mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
* Add interpreter support for Handles/PythonOp/CppOp This treats Handles as a first-class type in the interpreter since this turned out to be conceptually simpler than treating them as a separate concept, which requires a second channel for register allocating and moving data from one op to the next. Notes: * The refcounting nature of tensors is factored into its own base type so that it can be shared with other refcounted types such as handle. * Some methods redundant with TensorBase have been deleted from Tensor * The interpreter uses raw refcounted handles. In addition to being able to treat Tensors and Handles as the same base object, it removes a lot of redundant refcounting as objects moved from tensors to input/ output lists. * aten_dispatch has been updated to work directly on the raw refcounted lists to avoid refcounting and duplicate lists. * Removing jit_closure.cpp, The interpreter can now handle all pathways. * Functions like `unsafeToTensorShare` describe how ownership transfers in the interpreter. The `Steal` variants take rvalue references as arguments, and invalidate those arguments to prevent potential problems. * Make TensorTemporary is not a subtype relationship because it is too easy to do something horribly unsafe: ``` void foo(at::Tensor bar) { // bar destructor call release on a temporary! } foo(TensorTemporary(retainable)); // structure slicing! ```
136 lines
4.5 KiB
C++
136 lines
4.5 KiB
C++
#include "Python.h"
|
|
#include "function.h"
|
|
|
|
#include <string>
|
|
|
|
#include "variable.h"
|
|
#include "torch/csrc/jit/ir.h"
|
|
#include "torch/csrc/autograd/functions/special.h"
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
template<typename T>
|
|
auto makeFlags(const T &inputs) -> FunctionFlags {
|
|
int num_inputs = inputs.size();
|
|
FunctionFlags f;
|
|
f.is_executable = false;
|
|
f.is_volatile = false;
|
|
f.next_functions.resize(num_inputs);
|
|
{
|
|
int i = 0;
|
|
for (auto it = inputs.begin(); it != inputs.end(); ++it, ++i) {
|
|
auto& var = *it;
|
|
if (var.defined()) {
|
|
f.is_executable |= var.requires_grad();
|
|
f.is_volatile |= var.is_volatile();
|
|
if (var.grad_fn()) {
|
|
f.next_functions[i] = std::make_pair<>(var.grad_fn(), var.output_nr());
|
|
} else {
|
|
f.next_functions[i] = std::make_pair<>(var.grad_accumulator(), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
f.is_executable &= !f.is_volatile;
|
|
return f;
|
|
}
|
|
|
|
auto Function::flags(const variable_list& inputs) -> FunctionFlags {
|
|
return makeFlags(inputs);
|
|
}
|
|
|
|
auto Function::flags(const std::initializer_list<Variable>& inputs) -> FunctionFlags {
|
|
return makeFlags(inputs);
|
|
}
|
|
|
|
auto Function::flags(at::TensorList inputs) -> FunctionFlags {
|
|
// TODO: Eliminate the intermediate vector allocation
|
|
return makeFlags(variable_list(inputs.begin(), inputs.end()));
|
|
}
|
|
|
|
auto Function::name() -> std::string {
|
|
return std::string(typeid(*this).name());
|
|
}
|
|
|
|
// This function is analogous to make_trace which operates on PythonOp, but this
|
|
// function instead works for C++ implemented autograd Functions, which don't
|
|
// actually have any backing Python class. We still need to trace them!
|
|
variable_list Function::tracedApply(variable_list inputs) {
|
|
using namespace torch::jit;
|
|
// Traceable Functions are completely transparent to the JIT.
|
|
if (is_traceable()) {
|
|
return apply(inputs);
|
|
}
|
|
auto state = tracer::getTracingState(inputs);
|
|
auto state_lock = state->lock();
|
|
|
|
// Insert a CppOp in the trace.
|
|
auto& graph = state->graph;
|
|
std::vector<VariableFlags> var_flags;
|
|
for(auto & input: inputs) {
|
|
var_flags.push_back(VariableFlags::of(input));
|
|
}
|
|
auto* this_node = graph->createCppOp(getSharedPtr(), std::move(var_flags));
|
|
this_node->setSourceLocation(std::make_shared<SourceLocation>(
|
|
jit::tracer::getPythonInterpreterStackTrace()
|
|
));
|
|
for (auto& input: inputs) {
|
|
this_node->addInput(tracer::getValueTrace(state, input));
|
|
}
|
|
graph->appendNode(this_node);
|
|
|
|
// Finally apply this Function.
|
|
state_lock.unlock();
|
|
variable_list outputs = apply(inputs);
|
|
state_lock.lock();
|
|
|
|
// Set up output traces.
|
|
int num_outputs = outputs.size();
|
|
for (int i = 0; i < num_outputs; ++i) {
|
|
auto& output = outputs[i];
|
|
auto sel = this_node->addOutput();
|
|
// TODO: At the moment, C++ does not track shared storage. It
|
|
// should. Update this when that happens.
|
|
if (output.defined()) {
|
|
sel->inferTypeFrom(output.data());
|
|
tracer::setValueTrace(state, output, sel);
|
|
}
|
|
}
|
|
|
|
if (!passes_state_transparently()) {
|
|
auto this_eval = dynamic_cast<Eval*>(this);
|
|
// Evals consume handle from a context edge of forward node
|
|
if (this_eval)
|
|
this_node->addInput(this_eval->forward_ctx_select);
|
|
// There's no point in wrapping functions in Eval, if we know they already are
|
|
// part of another Eval subgraph. This is both a small optimization, and
|
|
// it allows us to not implement saved_variables() in many functions.
|
|
bool should_trace_backward = tracing_state->in_eval_subgraph;
|
|
if (!should_trace_backward) {
|
|
auto saved_vars = saved_variables();
|
|
if (!saved_vars)
|
|
throw std::runtime_error(std::string("saved_variables() needed but not implemented in ") + name());
|
|
variable_list bw_subgraph_inputs(inputs);
|
|
for (auto& saved_var : *saved_vars) {
|
|
bw_subgraph_inputs.emplace_back(saved_var.unpack(getSharedPtr()));
|
|
}
|
|
tracer::nontraceableBackwardSubgraph(bw_subgraph_inputs, outputs);
|
|
}
|
|
bool has_backwards_eval = !should_trace_backward || this_eval;
|
|
if (has_backwards_eval)
|
|
setUpContextEdge(this_node, inputs, outputs);
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
void Function::setUpContextEdge(jit::Node* node,
|
|
const variable_list& inputs, const variable_list& outputs) {
|
|
auto ctx_select = node->addOutput();
|
|
ctx_select->setType(std::make_shared<jit::HandleType>());
|
|
auto backward_eval = Eval::getBackwardEval(inputs, outputs);
|
|
if (backward_eval)
|
|
backward_eval->forward_ctx_select = ctx_select;
|
|
}
|
|
|
|
}} // namespace torch::autograd
|