mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Fixes a ton of false negatives throughout the codebase. RUFF also properly validates NOQA comments now and most of the changes are fixing typos there or removing filewide flake8 suppressions that were also silencing ruff issues. Pull Request resolved: https://github.com/pytorch/pytorch/pull/153249 Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/seemethere
629 lines
20 KiB
Python
Executable File
629 lines
20 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# flake8: noqa: F821
|
|
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import re
|
|
import subprocess
|
|
import sys
|
|
import warnings
|
|
|
|
|
|
try:
|
|
from .common import (
|
|
BenchmarkRunner,
|
|
download_retry_decorator,
|
|
load_yaml_file,
|
|
main,
|
|
reset_rng_state,
|
|
)
|
|
except ImportError:
|
|
from common import (
|
|
BenchmarkRunner,
|
|
download_retry_decorator,
|
|
load_yaml_file,
|
|
main,
|
|
reset_rng_state,
|
|
)
|
|
|
|
import torch
|
|
from torch._dynamo.testing import collect_results
|
|
from torch._dynamo.utils import clone_inputs
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
# Enable FX graph caching
|
|
if "TORCHINDUCTOR_FX_GRAPH_CACHE" not in os.environ:
|
|
torch._inductor.config.fx_graph_cache = True
|
|
|
|
# Enable Autograd caching
|
|
if "TORCHINDUCTOR_AUTOGRAD_CACHE" not in os.environ:
|
|
torch._functorch.config.enable_autograd_cache = True
|
|
|
|
|
|
def pip_install(package):
|
|
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
|
|
|
|
|
# Disable the flake warnings for the imports. Flake8 does not provide a way to
|
|
# disable just warning for the entire file. Disabling flake8 entirely.
|
|
imports = [
|
|
"AlbertForPreTraining",
|
|
"AutoConfig",
|
|
"AutoModelForCausalLM",
|
|
"AutoModelForMaskedLM",
|
|
"AutoModelForSeq2SeqLM",
|
|
"BigBirdConfig",
|
|
"BlenderbotForConditionalGeneration",
|
|
"BlenderbotModel",
|
|
"BlenderbotSmallForConditionalGeneration",
|
|
"BlenderbotSmallModel",
|
|
"CLIPModel",
|
|
"CLIPVisionModel",
|
|
"ElectraForPreTraining",
|
|
"GPT2ForSequenceClassification",
|
|
"GPTJForSequenceClassification",
|
|
"GPTNeoForSequenceClassification",
|
|
"HubertForSequenceClassification",
|
|
"LxmertForPreTraining",
|
|
"LxmertForQuestionAnswering",
|
|
"MarianForCausalLM",
|
|
"MarianModel",
|
|
"MarianMTModel",
|
|
"PegasusForConditionalGeneration",
|
|
"PegasusModel",
|
|
"ReformerConfig",
|
|
"ViTForImageClassification",
|
|
"ViTForMaskedImageModeling",
|
|
"ViTModel",
|
|
]
|
|
|
|
|
|
def process_hf_reformer_output(out):
|
|
assert isinstance(out, list)
|
|
# second output is unstable
|
|
return [elem for i, elem in enumerate(out) if i != 1]
|
|
|
|
|
|
try:
|
|
mod = importlib.import_module("transformers")
|
|
for cls in imports:
|
|
if not hasattr(mod, cls):
|
|
raise ModuleNotFoundError
|
|
except ModuleNotFoundError:
|
|
print("Installing HuggingFace Transformers...")
|
|
pip_install("git+https://github.com/huggingface/transformers.git#egg=transformers")
|
|
finally:
|
|
for cls in imports:
|
|
exec(f"from transformers import {cls}")
|
|
|
|
|
|
# These models contain the models present in huggingface_models_list. It is a
|
|
# combination of models supported by HF Fx parser and some manually supplied
|
|
# models. For these models, we already know the largest batch size that can fit
|
|
# on A100 GPUs - 40 GB.
|
|
BATCH_SIZE_KNOWN_MODELS = {}
|
|
|
|
|
|
# TODO(sdym): use batch-size-file parameter of common.main, like torchbench.py
|
|
# Get the list of models and their batch sizes
|
|
MODELS_FILENAME = os.path.join(os.path.dirname(__file__), "huggingface_models_list.txt")
|
|
assert os.path.exists(MODELS_FILENAME)
|
|
with open(MODELS_FILENAME) as fh:
|
|
lines = fh.readlines()
|
|
lines = [line.rstrip() for line in lines]
|
|
for line in lines:
|
|
model_name, batch_size = line.split(",")
|
|
batch_size = int(batch_size)
|
|
BATCH_SIZE_KNOWN_MODELS[model_name] = batch_size
|
|
assert len(BATCH_SIZE_KNOWN_MODELS)
|
|
|
|
|
|
def get_module_cls_by_model_name(model_cls_name):
|
|
_module_by_model_name = {
|
|
"Speech2Text2Decoder": "transformers.models.speech_to_text_2.modeling_speech_to_text_2",
|
|
"TrOCRDecoder": "transformers.models.trocr.modeling_trocr",
|
|
}
|
|
module_name = _module_by_model_name.get(model_cls_name, "transformers")
|
|
module = importlib.import_module(module_name)
|
|
return getattr(module, model_cls_name)
|
|
|
|
|
|
def get_sequence_length(model_cls, model_name):
|
|
if model_name.startswith(("Blenderbot",)):
|
|
seq_length = 128
|
|
elif model_name.startswith(("GPT2", "Bart", "T5", "PLBart", "MBart")):
|
|
seq_length = 1024
|
|
elif model_name in ("AllenaiLongformerBase", "BigBird"):
|
|
seq_length = 1024
|
|
elif model_name.startswith("OPT"):
|
|
seq_length = 2048
|
|
elif "Reformer" in model_name:
|
|
seq_length = 4096
|
|
elif model_name.startswith(
|
|
(
|
|
"Albert",
|
|
"Deberta",
|
|
"Layout",
|
|
"Electra",
|
|
"XLNet",
|
|
"MegatronBert",
|
|
"Bert",
|
|
"Roberta",
|
|
)
|
|
) or model_name in ("DistillGPT2", "GoogleFnet", "YituTechConvBert", "CamemBert"):
|
|
seq_length = 512
|
|
elif model_name in ("TrOCRForCausalLM"):
|
|
seq_length = 256
|
|
elif model_name.startswith("MobileBert"):
|
|
seq_length = 128
|
|
elif model_name.startswith("Wav2Vec2"):
|
|
# If too short, will fail with something like
|
|
# ValueError: `mask_length` has to be smaller than `sequence_length`,
|
|
# but got `mask_length`: 10 and `sequence_length`: 9`
|
|
seq_length = 10000 # NB: a more realistic size is 155136
|
|
else:
|
|
log.info(
|
|
f"Sequence Length not defined for {model_name}. Choosing 128 arbitrarily" # noqa: G004
|
|
)
|
|
seq_length = 128
|
|
return seq_length
|
|
|
|
|
|
def generate_inputs_for_model(
|
|
model_cls, model, model_name, bs, device, include_loss_args=False
|
|
):
|
|
# TODO - Check if following values are representative
|
|
num_choices = 3
|
|
num_visual_features = 42
|
|
seq_length = get_sequence_length(model_cls, model_name)
|
|
vocab_size = model.config.vocab_size
|
|
|
|
if model_name.startswith("Wav2Vec2"):
|
|
# TODO: If we add more input_values style models, try to work this
|
|
# into the overall control flow
|
|
target_length = 100
|
|
return {
|
|
"input_values": torch.randn((bs, seq_length), device=device),
|
|
# Added because that's what the example training script has
|
|
"attention_mask": rand_int_tensor(device, 0, 2, (bs, seq_length)),
|
|
"labels": rand_int_tensor(device, 0, vocab_size, (bs, target_length)),
|
|
}
|
|
|
|
if model_name.endswith("MultipleChoice"):
|
|
input = rand_int_tensor(device, 0, vocab_size, (bs, num_choices, seq_length))
|
|
elif model_name.startswith("Roberta"):
|
|
input = rand_int_tensor(device, 0, 1, (bs, seq_length))
|
|
else:
|
|
input = rand_int_tensor(device, 0, vocab_size, (bs, seq_length))
|
|
|
|
if "Bart" in model_name:
|
|
input[:, -1] = model.config.eos_token_id
|
|
|
|
input_dict = {"input_ids": input}
|
|
|
|
if model_name.startswith(("T5", "M2M100", "MT5")) or model_cls in [
|
|
BlenderbotModel,
|
|
BlenderbotSmallModel,
|
|
BlenderbotForConditionalGeneration,
|
|
BlenderbotSmallForConditionalGeneration,
|
|
PegasusModel,
|
|
PegasusForConditionalGeneration,
|
|
MarianModel,
|
|
MarianMTModel,
|
|
]:
|
|
input_dict["decoder_input_ids"] = input
|
|
|
|
if model_name.startswith("Lxmert"):
|
|
visual_feat_dim, visual_pos_dim = (
|
|
model.config.visual_feat_dim,
|
|
model.config.visual_pos_dim,
|
|
)
|
|
input_dict["visual_feats"] = torch.randn(
|
|
bs, num_visual_features, visual_feat_dim
|
|
)
|
|
input_dict["visual_pos"] = torch.randn(bs, num_visual_features, visual_pos_dim)
|
|
|
|
if include_loss_args:
|
|
if model_name.endswith("PreTraining"):
|
|
if model_cls in [ElectraForPreTraining, LxmertForPreTraining]:
|
|
input_dict["labels"] = rand_int_tensor(device, 0, 1, (bs, seq_length))
|
|
else:
|
|
label_name = (
|
|
"sentence_order_label"
|
|
if model_cls in [AlbertForPreTraining]
|
|
else "next_sentence_label"
|
|
)
|
|
input_dict["labels"] = (
|
|
rand_int_tensor(device, 0, vocab_size, (bs, seq_length)),
|
|
)
|
|
input_dict[label_name] = rand_int_tensor(device, 0, 1, (bs,))
|
|
elif model_name.endswith("QuestionAnswering"):
|
|
input_dict["start_positions"] = rand_int_tensor(
|
|
device, 0, seq_length, (bs,)
|
|
)
|
|
input_dict["end_positions"] = rand_int_tensor(device, 0, seq_length, (bs,))
|
|
elif model_name.endswith(
|
|
("MaskedLM", "HeadModel", "CausalLM", "DoubleHeadsModel")
|
|
):
|
|
input_dict["labels"] = rand_int_tensor(
|
|
device, 0, vocab_size, (bs, seq_length)
|
|
)
|
|
elif model_name.endswith("TokenClassification"):
|
|
input_dict["labels"] = rand_int_tensor(
|
|
device, 0, model.config.num_labels - 1, (bs, seq_length)
|
|
)
|
|
elif model_name.endswith("MultipleChoice"):
|
|
input_dict["labels"] = rand_int_tensor(device, 0, num_choices, (bs,))
|
|
elif model_name.endswith("SequenceClassification"):
|
|
input_dict["labels"] = rand_int_tensor(
|
|
device, 0, model.config.num_labels - 1, (bs,)
|
|
)
|
|
elif model_name.endswith("NextSentencePrediction"):
|
|
input_dict["labels"] = rand_int_tensor(device, 0, 1, (bs,))
|
|
elif model_name.endswith("ForConditionalGeneration"):
|
|
input_dict["labels"] = rand_int_tensor(
|
|
device, 0, vocab_size - 1, (bs, seq_length)
|
|
)
|
|
elif model_name in EXTRA_MODELS:
|
|
input_dict["labels"] = rand_int_tensor(
|
|
device, 0, vocab_size, (bs, seq_length)
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Class {model_name} unsupported for training test "
|
|
)
|
|
|
|
return input_dict
|
|
|
|
|
|
def rand_int_tensor(device, low, high, shape):
|
|
return torch.randint(
|
|
low,
|
|
high,
|
|
shape,
|
|
device=device,
|
|
dtype=torch.int64,
|
|
requires_grad=False,
|
|
)
|
|
|
|
|
|
EXTRA_MODELS = {
|
|
"AllenaiLongformerBase": (
|
|
AutoConfig.from_pretrained("allenai/longformer-base-4096"),
|
|
AutoModelForMaskedLM,
|
|
),
|
|
"Reformer": (
|
|
ReformerConfig(),
|
|
AutoModelForMaskedLM,
|
|
),
|
|
"T5Small": (
|
|
AutoConfig.from_pretrained("t5-small"),
|
|
AutoModelForSeq2SeqLM,
|
|
),
|
|
# "BigBird": (
|
|
# BigBirdConfig(attention_type="block_sparse"),
|
|
# AutoModelForMaskedLM,
|
|
# ),
|
|
"DistillGPT2": (
|
|
AutoConfig.from_pretrained("distilgpt2"),
|
|
AutoModelForCausalLM,
|
|
),
|
|
"GoogleFnet": (
|
|
AutoConfig.from_pretrained("google/fnet-base"),
|
|
AutoModelForMaskedLM,
|
|
),
|
|
"YituTechConvBert": (
|
|
AutoConfig.from_pretrained("YituTech/conv-bert-base"),
|
|
AutoModelForMaskedLM,
|
|
),
|
|
"CamemBert": (
|
|
AutoConfig.from_pretrained("camembert-base"),
|
|
AutoModelForMaskedLM,
|
|
),
|
|
}
|
|
|
|
|
|
class HuggingfaceRunner(BenchmarkRunner):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.suite_name = "huggingface"
|
|
|
|
@property
|
|
def _config(self):
|
|
return load_yaml_file("huggingface.yaml")
|
|
|
|
@property
|
|
def _skip(self):
|
|
return self._config["skip"]
|
|
|
|
@property
|
|
def _accuracy(self):
|
|
return self._config["accuracy"]
|
|
|
|
@property
|
|
def skip_models(self):
|
|
return self._skip["all"]
|
|
|
|
@property
|
|
def skip_models_for_cpu(self):
|
|
return self._skip["device"]["cpu"]
|
|
|
|
@property
|
|
def fp32_only_models(self):
|
|
return self._config["only_fp32"]
|
|
|
|
@property
|
|
def skip_models_due_to_control_flow(self):
|
|
return self._skip["control_flow"]
|
|
|
|
def use_larger_multiplier_for_smaller_tensor(self, name):
|
|
return name in [
|
|
"ElectraForQuestionAnswering",
|
|
"MegatronBertForQuestionAnswering",
|
|
]
|
|
|
|
def _get_model_cls_and_config(self, model_name):
|
|
if model_name not in EXTRA_MODELS:
|
|
model_cls = get_module_cls_by_model_name(model_name)
|
|
config_cls = model_cls.config_class
|
|
config = config_cls()
|
|
|
|
# NB: some models need a pad token defined to handle BS > 1
|
|
if (
|
|
model_cls
|
|
in [
|
|
GPT2ForSequenceClassification,
|
|
GPTNeoForSequenceClassification,
|
|
GPTJForSequenceClassification,
|
|
]
|
|
or model_cls.__name__.startswith("Roberta")
|
|
or model_cls.__name__.startswith("Marian")
|
|
):
|
|
config.pad_token_id = 0
|
|
|
|
else:
|
|
config, model_cls = EXTRA_MODELS[model_name]
|
|
|
|
return model_cls, config
|
|
|
|
@download_retry_decorator
|
|
def _download_model(self, model_name):
|
|
model_cls, config = self._get_model_cls_and_config(model_name)
|
|
if "auto" in model_cls.__module__:
|
|
# Handle auto classes
|
|
model = model_cls.from_config(config)
|
|
else:
|
|
model = model_cls(config)
|
|
return model
|
|
|
|
def load_model(
|
|
self,
|
|
device,
|
|
model_name,
|
|
batch_size=None,
|
|
extra_args=None,
|
|
):
|
|
is_training = self.args.training
|
|
use_eval_mode = self.args.use_eval_mode
|
|
dtype = torch.float32
|
|
reset_rng_state()
|
|
model_cls, config = self._get_model_cls_and_config(model_name)
|
|
model = self._download_model(model_name)
|
|
model = model.to(device, dtype=dtype)
|
|
if self.args.enable_activation_checkpointing:
|
|
model.gradient_checkpointing_enable()
|
|
if model_name in BATCH_SIZE_KNOWN_MODELS:
|
|
batch_size_default = BATCH_SIZE_KNOWN_MODELS[model_name]
|
|
elif batch_size is None:
|
|
batch_size_default = 16
|
|
log.info(
|
|
f"Batch size not specified for {model_name}. Setting batch_size=16" # noqa: G004
|
|
)
|
|
|
|
if batch_size is None:
|
|
batch_size = batch_size_default
|
|
batch_size_divisors = self._config["batch_size"]["divisors"]
|
|
if model_name in batch_size_divisors:
|
|
batch_size = max(int(batch_size / batch_size_divisors[model_name]), 1)
|
|
log.info(
|
|
f"Running smaller batch size={batch_size} for {model_name}, orig batch_size={batch_size_default}" # noqa: G004
|
|
)
|
|
|
|
example_inputs = generate_inputs_for_model(
|
|
model_cls, model, model_name, batch_size, device, include_loss_args=True
|
|
)
|
|
|
|
# So we can check for correct gradients without eliminating the dropout computation
|
|
for attr in dir(config):
|
|
if "drop" in attr and isinstance(getattr(config, attr), float):
|
|
setattr(config, attr, 1e-30)
|
|
|
|
if (
|
|
is_training
|
|
and not use_eval_mode
|
|
and not (
|
|
self.args.accuracy and model_name in self._config["only_inference"]
|
|
)
|
|
):
|
|
model.train()
|
|
else:
|
|
model.eval()
|
|
|
|
self.validate_model(model, example_inputs)
|
|
return device, model_name, model, example_inputs, batch_size
|
|
|
|
def iter_model_names(self, args):
|
|
model_names = list(BATCH_SIZE_KNOWN_MODELS.keys()) + list(EXTRA_MODELS.keys())
|
|
model_names = set(model_names)
|
|
model_names = sorted(model_names)
|
|
|
|
start, end = self.get_benchmark_indices(len(model_names))
|
|
for index, model_name in enumerate(model_names):
|
|
if index < start or index >= end:
|
|
continue
|
|
if (
|
|
not re.search("|".join(args.filter), model_name, re.IGNORECASE)
|
|
or re.search("|".join(args.exclude), model_name, re.IGNORECASE)
|
|
or model_name in args.exclude_exact
|
|
or model_name in self.skip_models
|
|
):
|
|
continue
|
|
yield model_name
|
|
|
|
@property
|
|
def skip_accuracy_checks_large_models_dashboard(self):
|
|
if self.args.dashboard or self.args.accuracy:
|
|
return self._accuracy["skip"]["large_models"]
|
|
return set()
|
|
|
|
@property
|
|
def get_output_amp_train_process_func(self):
|
|
return {}
|
|
|
|
def pick_grad(self, name, is_training):
|
|
if is_training:
|
|
return torch.enable_grad()
|
|
else:
|
|
return torch.no_grad()
|
|
|
|
def get_tolerance_and_cosine_flag(self, is_training, current_device, name):
|
|
cosine = self.args.cosine
|
|
if is_training:
|
|
from torch._inductor import config as inductor_config
|
|
|
|
if (name in self._config["tolerance"]["higher_training"]) or (
|
|
inductor_config.max_autotune
|
|
and name in self._config["tolerance"]["higher_max_autotune_training"]
|
|
):
|
|
return 2e-2, cosine
|
|
else:
|
|
return 1e-2, cosine
|
|
else:
|
|
if (
|
|
current_device == "cpu"
|
|
and name in self._config["tolerance"]["higher_inference_cpu"]
|
|
):
|
|
return 5e-3, cosine
|
|
if name in self._config["tolerance"]["higher_inference"]:
|
|
return 4e-3, cosine
|
|
return 1e-3, cosine
|
|
|
|
def compute_loss(self, pred):
|
|
return pred[0]
|
|
|
|
def forward_pass(self, mod, inputs, collect_outputs=True):
|
|
with self.autocast(**self.autocast_arg):
|
|
return mod(**inputs)
|
|
|
|
def forward_and_backward_pass(self, mod, inputs, collect_outputs=True):
|
|
cloned_inputs = clone_inputs(inputs)
|
|
self.optimizer_zero_grad(mod)
|
|
with self.autocast(**self.autocast_arg):
|
|
pred = mod(**cloned_inputs)
|
|
loss = self.compute_loss(pred)
|
|
self.grad_scaler.scale(loss).backward()
|
|
self.optimizer_step()
|
|
if collect_outputs:
|
|
return collect_results(mod, None, loss, cloned_inputs)
|
|
return None
|
|
|
|
|
|
def refresh_model_names_and_batch_sizes():
|
|
"""
|
|
This function reads the HF Fx tracer supported models and finds the largest
|
|
batch size that could fit on the GPU with PyTorch eager.
|
|
|
|
The resulting data is written in huggingface_models_list.txt.
|
|
|
|
Note - We only need to run this function if we believe that HF Fx tracer now
|
|
supports more models.
|
|
"""
|
|
import transformers.utils.fx as hf_fx
|
|
|
|
family = {}
|
|
lm_seen = set()
|
|
family_seen = set()
|
|
for cls_name in hf_fx._SUPPORTED_MODELS:
|
|
if "For" not in cls_name:
|
|
continue
|
|
|
|
model_cls = get_module_cls_by_model_name(cls_name)
|
|
|
|
# TODO: AttributeError: '*Config' object has no attribute 'vocab_size'
|
|
if model_cls in [
|
|
CLIPModel,
|
|
CLIPVisionModel,
|
|
# SwinForImageClassification,
|
|
# SwinForImageClassification,
|
|
# SwinForMaskedImageModeling,
|
|
# SwinModel,
|
|
ViTForImageClassification,
|
|
ViTForMaskedImageModeling,
|
|
ViTModel,
|
|
]:
|
|
continue
|
|
|
|
# TODO: AssertionError: Padding_idx must be within num_embeddings
|
|
if model_cls in [MarianForCausalLM, MarianMTModel, MarianModel]:
|
|
continue
|
|
|
|
# TODO: "model is not supported yet" from HFTracer
|
|
if model_cls in [HubertForSequenceClassification]:
|
|
continue
|
|
|
|
# TODO: shape mismatch in loss calculation
|
|
if model_cls in [LxmertForQuestionAnswering]:
|
|
continue
|
|
|
|
family_name = cls_name.split("For")[0]
|
|
if family_name not in family:
|
|
family[family_name] = []
|
|
if cls_name.endswith(("MaskedLM", "CausalLM")) and family_name not in lm_seen:
|
|
family[family_name].append(cls_name)
|
|
lm_seen.add(family_name)
|
|
elif (
|
|
cls_name.endswith(
|
|
("SequenceClassification", "ConditionalGeneration", "QuestionAnswering")
|
|
)
|
|
and family_name not in family_seen
|
|
):
|
|
family[family_name].append(cls_name)
|
|
family_seen.add(family_name)
|
|
elif cls_name.endswith("ImageClassification"):
|
|
family[family_name].append(cls_name)
|
|
|
|
chosen_models = set()
|
|
for members in family.values():
|
|
chosen_models.update(set(members))
|
|
|
|
# Add the EXTRA_MODELS
|
|
chosen_models.update(set(EXTRA_MODELS.keys()))
|
|
|
|
for model_name in sorted(chosen_models):
|
|
try:
|
|
subprocess.check_call(
|
|
[sys.executable]
|
|
+ sys.argv
|
|
+ ["--find-batch-sizes"]
|
|
+ [f"--only={model_name}"]
|
|
+ [f"--output={MODELS_FILENAME}"]
|
|
)
|
|
except subprocess.SubprocessError:
|
|
log.warning(f"Failed to find suitable batch size for {model_name}") # noqa: G004
|
|
|
|
|
|
def huggingface_main():
|
|
# Code to refresh model names and batch sizes
|
|
# if "--find-batch-sizes" not in sys.argv:
|
|
# refresh_model_names_and_batch_sizes()
|
|
logging.basicConfig(level=logging.WARNING)
|
|
warnings.filterwarnings("ignore")
|
|
main(HuggingfaceRunner())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
huggingface_main()
|