Files
pytorch/tools/setup_helpers/generate_code.py
Will Constable 93f7f58856 Make lazy codegen honor per-operator-headers flag (#74450)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74450

- per-operator-headers is a strict build mode where compulation units aren't allowed
to depend on bulk headers like ATen/Functions.h, but must instead depend only on the
specific operator headers used.  (In other configurations, the reverse is required).

Test Plan: CI to make sure nothing breaks for existing backends, and rebased next diff manual test to make sure it actually helps

Reviewed By: ezyang, bdhirsh

Differential Revision: D35002666

fbshipit-source-id: 712445f8d146cf026759444fbd42a20705be9bef
(cherry picked from commit f13e5522d49a6edcb6aed4431b1ec8e2b50a98fc)
2022-03-22 16:31:21 +00:00

215 lines
8.0 KiB
Python

import argparse
import os
import sys
import yaml
from typing import Any, List, Optional, cast
try:
# use faster C loader if available
from yaml import CSafeLoader as YamlLoader
except ImportError:
from yaml import SafeLoader as YamlLoader # type: ignore[misc]
source_files = {'.py', '.cpp', '.h'}
NATIVE_FUNCTIONS_PATH = 'aten/src/ATen/native/native_functions.yaml'
# TODO: This is a little inaccurate, because it will also pick
# up setup_helper scripts which don't affect code generation
def all_generator_source() -> List[str]:
r = []
for directory, _, filenames in os.walk('tools'):
for f in filenames:
if os.path.splitext(f)[1] in source_files:
full = os.path.join(directory, f)
r.append(full)
return sorted(r)
def generate_code(ninja_global: Optional[str] = None,
nn_path: Optional[str] = None,
native_functions_path: Optional[str] = None,
install_dir: Optional[str] = None,
subset: Optional[str] = None,
disable_autograd: bool = False,
force_schema_registration: bool = False,
operator_selector: Any = None) -> None:
from tools.autograd.gen_autograd import gen_autograd, gen_autograd_python
from tools.autograd.gen_annotated_fn_args import gen_annotated
from tools.codegen.selective_build.selector import SelectiveBuilder
# Build ATen based Variable classes
if install_dir is None:
install_dir = 'torch/csrc'
python_install_dir = 'torch/testing/_internal/generated'
else:
python_install_dir = install_dir
autograd_gen_dir = os.path.join(install_dir, 'autograd', 'generated')
jit_gen_dir = os.path.join(install_dir, 'jit', 'generated')
for d in (autograd_gen_dir, jit_gen_dir, python_install_dir):
if not os.path.exists(d):
os.makedirs(d)
runfiles_dir = os.environ.get("RUNFILES_DIR", None)
data_dir = os.path.join(runfiles_dir, 'pytorch') if runfiles_dir else ''
autograd_dir = os.path.join(data_dir, 'tools', 'autograd')
tools_jit_templates = os.path.join(data_dir, 'tools', 'jit', 'templates')
if subset == "pybindings" or not subset:
gen_autograd_python(
native_functions_path or NATIVE_FUNCTIONS_PATH,
autograd_gen_dir,
autograd_dir)
if operator_selector is None:
operator_selector = SelectiveBuilder.get_nop_selector()
if subset == "libtorch" or not subset:
gen_autograd(
native_functions_path or NATIVE_FUNCTIONS_PATH,
autograd_gen_dir,
autograd_dir,
disable_autograd=disable_autograd,
operator_selector=operator_selector,
)
if subset == "python" or not subset:
gen_annotated(
native_functions_path or NATIVE_FUNCTIONS_PATH,
python_install_dir,
autograd_dir)
def get_selector_from_legacy_operator_selection_list(
selected_op_list_path: str,
) -> Any:
with open(selected_op_list_path, 'r') as f:
# strip out the overload part
# It's only for legacy config - do NOT copy this code!
selected_op_list = {
opname.split('.', 1)[0] for opname in yaml.load(f, Loader=YamlLoader)
}
# Internal build doesn't use this flag any more. Only used by OSS
# build now. Every operator should be considered a root operator
# (hence generating unboxing code for it, which is consistent with
# the current behaviour), and also be considered as used for
# training, since OSS doesn't support training on mobile for now.
#
is_root_operator = True
is_used_for_training = True
from tools.codegen.selective_build.selector import SelectiveBuilder
selector = SelectiveBuilder.from_legacy_op_registration_allow_list(
selected_op_list,
is_root_operator,
is_used_for_training,
)
return selector
def get_selector(
selected_op_list_path: Optional[str],
operators_yaml_path: Optional[str],
) -> Any:
# cwrap depends on pyyaml, so we can't import it earlier
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.insert(0, root)
from tools.codegen.selective_build.selector import SelectiveBuilder
assert not (selected_op_list_path is not None and
operators_yaml_path is not None), \
("Expected at most one of selected_op_list_path and " +
"operators_yaml_path to be set.")
if selected_op_list_path is None and operators_yaml_path is None:
return SelectiveBuilder.get_nop_selector()
elif selected_op_list_path is not None:
return get_selector_from_legacy_operator_selection_list(selected_op_list_path)
else:
return SelectiveBuilder.from_yaml_path(cast(str, operators_yaml_path))
def main() -> None:
parser = argparse.ArgumentParser(description='Autogenerate code')
parser.add_argument('--native-functions-path')
parser.add_argument('--nn-path')
parser.add_argument('--ninja-global')
parser.add_argument('--install_dir')
parser.add_argument(
'--subset',
help='Subset of source files to generate. Can be "libtorch" or "pybindings". Generates both when omitted.'
)
parser.add_argument(
'--disable-autograd',
default=False,
action='store_true',
help='It can skip generating autograd related code when the flag is set',
)
parser.add_argument(
'--selected-op-list-path',
help='Path to the YAML file that contains the list of operators to include for custom build.',
)
parser.add_argument(
'--operators_yaml_path',
help='Path to the model YAML file that contains the list of operators to include for custom build.',
)
parser.add_argument(
'--force_schema_registration',
action='store_true',
help='force it to generate schema-only registrations for ops that are not'
'listed on --selected-op-list'
)
parser.add_argument(
'--gen_lazy_ts_backend',
action='store_true',
help='Enable generation of the torch::lazy TorchScript backend'
)
parser.add_argument(
'--per_operator_headers',
action='store_true',
help='Build lazy tensor ts backend with per-operator ATen headers, must match how ATen was built'
)
options = parser.parse_args()
generate_code(
options.ninja_global,
options.nn_path,
options.native_functions_path,
options.install_dir,
options.subset,
options.disable_autograd,
options.force_schema_registration,
# options.selected_op_list
operator_selector=get_selector(options.selected_op_list_path, options.operators_yaml_path),
)
if options.gen_lazy_ts_backend:
aten_path = os.path.dirname(os.path.dirname(options.native_functions_path))
ts_backend_yaml = os.path.join(aten_path, 'native/ts_native_functions.yaml')
if options.install_dir is None:
options.install_dir = "torch/csrc"
lazy_install_dir = os.path.join(options.install_dir, "lazy/generated")
if not os.path.exists(lazy_install_dir):
os.makedirs(lazy_install_dir)
assert os.path.isfile(ts_backend_yaml), f"Unable to access ts_backend_yaml: {ts_backend_yaml}"
from tools.codegen.gen_lazy_tensor import run_gen_lazy_tensor
run_gen_lazy_tensor(aten_path=aten_path,
source_yaml=ts_backend_yaml,
output_dir=lazy_install_dir,
dry_run=False,
# TODO(whc) reimplement checking of hand-implemented nativefunc file after landing it
impl_path=None,
gen_ts_lowerings=True,
node_base="TsNode",
node_base_hdr="torch/csrc/lazy/ts_backend/ts_node.h",
per_operator_headers=options.per_operator_headers)
if __name__ == "__main__":
main()