mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 14:15:01 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57361 Data model change in the codegen, which splits backend-specific information out of `NativeFunction` ### Overview Currently in the codegen, native_functions.yaml has backend-specific information about each operator that is encoded directly into the data model, in the `NativeFunction` object. That's reasonable, since the native_functions.yaml is the source of truth for information about an operator, and the data model encodes that information into types. Now that external backends can use the codegen though, that information is technically incomplete/inaccurate. In another PR, I tried patching the information on the `NativeFunction` object with the additional external information, by updating the `dispatch` entry to contain the external backend kernel name and dispatch key. Instead, this PR tries to split out that information. The `NativeFunction` class contains all information about an operator from native_functions.yaml that's backend-independent and is known never to change regardless of what extra information backends provide. We also build up a backend "index", which is basically a mapping from [backend] -> [backend-specific-metadata]. Reading in an external backend yaml just involves updating that index with the new backend. There were a few places where `NativeFunction` used the dispatch table directly, that I encoded as properties directly on the NativeFunction object (e.g. `is_abstract`). They were mostly around whether or not the operator has a composite kernel, which isn't something that's going to change for any external backends. This has a few advantages: - We can more easily re-use the existing logic in `native_function.py` and `register_dispatch_key.py` for both native and external backends, since they both involve a NativeFunction + a particular backend index - The data in the data model will be the same regardless of how the codegen is run. Running the codegen with a new external backend doesn't change the data inside of NativeFunction or an existing backend index. It just adds a new index for that backend. - There are several of codegen areas that don't care about backend-specific information: mostly the tracing and autograd codegen. We can reason about the codegen there more easily, knowing that backend-specific info is entirely uninvolved. An alternative to this split would be to augment the NativeFunction objects with external backend information at the time that we create them. So the external codegen could read both native_functions.yaml and the external backend's yaml at the same time, and construct a NativeObject with a full dispatch table (including the XLA entry), and the correct setting of structured (taking into account both yamls). One disadvantage to this approach is that NativeFunction objects now contain different stuff depending on how you ran the codegen, and you have to make sure that any changes to the codegen can properly handle all the different variants. ### Data Model Changes Removed 3 classes, which are used by the external codegen: - ExternalBackendFunction - ExternalBackendFunctionsGroup - ExternalBackendMetadata And added two new ones: - BackendIndex - BackendMetadata `BackendIndex` contains any info that's specific to that backend, plus a mapping from operator names to backend specific metadata about the operator. One example of backend-specific info that's not operator-dependent is the fact that XLA prefers to implement functional kernels instead of out kernels (and so when they eventually mark an op as structured, they're going to mark the functional op and not the out op). `BackendMetadata` contains info specific to an (operator, backend) pair. Right now, that's just (a) the name of the kernel, and (b) whether or not that operator is structured. ### Questions I wanted to get this PR up earlier so I could get feedback, but there are a few things I want to call out: **Dealing with `structured`.** This PR separates out the notion of `structured` into two bits of information: - Does [operator] have a meta() function. This is backend-agnostic, and is represented by the `structured` property on `NativeFunction`, same as before. This is used, e.g., to decide what signatures to add to `MetaFunctions.h`. - Does [operator, backend] have an impl() function. This is backend dependent; even though technically all in-tree backends are forced to write impl() functions for an operator when we port the op to structured in native_functions.yaml, out-of-tree backends can decide to opt in independently. This is represented as a property on `BackendMetadata`. This is used in most other cases, e.g. in `RegisterDispatchKey` when we're deciding whether or not to gen a structured or unstructured wrapper. I also baked `is_structured_dispatch_key` directly into each BackendIndex. So for operators marked "structured" in native_functions.yaml, their corresponding CPU/CUDA BackendIndex entries will be marked structured, and all others (except for potentially external backends) will not. I ended up trying to deal with `structured` in this change since it's technically backend dependent (XLA can opt kernels into structured separately from in-tree ops), but that may have been too ambitious: it's technically not relevant until we actually add support for structured external kernels. If it's not clear that this is the right path for dealing with structured and we want to push that off, I'm fine with backing out the bits of this PR that make `structured` backend-dependent. I don't see anything *too* controversial related to structured in the change, but I tried to call out any areas in the comments **Localizing the fact that external backends follow Dispatcher convention.** Another thing that's sort of backend specific that I didn't totally address in this PR is the fact the fact that in-tree backends follow the Native API while external backends follow the Dispatcher API. I painted over that in `native_functions.py` by adding a helper, `kernel_signature`, that takes in a native function and gives you the "correct" signature for the specified backend- NativeSignature for in-tree backends, and DispatcherSignature for out-of-tree backends. In order to make that fully useable though, we'll need `NativeSignature` and `DispatcherSignature` to have matching interfaces. I didn't bother with that in this PR, which is why `gen_external_aten_fallbacks.py` still has a bunch of direct references to the dispatcher API. Thinking of adding it in a later PR but wanted to see if anyone has other opinions. Maybe `is_external()` shouldn't even be a property on the BackendMetadata, and anything the codegen does that requires asking for that information should just be better abstracted away. **Thoughts on the `BackendIndex` / `BackendMetadata` breakdown.** One thing that's annoying right now is that to query for various pieces of metadata, you call helper functions like `backend_index.structured(f)`, which queries that particular backend and tells you if that specific NativeFunctionGroup is structured for that backend. It has to return an `Optional[bool]` though, since you have to handle the case where that operator doesn't have a kernel for that backend at all. So users of those helpers end up with a bunch of optionals that they need to unpack, even if they know at some point that the result isn't None. I think it would be easier instead to just store the NativeFunction object as a field directly on the BackendMetadata. Curious if there are any other opinions on a better way to model it though. Test Plan: Imported from OSS Reviewed By: navahgar Differential Revision: D28474362 Pulled By: bdhirsh fbshipit-source-id: 41a00821acf172467d764cb41e771e096542f661
886 lines
34 KiB
Python
886 lines
34 KiB
Python
# Generates Python bindings for ATen functions
|
|
#
|
|
# The bindings are generated as methods on python_variable or functions on the
|
|
# torch._C._nn. torch._C._fft, torch._C._linalg or torch._C._special objects.
|
|
#
|
|
|
|
# Code tries to stick to the following rules:
|
|
#
|
|
# - templates should be colocated with the functions that use them.
|
|
# no templates are currently shared between functions, but if that
|
|
# happens, maybe put the template with the first one
|
|
#
|
|
# - don't use environment dictionaries when calling template.substitute().
|
|
# pass named arguments directly for everything, otherwise it's much too
|
|
# hard to track what's actually being used and by who
|
|
#
|
|
# - colocate any new hacks/adjustments with existing ones of the same kind.
|
|
# ideally in a data structure rather than code if possible. See e.g.
|
|
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
|
|
#
|
|
# - similarly, conversions from one format to another should ideally happen
|
|
# all at once in a single place.
|
|
#
|
|
# - no nontrivial nested functions. couple-liners are ok but please no more.
|
|
# especially avoid functions that read/write outer variables defined far away.
|
|
#
|
|
# - raise RuntimeError instead of asserting, and put as much
|
|
# information as is available into the message. I.e. no need to
|
|
# plumb in new params whose only purpose is to fill out an error
|
|
# message, but use what's there
|
|
#
|
|
|
|
from collections import defaultdict
|
|
import itertools
|
|
import re
|
|
import yaml
|
|
|
|
from .gen_trace_type import should_trace
|
|
|
|
from tools.codegen.code_template import CodeTemplate
|
|
from tools.codegen.api import cpp
|
|
from tools.codegen.api.types import CppSignatureGroup
|
|
from tools.codegen.api.python import (PythonArgument, PythonSignature,
|
|
PythonSignatureDeprecated,
|
|
PythonSignatureGroup,
|
|
PythonSignatureNativeFunctionPair,
|
|
arg_parser_output_exprs,
|
|
argument_type_str, cpp_dispatch_exprs,
|
|
cpp_dispatch_target,
|
|
dispatch_lambda_args,
|
|
dispatch_lambda_exprs,
|
|
dispatch_lambda_return_str,
|
|
has_tensor_options,
|
|
namedtuple_fieldnames, signature)
|
|
from tools.codegen.gen import cpp_string, parse_native_yaml, FileManager
|
|
from tools.codegen.context import with_native_function
|
|
from tools.codegen.model import (Argument, BaseOperatorName, NativeFunction,
|
|
Type, Variant)
|
|
from tools.codegen.utils import split_name_params
|
|
|
|
from typing import Dict, Optional, List, Tuple, Set, Sequence, Callable
|
|
|
|
try:
|
|
# use faster C loader if available
|
|
from yaml import CSafeLoader as Loader
|
|
except ImportError:
|
|
from yaml import SafeLoader as Loader # type: ignore[misc]
|
|
|
|
#
|
|
# declarations blocklist
|
|
# We skip codegen for these functions, for various reasons.
|
|
# Future PRs will categorize this list and eliminate or hoist
|
|
# them out of eager-only codegen.
|
|
# See https://github.com/pytorch/pytorch/issues/30788
|
|
#
|
|
|
|
# These functions require manual Python bindings or are not exposed to Python
|
|
SKIP_PYTHON_BINDINGS = [
|
|
'alias', 'contiguous', 'is_cuda', 'is_sparse', 'is_sparse_csr', 'size', 'stride',
|
|
'.*_backward', '.*_backward_(out|input|weight|bias)', '.*_forward',
|
|
'.*_forward_out', '_unsafe_view', 'tensor', '_?sparse_coo_tensor.*',
|
|
'_?sparse_csr_tensor.*',
|
|
'_arange.*', '_range.*', '_linspace.*', '_logspace.*',
|
|
'_sparse_add_out', '_sparse_div.*', '_sparse_mul.*', '_sparse_sub.*', '_sparse_dense_add_out',
|
|
'index', 'unique_dim_consecutive',
|
|
'_cumsum.*', '_cumprod.*', '_sum.*', '_prod.*',
|
|
'_th_.*', '_thnn_.*',
|
|
'arange.*', 'range.*', '_solve.*', '_inverse.*',
|
|
'full(_out)?',
|
|
'_cholesky.*', '_triangular_solve.*', '_qr.*', '_symeig.*', '_svd.*',
|
|
'slice', 'randint(_out)?',
|
|
'item', '_local_scalar_dense', 'to',
|
|
'copy_sparse_to_sparse_', 'copy_',
|
|
'numpy_T', # this needs to be an attribute in Python, not a function
|
|
'nonzero(_(out|numpy))?',
|
|
'set_data',
|
|
'.*_overrideable', # overrideable functions for backend extension
|
|
'data', 'is_leaf', 'output_nr', '_version', 'requires_grad_', 'retain_grad', 'set_',
|
|
'_fw_primal', 'fake_quantize_per_tensor_affine_cachemask',
|
|
'fake_quantize_per_channel_affine_cachemask',
|
|
]
|
|
|
|
# These function signatures are not exposed to Python. Note that this signature
|
|
# list does not support regex.
|
|
SKIP_PYTHON_BINDINGS_SIGNATURES = [
|
|
'add(Tensor, Scalar, Scalar)', 'add_(Tensor, Scalar, Scalar)',
|
|
'sub(Tensor, Scalar, Scalar)', 'sub_(Tensor, Scalar, Scalar)',
|
|
'mul(Tensor, Scalar)', 'mul_(Tensor, Scalar)',
|
|
'div(Tensor, Scalar)', 'div_(Tensor, Scalar)',
|
|
]
|
|
|
|
@with_native_function
|
|
def should_generate_py_binding(f: NativeFunction) -> bool:
|
|
name = cpp.name(f.func)
|
|
for pattern in SKIP_PYTHON_BINDINGS:
|
|
if re.match('^' + pattern + '$', name):
|
|
return False
|
|
|
|
args = ', '.join(argument_type_str(arg.type)
|
|
for arg in signature(f).arguments())
|
|
sig = f'{name}({args})'
|
|
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
|
|
if pattern == sig:
|
|
return False
|
|
|
|
return True
|
|
|
|
def get_pycname(name: BaseOperatorName) -> str:
|
|
return f'THPVariable_{name}'
|
|
|
|
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
|
|
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
|
|
|
|
def is_py_variable_method(f: NativeFunction) -> bool:
|
|
return f.python_module is None and Variant.method in f.variants
|
|
|
|
def is_py_torch_function(f: NativeFunction) -> bool:
|
|
return f.python_module is None and Variant.function in f.variants
|
|
|
|
def is_py_nn_function(f: NativeFunction) -> bool:
|
|
return f.python_module == 'nn'
|
|
|
|
def is_py_fft_function(f: NativeFunction) -> bool:
|
|
return f.python_module == 'fft'
|
|
|
|
def is_py_linalg_function(f: NativeFunction) -> bool:
|
|
return f.python_module == 'linalg'
|
|
|
|
def is_py_special_function(f: NativeFunction) -> bool:
|
|
return f.python_module == 'special'
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Main Function
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
def gen(out: str, native_yaml_path: str, deprecated_yaml_path: str, template_path: str) -> None:
|
|
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
|
|
|
methods = load_signatures(native_yaml_path, deprecated_yaml_path, method=True)
|
|
create_python_bindings(
|
|
fm, methods, is_py_variable_method, None, 'python_variable_methods.cpp', method=True)
|
|
|
|
functions = load_signatures(native_yaml_path, deprecated_yaml_path, method=False)
|
|
create_python_bindings(
|
|
fm, functions, is_py_torch_function, 'torch', 'python_torch_functions.cpp', method=False)
|
|
|
|
create_python_bindings(
|
|
fm, functions, is_py_nn_function, 'torch.nn', 'python_nn_functions.cpp', method=False)
|
|
|
|
create_python_bindings(
|
|
fm, functions, is_py_fft_function, 'torch.fft', 'python_fft_functions.cpp', method=False)
|
|
|
|
create_python_bindings(
|
|
fm, functions, is_py_linalg_function, 'torch.linalg', 'python_linalg_functions.cpp', method=False)
|
|
|
|
create_python_bindings(
|
|
fm, functions, is_py_special_function, 'torch.special', 'python_special_functions.cpp', method=False)
|
|
|
|
def create_python_bindings(
|
|
fm: FileManager,
|
|
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
|
pred: Callable[[NativeFunction], bool],
|
|
module: Optional[str],
|
|
filename: str,
|
|
*,
|
|
method: bool,
|
|
) -> None:
|
|
"""Generates Python bindings to ATen functions"""
|
|
py_methods: List[str] = []
|
|
py_method_defs: List[str] = []
|
|
py_forwards: List[str] = []
|
|
|
|
grouped: Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
|
|
for pair in pairs:
|
|
if pred(pair.function):
|
|
grouped[pair.function.func.name.name].append(pair)
|
|
|
|
for name in sorted(grouped.keys(), key=lambda x: str(x)):
|
|
overloads = grouped[name]
|
|
py_methods.append(method_impl(name, module, overloads, method=method))
|
|
py_method_defs.append(method_def(name, module, overloads, method=method))
|
|
py_forwards.extend(forward_decls(name, overloads, method=method))
|
|
|
|
fm.write_with_template(filename, filename, lambda: {
|
|
'generated_comment': '@' + f'generated from {fm.template_dir}/{filename}',
|
|
'py_forwards': py_forwards,
|
|
'py_methods': py_methods,
|
|
'py_method_defs': py_method_defs,
|
|
})
|
|
|
|
def load_signatures(
|
|
native_yaml_path: str,
|
|
deprecated_yaml_path: str,
|
|
*,
|
|
method: bool,
|
|
skip_deprecated: bool = False,
|
|
pyi: bool = False,
|
|
) -> Sequence[PythonSignatureNativeFunctionPair]:
|
|
native_functions = parse_native_yaml(native_yaml_path).native_functions
|
|
native_functions = list(filter(should_generate_py_binding, native_functions))
|
|
|
|
@with_native_function
|
|
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
|
|
return PythonSignatureNativeFunctionPair(
|
|
signature=signature(f, method=method, pyi=pyi),
|
|
function=f,
|
|
)
|
|
|
|
pairs = list(map(gen_signature_pairs, native_functions))
|
|
deprecated = load_deprecated_signatures(pairs, deprecated_yaml_path, method=method, pyi=pyi)
|
|
return pairs if skip_deprecated else pairs + deprecated
|
|
|
|
def load_deprecated_signatures(
|
|
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
|
deprecated_yaml_path: str,
|
|
*,
|
|
method: bool,
|
|
pyi: bool,
|
|
) -> List[PythonSignatureNativeFunctionPair]:
|
|
# The deprecated.yaml doesn't have complete type information, we need
|
|
# find and leverage the original ATen signature (to which it delegates
|
|
# the call) to generate the full python signature.
|
|
# We join the deprecated and the original signatures using type-only form.
|
|
|
|
# native function -> type-only signature
|
|
@with_native_function
|
|
def signature_original(f: NativeFunction) -> str:
|
|
# remove inplace suffix but keep outplace suffix
|
|
opname = str(f.func.name.name.base)
|
|
if f.func.is_out_fn():
|
|
opname += '_out'
|
|
if f.func.name.name.inplace and pyi:
|
|
opname += '_'
|
|
args = CppSignatureGroup.from_native_function(f, method=False).signature.arguments()
|
|
# Simply ignore TensorOptionsArguments as it does not exist in deprecated.yaml.
|
|
types = ', '.join(argument_type_str(a.argument.type)
|
|
for a in args if isinstance(a.argument, Argument))
|
|
return f'{opname}({types})'
|
|
|
|
# deprecated -> type-only native signature (according to the call order)
|
|
def signature_deprecated(opname: str, params: List[str], call_args: List[str]) -> str:
|
|
# create a mapping of parameter name to parameter type
|
|
types: Dict[str, str] = {}
|
|
for param in params:
|
|
if param == '*':
|
|
continue
|
|
type, name = param.split(' ')
|
|
types[name] = type
|
|
# if the name in the call is not in the parameter list, assume it's
|
|
# a literal Scalar
|
|
rearranged_types = ', '.join(types.get(arg, 'Scalar') for arg in call_args)
|
|
return f'{opname}({rearranged_types})'
|
|
|
|
# group the original ATen signatures by type-only signature
|
|
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
|
|
for pair in pairs:
|
|
grouped[signature_original(pair.function)].append(pair)
|
|
|
|
# find matching original signatures for each deprecated signature
|
|
results: List[PythonSignatureNativeFunctionPair] = []
|
|
|
|
with open(deprecated_yaml_path, 'r') as f:
|
|
deprecated_defs = yaml.load(f, Loader=Loader)
|
|
|
|
for deprecated in deprecated_defs:
|
|
_, params = split_name_params(deprecated['name'])
|
|
aten_name, call_args = split_name_params(deprecated['aten'])
|
|
|
|
for pair in grouped[signature_deprecated(aten_name, params, call_args)]:
|
|
# It uses the types from the original ATen declaration, but the
|
|
# ordering and parameter names from the deprecated overload. Any
|
|
# default parameter values from the original ATen declaration are
|
|
# ignored.
|
|
# Deprecated signature might reorder input_args and input_kwargs,
|
|
# but never changes output_args nor TensorOptions (if any?),
|
|
# so here we only look into these two types of args.
|
|
python_sig = pair.signature
|
|
src_args: Dict[str, PythonArgument] = {a.name: PythonArgument(
|
|
name=a.name,
|
|
type=a.type,
|
|
default=None,
|
|
default_init=None,
|
|
) for a in itertools.chain(python_sig.input_args, python_sig.input_kwargs)}
|
|
|
|
args: List[str] = []
|
|
input_args: List[PythonArgument] = []
|
|
input_kwargs: List[PythonArgument] = []
|
|
|
|
kwarg_only = False
|
|
for param in params:
|
|
if param == '*':
|
|
kwarg_only = True
|
|
continue
|
|
_, param_name = param.split(' ')
|
|
args.append(param_name)
|
|
|
|
if param_name not in src_args:
|
|
# output argument
|
|
continue
|
|
|
|
if not kwarg_only:
|
|
if not method or param_name != 'self':
|
|
input_args.append(src_args[param_name])
|
|
else:
|
|
input_kwargs.append(src_args[param_name])
|
|
|
|
results.append(PythonSignatureNativeFunctionPair(
|
|
signature=PythonSignatureDeprecated(
|
|
name=python_sig.name,
|
|
input_args=tuple(input_args),
|
|
input_kwargs=tuple(input_kwargs),
|
|
output_args=python_sig.output_args,
|
|
tensor_options_args=python_sig.tensor_options_args,
|
|
method=python_sig.method,
|
|
deprecated_args_names=tuple(args),
|
|
deprecated_args_exprs=tuple(call_args),
|
|
returns=python_sig.returns,
|
|
),
|
|
function=pair.function,
|
|
))
|
|
|
|
return results
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Named Tuple Codegen
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
@with_native_function
|
|
def gen_namedtuple_typename_key(f: NativeFunction) -> str:
|
|
name = cpp.name(f.func)
|
|
fieldnames = namedtuple_fieldnames(f.func.returns)
|
|
return '_'.join([name] + fieldnames)
|
|
|
|
def emit_namedtuple_typedefs(
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair]
|
|
) -> Tuple[List[str], Dict[str, str]]:
|
|
"""
|
|
Generate block of named tuple type def inits, and add typeref snippets
|
|
to declarations that use them
|
|
"""
|
|
flddefnames: Dict[str, str] = {} # map from unique field name lists to field def name
|
|
flddefs: List[str] = [] # field def declarations
|
|
typenames: Dict[str, str] = {} # map from unique name + field name lists to typedef name
|
|
typedefs: List[str] = [] # typedef declarations and init code
|
|
|
|
for overload in overloads:
|
|
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
|
|
if not fieldnames:
|
|
continue
|
|
|
|
fn_key = '_'.join(fieldnames)
|
|
fieldsname = flddefnames.get(fn_key)
|
|
if fieldsname is None:
|
|
fieldsname = f'NamedTuple_fields{"" if not flddefs else len(flddefs)}'
|
|
flddefnames[fn_key] = fieldsname
|
|
fields = ', '.join(f'{{"{fn}", ""}}' for fn in fieldnames)
|
|
flddefs.append(f"""\
|
|
static PyStructSequence_Field {fieldsname}[] = {{ {fields}, {{nullptr}} }};
|
|
""")
|
|
|
|
name = cpp.name(overload.function.func) # use @with_native_function?
|
|
tn_key = gen_namedtuple_typename_key(overload.function)
|
|
typename = typenames.get(tn_key)
|
|
if typename is None:
|
|
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
|
|
typenames[tn_key] = typename
|
|
typedefs.append(f"""\
|
|
static PyTypeObject {typename};
|
|
static bool {typename}_initialized = false;
|
|
if (!{typename}_initialized) {{
|
|
{typename}_initialized = true;
|
|
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, {fieldsname}, {len(fieldnames)} }};
|
|
PyStructSequence_InitType(&{typename}, &desc);
|
|
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
|
|
}}
|
|
""")
|
|
|
|
return flddefs + typedefs, typenames
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Method Impl Codegen
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
# python binding for all overloads of a particular function/method
|
|
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(r"""\
|
|
// ${name}
|
|
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
|
{
|
|
${method_header}
|
|
static PythonArgParser parser({
|
|
${signatures}
|
|
}, /*traceable=*/${traceable});
|
|
|
|
ParsedArgs<${max_args}> parsed_args;
|
|
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
|
|
${check_has_torch_function}
|
|
switch (_r.idx) {
|
|
${dispatch}
|
|
}
|
|
${method_footer}
|
|
}
|
|
|
|
""")
|
|
|
|
# handler for a single parsed signature - may be a single overload or
|
|
# a pair of overloads that whose signatures only differ in output params
|
|
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
|
|
PY_VARIABLE_CASE = CodeTemplate("""\
|
|
case ${overload_index}: {
|
|
${body}
|
|
}
|
|
""")
|
|
|
|
# python binding for single-overload function/method
|
|
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate("""\
|
|
// ${name}
|
|
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
|
{
|
|
${method_header}
|
|
static PythonArgParser parser({
|
|
${signatures}
|
|
}, /*traceable=*/${traceable});
|
|
|
|
ParsedArgs<${max_args}> parsed_args;
|
|
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
|
|
${check_has_torch_function}
|
|
${dispatch}
|
|
${method_footer}
|
|
}
|
|
|
|
""")
|
|
|
|
# python binding for a method with no args, shortcuts parsing
|
|
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
|
|
// ${name}
|
|
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
|
|
{
|
|
${method_header}
|
|
${check_has_torch_function}
|
|
${dispatch}
|
|
${method_footer}
|
|
}
|
|
|
|
""")
|
|
|
|
def method_impl(
|
|
name: BaseOperatorName,
|
|
module: Optional[str],
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
*,
|
|
method: bool
|
|
) -> str:
|
|
"""
|
|
Generate a python binding for all overloads of an op.
|
|
"""
|
|
pycname = get_pycname(name)
|
|
noarg = is_noarg(overloads)
|
|
namedtuple_inits, namedtuple_typenames = emit_namedtuple_typedefs(overloads)
|
|
|
|
method_header = ['HANDLE_TH_ERRORS']
|
|
method_header += namedtuple_inits
|
|
method_header += [
|
|
"const Tensor& self = THPVariable_Unpack(self_);"
|
|
] if method else []
|
|
|
|
method_footer = ([] if noarg else ['Py_RETURN_NONE;']) + ['END_HANDLE_TH_ERRORS']
|
|
|
|
traceable = 'true' if all(should_trace(o.function) for o in overloads) else 'false'
|
|
|
|
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(overloads)
|
|
is_singleton = len(grouped_overloads) == 1
|
|
signatures: List[str] = []
|
|
dispatch: List[str] = []
|
|
for overload_index, overload in enumerate(grouped_overloads):
|
|
signature = overload.signature.signature_str()
|
|
signatures.append(f'{cpp_string(str(signature))},')
|
|
dispatch_body = emit_dispatch_case(overload, namedtuple_typenames)
|
|
dispatch.append(
|
|
PY_VARIABLE_CASE.substitute(overload_index=overload_index, body=dispatch_body)
|
|
if not is_singleton else dispatch_body)
|
|
|
|
if noarg:
|
|
template = PY_VARIABLE_METHOD_NOARGS
|
|
elif is_singleton:
|
|
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
|
|
else:
|
|
template = PY_VARIABLE_METHOD_VARARGS
|
|
|
|
return template.substitute(
|
|
name=name,
|
|
pycname=pycname,
|
|
method_header=method_header,
|
|
max_args=max(map(lambda o: o.signature.arguments_count(), overloads)),
|
|
signatures=signatures,
|
|
traceable=traceable,
|
|
check_has_torch_function=gen_has_torch_function_check(
|
|
name=name,
|
|
module=module,
|
|
noarg=noarg,
|
|
method=method,
|
|
),
|
|
dispatch=dispatch,
|
|
method_footer=method_footer,
|
|
self_="self_" if method else "nullptr",
|
|
)
|
|
|
|
def gen_has_torch_function_check(
|
|
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
|
|
) -> str:
|
|
if noarg:
|
|
if method:
|
|
return f"""\
|
|
if(check_has_torch_function(self_)) {{
|
|
return handle_torch_function(self_, "{name}");
|
|
}}
|
|
"""
|
|
else:
|
|
return ''
|
|
|
|
self_ = "self_" if method else "nullptr"
|
|
namespace = {
|
|
"torch": "THPVariableFunctionsModule",
|
|
"torch.nn": "THPNNVariableFunctionsModule",
|
|
"torch.fft": "THPFFTVariableFunctionsModule",
|
|
"torch.linalg": "THPLinalgVariableFunctionsModule",
|
|
"torch.special": "THPSpecialVariableFunctionsModule",
|
|
}[module] if module else "THPVariableClass"
|
|
|
|
return f"""\
|
|
if(_r.has_torch_function()) {{
|
|
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
|
|
}}
|
|
"""
|
|
|
|
# handler for output/no-output overload pair
|
|
PY_VARIABLE_OUT = CodeTemplate("""\
|
|
if (_r.isNone(${out_idx})) {
|
|
${call_dispatch}
|
|
} else {
|
|
${call_dispatch_out}
|
|
}
|
|
""")
|
|
|
|
def emit_dispatch_case(
|
|
overload: PythonSignatureGroup,
|
|
namedtuple_typenames: Dict[str, str],
|
|
) -> str:
|
|
"""
|
|
Emit dispatch code for a single parsed signature. This corresponds to either
|
|
a single native function, or a pair that differ only in output params. In the
|
|
latter case, a single python signature is used for both and dispatching
|
|
switches on the presence/absence of passed output args.
|
|
"""
|
|
if overload.outplace is not None:
|
|
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
|
|
return PY_VARIABLE_OUT.substitute(
|
|
out_idx=overload.signature.output_idx(),
|
|
call_dispatch=emit_single_dispatch(
|
|
overload.signature, overload.base, namedtuple_typenames),
|
|
call_dispatch_out=emit_single_dispatch(
|
|
overload.signature, overload.outplace, namedtuple_typenames),
|
|
)
|
|
else:
|
|
# no-output version only
|
|
return emit_single_dispatch(
|
|
overload.signature, overload.base, namedtuple_typenames)
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Forward Declarations Codegen
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
def forward_decls(
|
|
name: BaseOperatorName,
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
*,
|
|
method: bool
|
|
) -> Tuple[str, ...]:
|
|
if method:
|
|
return ()
|
|
|
|
pycname = get_pycname(name)
|
|
if is_noarg(overloads):
|
|
return (f"""\
|
|
static PyObject * {pycname}(PyObject* self_, PyObject* args);
|
|
""",)
|
|
else:
|
|
return (f"""\
|
|
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
|
|
""",)
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Method Def (Binding Table Entry) Codegen
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
def method_def(
|
|
name: BaseOperatorName,
|
|
module: Optional[str],
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
*,
|
|
method: bool
|
|
) -> str:
|
|
"""
|
|
Generate method def entry.
|
|
"""
|
|
pycname = get_pycname(name)
|
|
|
|
if is_noarg(overloads):
|
|
pyfunc_cast = ''
|
|
flags = 'METH_NOARGS' if method else 'METH_VARARGS | METH_KEYWORDS'
|
|
else:
|
|
pyfunc_cast = 'castPyCFunctionWithKeywords'
|
|
flags = 'METH_VARARGS | METH_KEYWORDS'
|
|
|
|
if module == "torch":
|
|
flags += ' | METH_STATIC'
|
|
|
|
if name.dunder_method:
|
|
# PyMethodDef entry for binary op, throws not implemented error
|
|
return f"""\
|
|
{{"{name}", {pyfunc_cast}(TypeError_to_NotImplemented_<{pycname}>), {flags}, NULL}},"""
|
|
else:
|
|
# PyMethodDef entry
|
|
return f"""\
|
|
{{"{name}", {pyfunc_cast}({pycname}), {flags}, NULL}},"""
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Overload Sorting and Grouping
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
def group_overloads(
|
|
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
|
) -> Sequence[PythonSignatureGroup]:
|
|
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
|
|
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
|
|
|
|
# first group by signature ignoring out arguments
|
|
for overload in overloads:
|
|
sig = overload.signature.signature_str(skip_outputs=True)
|
|
if overload.function.func.is_out_fn():
|
|
if sig in outplaces:
|
|
raise RuntimeError(
|
|
f'Found duplicated function definition:\n- {overload.function.func}.\n'
|
|
f'Existing definition:\n- {outplaces[sig].function.func}.'
|
|
)
|
|
outplaces[sig] = overload
|
|
else:
|
|
if sig in bases:
|
|
raise RuntimeError(
|
|
f'Found duplicated function definition:\n- {overload.function.func}.\n'
|
|
f'Existing definition:\n- {bases[sig].function.func}.'
|
|
)
|
|
bases[sig] = overload
|
|
|
|
for sig, out in outplaces.items():
|
|
if sig not in bases:
|
|
candidates: List[str] = []
|
|
for overload in overloads:
|
|
if str(overload.function.func.name.name) == str(out.function.func.name.name) \
|
|
and not overload.function.func.is_out_fn() \
|
|
and not overload.signature.deprecated:
|
|
candidates.append(overload.signature.signature_str(skip_outputs=True))
|
|
out_sig = out.signature.signature_str()
|
|
raise RuntimeError(
|
|
f'While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. '
|
|
f'We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema '
|
|
'correctly in native_functions.yaml. We discovered the following candidate(s): \n'
|
|
+ '\n'.join(f'- {candidate}' for candidate in candidates))
|
|
|
|
grouped: List[PythonSignatureGroup] = []
|
|
for sig, base in bases.items():
|
|
outplace = outplaces.get(sig)
|
|
grouped.append(PythonSignatureGroup(
|
|
# prefer the signature with optional out=... arguments because it's the
|
|
# superset that can be used to parse input for both base and outplace.
|
|
signature=outplace.signature if outplace is not None else base.signature,
|
|
base=base.function,
|
|
outplace=outplace.function if outplace is not None else None,
|
|
))
|
|
|
|
return sort_overloads(grouped)
|
|
|
|
# This function declares a partial order on declarations, and sorts them according
|
|
# to its linear extension. This is necessary, because there's some ambiguity in the
|
|
# choice of overload, and we want a different order.
|
|
#
|
|
# See Note[Order of overloads matters]
|
|
#
|
|
# A few examples of ambiguous python signature pairs.
|
|
#
|
|
# All parameters have the same type, except one taking Tensor the other taking
|
|
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
|
|
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
|
|
# Therefore, same input arguments might be accepted by either python signature.
|
|
# We want to always parse the one taking Tensor first.
|
|
#
|
|
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
|
|
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
|
|
#
|
|
# If they have different number of parameters then they are not ambiguous - but
|
|
# the difference on output param can be ignored as it's optional.
|
|
#
|
|
# multiply(Tensor input, Tensor other, *, Tensor out=None)
|
|
# multiply(Tensor input, Scalar other)
|
|
#
|
|
# Both positional args and keyword-only args are considered together.
|
|
#
|
|
# subtract(Tensor other, *, Scalar alpha=1)
|
|
# subtract(Scalar other, Scalar alpha=1)
|
|
#
|
|
# A few ambiguous cases which it does NOT handle yet.
|
|
#
|
|
# If there is any difference in other parameters besides the Tensor/Scalar
|
|
# difference, then they are not considered ambiguous by this method anymore.
|
|
# However, the difference could be too trivial to disambiguate.
|
|
#
|
|
# foo(Tensor input, Scalar other, Scalar bar)
|
|
# foo(Tensor input, Tensor other, double bar)
|
|
#
|
|
# If they are taking different number of parameters then they are not considered
|
|
# ambiguous anymore, even if the difference is only on optional kwargs.
|
|
#
|
|
# foo(Scalar other, Scalar alpha=1)
|
|
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
|
|
#
|
|
|
|
def sort_overloads(
|
|
grouped_overloads: Sequence[PythonSignatureGroup]
|
|
) -> Sequence[PythonSignatureGroup]:
|
|
|
|
def is_arg_smaller(t1: Type, t2: Type) -> bool:
|
|
return (str(t1) == 'Scalar' and str(t2) == 'Tensor' or
|
|
'Dimname' in str(t1) and 'Dimname' not in str(t2) or
|
|
# In the discussion https://github.com/pytorch/pytorch/issues/54555 it has been
|
|
# discussed why it is important to prioritize int/int? over int[]
|
|
str(t1) == 'int[]' and (str(t2) == 'int' or str(t2) == 'int?') or
|
|
# TensorList currently throws an error during argument parsing, that's why it needs to be
|
|
# last in signature ordering. See discussion: https://github.com/pytorch/pytorch/issues/58087
|
|
str(t1) == 'Tensor[]' and str(t2).find("[]") != -1)
|
|
|
|
|
|
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
|
|
"""Returns True if s1 < s2 in the partial order."""
|
|
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
|
|
if len(args1) != len(args2):
|
|
return False
|
|
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
|
|
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
|
|
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
|
|
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
|
|
smaller_or_equal = all(str(arg1.type) == str(arg2.type)
|
|
or is_arg_smaller(arg1.type, arg2.type)
|
|
for arg1, arg2 in zip(args1, args2))
|
|
return smaller_or_equal and not equal
|
|
|
|
# First sort by signature
|
|
grouped_overloads = sorted(grouped_overloads, key=lambda x: x.signature.signature_str())
|
|
|
|
# Construct the relation graph
|
|
larger_than: Dict[int, Set[int]] = defaultdict(set)
|
|
for i1, overload1 in enumerate(grouped_overloads):
|
|
for i2, overload2 in enumerate(grouped_overloads):
|
|
if is_smaller(overload1.signature, overload2.signature):
|
|
larger_than[i1].add(i2)
|
|
|
|
if not larger_than:
|
|
return list(grouped_overloads)
|
|
|
|
# Use a topological sort to sort overloads according to the partial order.
|
|
N = len(grouped_overloads)
|
|
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
|
|
|
|
for idx in range(N):
|
|
# The size of sorted_ids will grow to N eventually.
|
|
i = sorted_ids[idx]
|
|
for j in sorted(larger_than.keys()):
|
|
larger = larger_than[j]
|
|
larger.discard(i)
|
|
if not larger:
|
|
del larger_than[j]
|
|
sorted_ids.append(j)
|
|
|
|
return list(map(lambda x: grouped_overloads[x], sorted_ids))
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# Codegen API Integration
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
def emit_single_dispatch(
|
|
ps: PythonSignature, f: NativeFunction, namedtuple_typenames: Dict[str, str]
|
|
) -> str:
|
|
"""
|
|
Emit dispatch code for a single native function.
|
|
"""
|
|
@with_native_function
|
|
def go(f: NativeFunction) -> str:
|
|
# header comments
|
|
deprecated = '[deprecated] ' if ps.deprecated else ''
|
|
schema_comment = f'// {deprecated}aten::{f.func}'
|
|
|
|
# dispatch lambda signature
|
|
name = cpp.name(f.func)
|
|
lambda_formals = ', '.join(map(lambda a: f"{a.type_str} {a.name}",
|
|
dispatch_lambda_args(ps, f)))
|
|
lambda_return = dispatch_lambda_return_str(f)
|
|
|
|
# dispatch lambda body
|
|
dispatch_callee = cpp_dispatch_target(f)
|
|
dispatch_args = ', '.join(cpp_dispatch_exprs(f, python_signature=ps))
|
|
|
|
# from arg parser outputs to dispatch lambda arguments
|
|
parser_outputs = arg_parser_output_exprs(ps, f)
|
|
lambda_arg_exprs = dispatch_lambda_exprs(ps, f)
|
|
inits = '\n'.join(lambda_arg_exprs.inits)
|
|
lambda_args = ', '.join(lambda_arg_exprs.exprs)
|
|
|
|
# scatter fields
|
|
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
|
|
# solution for enabling the 'requires_grad' argument for tensor methods
|
|
# new_full, new_empty, and new_zeros. A much better but more difficult to
|
|
# implement solution involves refactoring according to Ed's description here:
|
|
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
|
|
need_set_requires_grad = ps.tensor_options_args and (not has_tensor_options(f) or (
|
|
ps.method and ('requires_grad' in parser_outputs)))
|
|
set_requires_grad = f'.set_requires_grad({parser_outputs["requires_grad"].expr})' \
|
|
if need_set_requires_grad else ''
|
|
|
|
if lambda_return == 'void':
|
|
return f"""\
|
|
{schema_comment}
|
|
{inits}
|
|
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
|
|
pybind11::gil_scoped_release no_gil;
|
|
{dispatch_callee}({dispatch_args});
|
|
}};
|
|
dispatch_{name}({lambda_args}){set_requires_grad};
|
|
Py_RETURN_NONE;
|
|
"""
|
|
else:
|
|
typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
|
|
namedtuple_typeref = f'&{typename}, ' if typename is not None else ''
|
|
return f"""\
|
|
{schema_comment}
|
|
{inits}
|
|
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
|
|
pybind11::gil_scoped_release no_gil;
|
|
return {dispatch_callee}({dispatch_args});
|
|
}};
|
|
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
|
|
"""
|
|
|
|
return go(f)
|