Files
pytorch/tools/codegen/gen_lazy_tensor.py
Will Constable 93f7f58856 Make lazy codegen honor per-operator-headers flag (#74450)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74450

- per-operator-headers is a strict build mode where compulation units aren't allowed
to depend on bulk headers like ATen/Functions.h, but must instead depend only on the
specific operator headers used.  (In other configurations, the reverse is required).

Test Plan: CI to make sure nothing breaks for existing backends, and rebased next diff manual test to make sure it actually helps

Reviewed By: ezyang, bdhirsh

Differential Revision: D35002666

fbshipit-source-id: 712445f8d146cf026759444fbd42a20705be9bef
(cherry picked from commit f13e5522d49a6edcb6aed4431b1ec8e2b50a98fc)
2022-03-22 16:31:21 +00:00

282 lines
14 KiB
Python

import pathlib
import argparse
import os
import re
import yaml
from collections import namedtuple, Counter
from typing import List, Dict, Union, Sequence, Optional, Callable, Iterable, Iterator, Tuple, Type
from tools.codegen.dest.lazy_ir import LazyIR, TSLazyIR
from tools.codegen.gen import get_grouped_native_functions, parse_native_yaml, NamespaceHelper
from tools.codegen.model import (FunctionSchema,
NativeFunction, NativeFunctionsGroup, OperatorName)
from tools.codegen.selective_build.selector import SelectiveBuilder
from tools.codegen.utils import concatMap, YamlLoader, FileManager
import tools.codegen.dest as dest
from .gen_backend_stubs import (parse_backend_yaml, error_on_missing_kernels,
gen_dispatchkey_nativefunc_headers,
gen_dispatcher_registrations)
# Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key.
# Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping, full_codegen)
ParsedExternalYaml = namedtuple('ParsedExternalYaml', [
'backend_key', 'autograd_key', 'cpp_namespace', 'backend_indices', 'full_codegen'])
def parse_full_codegen_ops(
backend_yaml_path: str,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
) -> List[OperatorName]:
native_functions_map: Dict[OperatorName, NativeFunction] = {
f.func.name: f
for f in concatMap(
lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), grouped_native_functions
)
}
with open(backend_yaml_path, 'r') as f:
yaml_values = yaml.load(f, Loader=YamlLoader)
assert isinstance(yaml_values, dict)
full_codegen = yaml_values.pop('full_codegen', [])
assert isinstance(full_codegen, list), f'expected "full_codegen" to be a list, but got: {full_codegen}'
full_codegen = [OperatorName.parse(name) for name in full_codegen]
return full_codegen
def validate_shape_inference_header(shape_inference_hdr: str, expected_shape_infr_decls: List[str]) -> None:
try:
with open(shape_inference_hdr, 'r') as f:
shape_infr_decls = f.read()
shape_infr_decl_lines = set(shape_infr_decls.split("\n"))
except IOError:
raise AssertionError(f'Unable to read from the specified shape_inference_hdr file: {shape_inference_hdr}')
shape_infr_regex = r'compute_shape_(\w+)'
actual_shape_infr_name_counts = Counter(re.findall(shape_infr_regex, shape_infr_decls))
# TODO(whc) add a check for shape inference functions that have meta kernels implement and should be retired.
for decl in expected_shape_infr_decls:
assert decl in shape_infr_decl_lines, f"""Missing shape inference function.\n
Please add declare this function in {shape_inference_hdr}:\n
and implement it in the the corresponding shape_inference.cpp file.\n
{decl}"""
class default_args:
node_base: str = "Node"
node_base_hdr: Optional[str] = None
shape_inference_hdr: str = "torch/csrc/lazy/core/shape_inference.h"
tensor_class: str = "torch::lazy::LazyTensor"
tensor_class_hdr: str = "torch/csrc/lazy/core/tensor.h"
lazy_ir_cls: Type[LazyIR] = TSLazyIR
def main() -> None:
parser = argparse.ArgumentParser(description='Generate Lazy Tensor backend files')
parser.add_argument(
'-s',
'--source_yaml',
help='path to source yaml file containing operator external definitions')
parser.add_argument(
'-o', '--output_dir', help='output directory')
parser.add_argument(
'--dry_run', type=bool, default=False, help='output directory')
parser.add_argument(
'--impl_path', type=str, default=None, help='path to the source C++ file containing kernel definitions')
parser.add_argument(
'--gen_ts_lowerings', action="store_true",
help='Generate TorchScript lowerings in addition to Lazy IR and NativeFunctions')
parser.add_argument(
'--node_base', type=str, default=default_args.node_base,
help='Name of backend specific custom Lazy IR Node base class')
parser.add_argument(
'--node_base_hdr', type=str, default=default_args.node_base_hdr,
help='Path to header file defining custom Lazy IR Node base class')
parser.add_argument(
'--shape_inference_hdr', type=str, default=default_args.shape_inference_hdr,
help='Path to header file defining custom Lazy shape inference functions')
parser.add_argument(
'--tensor_class', type=str, default=default_args.tensor_class,
help='Name of backend specific custom Lazy Tensor class')
parser.add_argument(
'--tensor_class_hdr', type=str, default=default_args.tensor_class_hdr,
help='Path to header file defining custom Lazy Tensor class')
options = parser.parse_args()
# Assumes that this file lives at PYTORCH_ROOT/tools/codegen/gen_backend_stubs.py
torch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
aten_path = str(torch_root / "aten" / "src" / "ATen")
run_gen_lazy_tensor(aten_path, options.source_yaml, options.output_dir, options.dry_run, options.impl_path,
options.gen_ts_lowerings, options.node_base, options.node_base_hdr,
options.tensor_class, options.tensor_class_hdr, options.shape_inference_hdr,
default_args.lazy_ir_cls)
def run_gen_lazy_tensor(aten_path: str, source_yaml: str, output_dir: str,
dry_run: bool, impl_path: Optional[str],
gen_ts_lowerings: bool,
node_base: str = default_args.node_base,
node_base_hdr: Optional[str] = default_args.node_base_hdr,
tensor_class: str = default_args.tensor_class,
tensor_class_hdr: str = default_args.tensor_class_hdr,
shape_inference_hdr: str = default_args.shape_inference_hdr,
lazy_ir_cls: Type[LazyIR] = default_args.lazy_ir_cls,
per_operator_headers: bool = False) -> None:
template_dir = os.path.join(aten_path, "templates")
def make_file_manager(install_dir: str) -> FileManager:
return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=dry_run)
fm = make_file_manager(output_dir)
native_yaml_path = os.path.join(aten_path, 'native/native_functions.yaml')
parsed_yaml = parse_native_yaml(native_yaml_path)
native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices
grouped_native_functions = get_grouped_native_functions(native_functions)
def sort_native_function(f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
"""
We sort the native function because of the note in concat_map_codegen.
TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly.
"""
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
return str(func.name.name)
grouped_native_functions = sorted(grouped_native_functions, key=sort_native_function)
parsed_backend_yaml = parse_backend_yaml(source_yaml, grouped_native_functions, backend_indices)
backend_key = parsed_backend_yaml.backend_key
autograd_key = parsed_backend_yaml.autograd_key
cpp_namespace = parsed_backend_yaml.cpp_namespace
backend_indices = parsed_backend_yaml.backend_indices
full_codegen = parse_full_codegen_ops(source_yaml, grouped_native_functions)
def concat_map_codegen(func: Callable[[NativeFunction], Sequence[str]],
xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]],
*, codegenInplaceVariant: bool = False) -> Iterator[str]:
"""
We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we
only code-gen additional entries for the inplace variant for the native functions.
Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if
we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and
relu_ which will cause problems for relu.
TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack.
"""
generated = set()
def gen_key(func: FunctionSchema) -> Tuple[str, str]:
# we want to generate unique entries for overloads of functional variants,
# but not for inplace variants unless explicitly told `codegenInplaceVariant`
return (func.name.name.base, func.name.overload_name)
for x in xs:
f = x.functional if isinstance(x, NativeFunctionsGroup) else x
# For the 'or'd terms:
# 1. codegenInplaceVariant means we can generate the in-place variant corresponding items.
# 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item.
# 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item
# as if they were the functional variants for one time.
if f.func.name in full_codegen and \
(codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated):
generated.add(gen_key(f.func))
for r in func(f):
yield r
selector = SelectiveBuilder.get_nop_selector()
assert backend_key is not None
class_name = backend_indices[backend_key].native_function_class_name()
if impl_path is not None:
error_on_missing_kernels(native_functions, backend_indices, backend_key,
autograd_key, impl_path, full_codegen)
""" Validate Shape Inference Definitions
Generated lazy native functions all perform shape inference, by first using a meta:: kernel
if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator
knows the call signature for compute_shape_{op} becuase it matches the nativefunction (and meta::) signature,
so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev
to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides
the expected signature which can be copy-pasted into shape_inference.h.
compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported
to structured kernels.
See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information.
"""
if shape_inference_hdr is not None:
expected_shape_infr_decls = list(
concat_map_codegen(
dest.GenLazyShapeInferenceDefinition(backend_indices[backend_key], tensor_class),
grouped_native_functions,
codegenInplaceVariant=True
)
)
validate_shape_inference_header(shape_inference_hdr, expected_shape_infr_decls)
assert class_name is not None
# Generate nativefunction declarations
gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace, backend_indices,
grouped_native_functions, backend_key, autograd_key)
# Generate Dispatcher registrations which hook up the nativefunctions
for dispatch_key in [backend_key] if autograd_key is None else [backend_key, autograd_key]:
gen_dispatcher_registrations(fm, output_dir, cpp_namespace, backend_indices, grouped_native_functions,
backend_key, dispatch_key, selector,
per_operator_headers=per_operator_headers)
# Generate native function impls that build IR nodes
ns_helper = NamespaceHelper(cpp_namespace)
fm.write_with_template(f'{backend_key}NativeFunctions.cpp', 'DispatchKeyNativeFunctions.cpp', lambda: {
'includes': [f'#include <{path}>' for path in [
tensor_class_hdr,
shape_inference_hdr,
"ATen/Functions.h",
"ATen/MetaFunctions.h",
"ATen/Operators.h",
"torch/csrc/lazy/core/lazy_graph_executor.h",
"torch/csrc/lazy/core/metrics.h",
"torch/csrc/lazy/core/shape.h",
"lazy_tensor_core/csrc/ts_backend/aten_eager_fallback.h",
f"{output_dir}/{backend_key}NativeFunctions.h",
f"{output_dir}/{backend_key}LazyIr.h",
]],
'native_functions_include': '',
'namespace_prologue': ns_helper.prologue,
'namespace_epilogue': ns_helper.epilogue,
'native_function_definitions':
list(concat_map_codegen(
dest.GenLazyNativeFuncDefinition(f'{backend_key}NativeFunctions',
backend_indices[backend_key],
tensor_class),
grouped_native_functions,
codegenInplaceVariant=True
)),
})
# Generate IR node classes
fm.write_with_template('LazyIr.h', 'LazyIr.h', lambda: {
'lazy_ir_sysinc': [f'#include <{path}>' for path in [
"ATen/core/Formatting.h",
"c10/core/ScalarType.h",
"c10/util/Optional.h",
"torch/csrc/lazy/core/hash.h",
"torch/csrc/lazy/core/ir.h",
"torch/csrc/lazy/core/shape.h",
"vector",
]],
'lazy_ir_inc': [f'#include "{path}"' for path in [
node_base_hdr if node_base_hdr is not None else None
] if path is not None],
'ir_declarations': list(concat_map_codegen(
lazy_ir_cls(backend_indices[backend_key], node_base),
grouped_native_functions
)),
})
if __name__ == '__main__':
main()