_WHL:
|
|
torch_package_data.extend(
|
|
[
|
|
"lib/libtorch_python.so",
|
|
"lib/libtorch_python.dylib",
|
|
"lib/libtorch_python.dll",
|
|
]
|
|
)
|
|
if not BUILD_PYTHON_ONLY:
|
|
torch_package_data.extend(
|
|
[
|
|
"lib/*.so*",
|
|
"lib/*.dylib*",
|
|
"lib/*.dll",
|
|
"lib/*.lib",
|
|
]
|
|
)
|
|
aotriton_image_path = os.path.join(lib_path, "aotriton.images")
|
|
aks2_files = []
|
|
for root, dirs, files in os.walk(aotriton_image_path):
|
|
subpath = os.path.relpath(root, start=aotriton_image_path)
|
|
for fn in files:
|
|
aks2_files.append(os.path.join("lib/aotriton.images", subpath, fn))
|
|
torch_package_data += aks2_files
|
|
if get_cmake_cache_vars()["USE_TENSORPIPE"]:
|
|
torch_package_data.extend(
|
|
[
|
|
"include/tensorpipe/*.h",
|
|
"include/tensorpipe/**/*.h",
|
|
]
|
|
)
|
|
if get_cmake_cache_vars()["USE_KINETO"]:
|
|
torch_package_data.extend(
|
|
[
|
|
"include/kineto/*.h",
|
|
"include/kineto/**/*.h",
|
|
]
|
|
)
|
|
torchgen_package_data = [
|
|
"packaged/*",
|
|
"packaged/**/*",
|
|
]
|
|
package_data = {
|
|
"torch": torch_package_data,
|
|
}
|
|
|
|
if not BUILD_LIBTORCH_WHL:
|
|
package_data["torchgen"] = torchgen_package_data
|
|
else:
|
|
# no extensions in BUILD_LIBTORCH_WHL mode
|
|
extensions = []
|
|
|
|
setup(
|
|
name=package_name,
|
|
version=version,
|
|
description=(
|
|
"Tensors and Dynamic neural networks in Python with strong GPU acceleration"
|
|
),
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
ext_modules=extensions,
|
|
cmdclass=cmdclass,
|
|
packages=packages,
|
|
entry_points=entry_points,
|
|
install_requires=install_requires,
|
|
extras_require=extras_require,
|
|
package_data=package_data,
|
|
# TODO fix later Manifest.IN file was previously ignored
|
|
include_package_data=False, # defaults to True with pyproject.toml file
|
|
url="https://pytorch.org/",
|
|
download_url="https://github.com/pytorch/pytorch/tags",
|
|
author="PyTorch Team",
|
|
author_email="packages@pytorch.org",
|
|
python_requires=f">={python_min_version_str}",
|
|
# PyPI package information.
|
|
classifiers=[
|
|
"Development Status :: 5 - Production/Stable",
|
|
"Intended Audience :: Developers",
|
|
"Intended Audience :: Education",
|
|
"Intended Audience :: Science/Research",
|
|
"License :: OSI Approved :: BSD License",
|
|
"Topic :: Scientific/Engineering",
|
|
"Topic :: Scientific/Engineering :: Mathematics",
|
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
"Topic :: Software Development",
|
|
"Topic :: Software Development :: Libraries",
|
|
"Topic :: Software Development :: Libraries :: Python Modules",
|
|
"Programming Language :: C++",
|
|
"Programming Language :: Python :: 3",
|
|
]
|
|
+ [
|
|
f"Programming Language :: Python :: 3.{i}"
|
|
for i in range(python_min_version[1], version_range_max)
|
|
],
|
|
license="BSD-3-Clause",
|
|
keywords="pytorch, machine learning",
|
|
)
|
|
if EMIT_BUILD_WARNING:
|
|
print_box(build_update_message)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|