mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Reuse the same broadcast code from the function `ProcessBroadcastNode`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/72990
156 lines
7.1 KiB
Python
156 lines
7.1 KiB
Python
# Owner(s): ["module: onnx"]
|
|
|
|
import unittest
|
|
import torch
|
|
import numpy as np
|
|
from torch.onnx.symbolic_helper import (_set_onnx_shape_inference,
|
|
_onnx_main_opset,
|
|
_set_opset_version)
|
|
|
|
def expect_tensor(scalar_type, shape=None):
|
|
def verify(actual_type):
|
|
np.testing.assert_equal(actual_type.scalarType(), scalar_type)
|
|
# if shape is not None:
|
|
# np.testing.assert_equal(actual_type.sizes(), shape)
|
|
if shape is not None:
|
|
np.testing.assert_equal(actual_type.varyingSizes(), shape)
|
|
return verify
|
|
|
|
class TestONNXShapeInference(unittest.TestCase):
|
|
def __init__(self, *args, **kwargs):
|
|
unittest.TestCase.__init__(self, *args, **kwargs)
|
|
self.opset_version = _onnx_main_opset
|
|
_set_onnx_shape_inference(True)
|
|
_set_opset_version(self.opset_version)
|
|
|
|
def run_test(self, g, n, type_assertion_funcs):
|
|
if not isinstance(type_assertion_funcs, list):
|
|
type_assertion_funcs = [type_assertion_funcs]
|
|
|
|
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
|
|
for out, type_assertion_func in zip(n.outputs(), type_assertion_funcs):
|
|
type_assertion_func(out.type())
|
|
|
|
def create_empty_graph(self):
|
|
g = torch._C.Graph()
|
|
# kick off initialization for ConstantMap.
|
|
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
|
|
return g
|
|
|
|
def insert_tensor_constant(self, g, tensor):
|
|
return g.op("Constant", value_t=tensor)
|
|
|
|
def test_cast(self):
|
|
# Test cast with input of unknown scalar type.
|
|
g = self.create_empty_graph()
|
|
input = g.addInput()
|
|
cast_out = g.op("Cast", input, to_i=1)
|
|
self.run_test(g, cast_out.node(), expect_tensor("Float"))
|
|
|
|
def test_constant_of_shape(self):
|
|
# Test ConstantOfShape with input of onnx::Shape node.
|
|
g = self.create_empty_graph()
|
|
constant = self.insert_tensor_constant(g, torch.ones(1, 2, 3, 4))
|
|
shape = g.op("Shape", constant)
|
|
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
|
|
self.run_test(g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4)))
|
|
|
|
def test_constant_of_shape_static(self):
|
|
# Test ConstantOfShape with input of prim::ListConstruct of static tensor
|
|
rank = 4
|
|
g = self.create_empty_graph()
|
|
constants = [self.insert_tensor_constant(g, torch.tensor(i + 1)) for i in range(rank)]
|
|
shape = g.op("prim::ListConstruct", *constants)
|
|
shape.setType(torch._C.ListType.ofInts())
|
|
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
|
|
self.run_test(g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4)))
|
|
|
|
def test_constant_of_shape_dynamic(self):
|
|
# Test ConstantOfShape with input of prim::ListConstruct of dynamic tensor
|
|
rank = 4
|
|
g = self.create_empty_graph()
|
|
inputs = [g.addInput() for i in range(rank)]
|
|
shape = g.op("prim::ListConstruct", *inputs)
|
|
shape.setType(torch._C.ListType.ofInts())
|
|
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
|
|
self.run_test(g, constant_of_shape.node(), expect_tensor("Float", shape=(None, None, None, None)))
|
|
|
|
def test_reshape(self):
|
|
g = self.create_empty_graph()
|
|
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 5))
|
|
constant_2 = self.insert_tensor_constant(g, torch.tensor([2, 0, -1]))
|
|
shape = g.op("Reshape", constant, constant_2)
|
|
self.run_test(g, shape.node(), expect_tensor("Float", shape=(2, 16, 25)))
|
|
|
|
g = self.create_empty_graph()
|
|
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
|
|
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 4]))
|
|
shape = g.op("Reshape", constant, constant_2)
|
|
self.run_test(g, shape.node(), expect_tensor("Float", shape=(10, 16, 4)))
|
|
|
|
g = self.create_empty_graph()
|
|
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
|
|
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 0]))
|
|
shape = g.op("Reshape", constant, constant_2)
|
|
self.run_test(g, shape.node(), expect_tensor("Float", shape=(8, 16, 5)))
|
|
|
|
def test_reshape_symbolic(self):
|
|
g = self.create_empty_graph()
|
|
input = g.addInput()
|
|
input.setType(input.type().with_sizes([None, None, 2, 8]))
|
|
constant = self.insert_tensor_constant(g, torch.tensor([0, 0, -1]))
|
|
output = g.op("Reshape", input, constant)
|
|
self.run_test(g, output.node(), expect_tensor(None, shape=(None, None, 16)))
|
|
|
|
def test_slice(self):
|
|
g = self.create_empty_graph()
|
|
input = g.addInput()
|
|
input.setType(input.type().with_sizes([None, None]))
|
|
start_input = g.addInput()
|
|
start_input.setType(start_input.type().with_sizes([None]))
|
|
end = self.insert_tensor_constant(g, torch.tensor([3]))
|
|
axis = self.insert_tensor_constant(g, torch.tensor([0]))
|
|
step = self.insert_tensor_constant(g, torch.tensor([1]))
|
|
slice = g.op("Slice", input, start_input, end, axis, step)
|
|
self.run_test(g, slice.node(), expect_tensor(None, shape=(None, None)))
|
|
|
|
def test_broadcast_matmul(self):
|
|
g = self.create_empty_graph()
|
|
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
|
|
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
|
|
shape = g.op("MatMul", constant, constant_2)
|
|
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 5, 1, 1)))
|
|
|
|
# test when first input is of rank 1
|
|
g = self.create_empty_graph()
|
|
constant = self.insert_tensor_constant(g, torch.ones(2))
|
|
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
|
|
shape = g.op("MatMul", constant, constant_2)
|
|
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 1, 1)))
|
|
|
|
# test when second input is of rank 1
|
|
g = self.create_empty_graph()
|
|
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
|
|
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
|
|
shape = g.op("MatMul", constant, constant_2)
|
|
self.run_test(g, shape.node(), expect_tensor("Float", shape=(5, 1)))
|
|
|
|
# test when both inputs are of rank 1
|
|
g = self.create_empty_graph()
|
|
constant = self.insert_tensor_constant(g, torch.ones(2))
|
|
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
|
|
shape = g.op("MatMul", constant, constant_2)
|
|
self.run_test(g, shape.node(), expect_tensor("Float", shape=()))
|
|
|
|
def test_expand(self):
|
|
g = self.create_empty_graph()
|
|
input = g.addInput()
|
|
constant = self.insert_tensor_constant(g, torch.ones(2, 4))
|
|
input.setType(constant.type().with_sizes([None, None]))
|
|
shape = g.op("Shape", input)
|
|
expand = g.op("Expand", constant, shape)
|
|
self.run_test(g, expand.node(), expect_tensor("Float", shape=(None, None)))
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|