mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-26 00:24:53 +08:00
Summary: This is an optimized implementation that does the following: 1. created an empty Tensor of correct size. 2. fill the Tensor with correct values. The following three designs to fill in the Tensor result in roughly the same performance. Hence, the 2nd option is taken for simpler code, and to return contiguous tensors. 1. Sequential: fill row coordinates first, then columns. This results in two for-loop and more arithmetic operations. 2. Interleaved: fill in index coordinates one by one, which jumps between the two output Tensor rows in every iteration. 3. Transpose: create a n X 2 Tensor, fill the Tensor sequentially, and then transpose it. <img width="352" alt="screen shot 2018-12-10 at 3 54 39 pm" src="https://user-images.githubusercontent.com/16999635/49769172-07bd3580-fc94-11e8-8164-41839185e9f9.png"> NOTE: This implementation returns a 2D tensor, instead of a tuple of two tensors. It means that users will not be able to do the following: ```python x = torch.ones(3, 3) i = torch.tril_indices(3, 3) x[i] # need to first convert the 2D tensor into a tuple of two 1D tensors. ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/14904 Reviewed By: zou3519 Differential Revision: D13433027 Pulled By: mrshenli fbshipit-source-id: 41c876aafcf584832d7069f7c5929ffb59e0ae6a
836 lines
34 KiB
Python
836 lines
34 KiB
Python
# Generates Python bindings for ATen functions
|
|
#
|
|
# The bindings are generated as methods on python_variable or functions on the
|
|
# torch._C._nn object.
|
|
#
|
|
from collections import defaultdict
|
|
import re
|
|
from .nested_dict import nested_dict
|
|
from .gen_variable_type import should_trace
|
|
from .utils import write
|
|
|
|
try:
|
|
from src.ATen.code_template import CodeTemplate
|
|
except ImportError:
|
|
from tools.shared.module_loader import import_module
|
|
CodeTemplate = import_module('code_template', 'aten/src/ATen/code_template.py').CodeTemplate
|
|
|
|
# These functions require manual Python bindings or are not exposed to Python
|
|
SKIP_PYTHON_BINDINGS = [
|
|
'alias', 'contiguous', 'is_cuda', 'is_sparse', 'size', 'stride',
|
|
'.*_backward', '.*_backward_(out|input|weight|bias)', '.*_forward',
|
|
'.*_forward_out', '_unsafe_view', 'tensor', '_?sparse_coo_tensor.*',
|
|
'_arange.*', '_range.*', '_linspace.*', '_logspace.*',
|
|
'_sparse_add_out', '_sparse_div.*', '_sparse_mul.*', '_sparse_sub.*',
|
|
'index',
|
|
'_indexCopy_', 'max_values', 'min_values', 'argmax', 'argmin',
|
|
'_cumsum.*', '_cumprod.*', '_sum.*', '_prod.*',
|
|
'_th_.*', '_thnn_.*',
|
|
'arange.*', 'range.*', '_gesv.*', '_getri.*', '_inverse.*',
|
|
'_potrs.*', '_cholesky.*',
|
|
'slice', 'randint(_out)?',
|
|
'item', '_local_scalar_dense',
|
|
'max_pool1d', 'max_pool2d', 'max_pool3d', 'linear', 'to',
|
|
'copy_sparse_to_sparse_',
|
|
]
|
|
|
|
# These function signatures are not exposed to Python. Note that this signature
|
|
# list does not support regex.
|
|
SKIP_PYTHON_BINDINGS_SIGNATURES = [
|
|
'add(Tensor, Scalar, Scalar)', 'add_(Tensor, Scalar, Scalar)',
|
|
'sub(Tensor, Scalar, Scalar)', 'sub_(Tensor, Scalar, Scalar)',
|
|
'mul(Tensor, Scalar)', 'mul_(Tensor, Scalar)',
|
|
'div(Tensor, Scalar)', 'div_(Tensor, Scalar)',
|
|
]
|
|
|
|
PY_VARIABLE_METHOD_VARARGS = CodeTemplate("""\
|
|
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
${signatures}
|
|
}, /*traceable=*/${traceable});
|
|
${unpack_self}
|
|
ParsedArgs<${max_args}> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
${dispatch}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
""")
|
|
|
|
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
|
|
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
${unpack_self}
|
|
return wrap(${dispatch_name}(${actuals}));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
""")
|
|
|
|
PY_VARIABLE_CASE = CodeTemplate("""\
|
|
${cond} (r.idx == ${i}) {
|
|
${call_dispatch}
|
|
""")
|
|
|
|
PY_VARIABLE_OUT = CodeTemplate("""\
|
|
if (r.isNone(${out_idx})) {
|
|
${call_dispatch}
|
|
} else {
|
|
${call_dispatch_out}
|
|
}
|
|
""")
|
|
|
|
PY_VARIABLE_OUT_CHECK_TYPE = CodeTemplate("""\
|
|
if (r.isNone(${out_idx})) {
|
|
${call_dispatch}
|
|
} else {
|
|
check_out_type_matches(r.tensor(${out_idx}), r.scalartype(${type_idx}), r.isNone(${type_idx}),
|
|
r.layout(${layout_idx}), r.isNone(${layout_idx}),
|
|
r.device(${device_idx}), r.isNone(${device_idx}));
|
|
${call_dispatch_out}
|
|
}
|
|
""")
|
|
|
|
PY_VARIABLE_CALL_DISPATCH = CodeTemplate("""\
|
|
${dispatch_name}(${actuals})""")
|
|
|
|
PY_VARIABLE_SET_REQUIRES_GRAD = CodeTemplate("""\
|
|
${call_dispatch}.set_requires_grad(${requires_grad})""")
|
|
|
|
PY_VARIABLE_WRAP = CodeTemplate("""\
|
|
return wrap(${call_dispatch});""")
|
|
|
|
PY_VARIABLE_DISPATCH = CodeTemplate("""\
|
|
inline ${simple_return_type} ${dispatch_name}(${formal_args}) {
|
|
${initialize_cuda}
|
|
${AutoNoGIL}
|
|
return ${dispatch_call}(${dispatch_args});
|
|
}
|
|
""")
|
|
|
|
PY_VARIABLE_METHOD_DEF = CodeTemplate("""\
|
|
{"${name}", (PyCFunction)${pycname}, ${flags}, NULL},""")
|
|
|
|
UNPACK_SELF = "auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;"
|
|
|
|
PYTHON_FUNCTION_SIGNATURE = CodeTemplate("""\
|
|
${name}(${py_formal_args})""")
|
|
|
|
# XXX: if you got here because of an assertion failure, it doesn't mean
|
|
# it's enough to just extend the list here. Before you do this, make sure
|
|
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h.
|
|
SUPPORTED_RETURN_TYPES = {
|
|
'Tensor', 'std::tuple<Tensor,Tensor>',
|
|
'std::tuple<Tensor,Tensor,Tensor>',
|
|
'std::tuple<Tensor,Tensor,Tensor,Tensor>',
|
|
'std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor>',
|
|
'std::vector<Tensor>',
|
|
'Scalar', 'bool', 'int64_t', 'void*', 'void'
|
|
}
|
|
|
|
TENSOR_OPTIONS = CodeTemplate("""\
|
|
const auto options = TensorOptions()
|
|
.dtype(${dtype})
|
|
.device(${device})
|
|
.layout(${layout}.layout)
|
|
.requires_grad(${requires_grad});
|
|
""")
|
|
|
|
|
|
def should_generate_python_binding(declaration):
|
|
name = declaration['name']
|
|
for pattern in SKIP_PYTHON_BINDINGS:
|
|
if re.match('^' + pattern + '$', name):
|
|
return False
|
|
|
|
simple_types = [arg['simple_type'] for arg in declaration['arguments']]
|
|
signature = '{}({})'.format(name, ', '.join(simple_types))
|
|
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
|
|
if pattern == signature:
|
|
return False
|
|
|
|
# TODO: fix handling of SparseTensor. We don't want to generate Python
|
|
# bindings to SparseTensor overloads, such as add(Tensor, SparseTensorRef),
|
|
# since the Tensor-based signature already dynamically dispatches correctly.
|
|
# However, sparse_mask only has a SparseTensor signature so we need to bind
|
|
# that function.
|
|
for arg in declaration['arguments']:
|
|
if arg['type'] == 'SparseTensorRef' and declaration['name'] != 'sparse_mask':
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def gen_py_variable_methods(out, declarations, template_path):
|
|
PY_VARIABLE_METHODS_CPP = CodeTemplate.from_file(template_path + '/python_variable_methods.cpp')
|
|
PY_VARIABLE_DISPATCH_H = CodeTemplate.from_file(template_path + '/python_variable_methods_dispatch.h')
|
|
|
|
def should_bind(declaration):
|
|
return (should_generate_python_binding(declaration) and
|
|
declaration['mode'] != 'NN' and
|
|
declaration.get('python_module') != 'nn' and
|
|
'Tensor' in declaration['method_of'])
|
|
|
|
py_variable_methods = group_declarations_by_name(declarations, should_bind)
|
|
|
|
env = create_python_bindings(py_variable_methods, True)
|
|
write(out, 'python_variable_methods.cpp', PY_VARIABLE_METHODS_CPP, env)
|
|
write(out, 'python_variable_methods_dispatch.h', PY_VARIABLE_DISPATCH_H, env)
|
|
|
|
|
|
def gen_py_nn_functions(out, declarations, template_path):
|
|
PY_NN_FUNCTIONS_CPP = CodeTemplate.from_file(template_path + '/python_nn_functions.cpp')
|
|
PY_NN_FUNCTIONS_H = CodeTemplate.from_file(template_path + '/python_nn_functions.h')
|
|
PY_NN_DISPATCH_H = CodeTemplate.from_file(template_path + '/python_nn_functions_dispatch.h')
|
|
|
|
def should_bind(declaration):
|
|
return (should_generate_python_binding(declaration) and
|
|
(declaration['mode'] == 'NN' or declaration.get('python_module') == 'nn'))
|
|
|
|
py_nn_functions = group_declarations_by_name(declarations, should_bind)
|
|
|
|
env = create_python_bindings(py_nn_functions, has_self=False, is_module=True)
|
|
write(out, 'python_nn_functions.cpp', PY_NN_FUNCTIONS_CPP, env)
|
|
write(out, 'python_nn_functions.h', PY_NN_FUNCTIONS_H, env)
|
|
write(out, 'python_nn_functions_dispatch.h', PY_NN_DISPATCH_H, env)
|
|
|
|
|
|
def gen_py_torch_functions(out, declarations, template_path):
|
|
PY_TORCH_FUNCTIONS_CPP = CodeTemplate.from_file(template_path + '/python_torch_functions.cpp')
|
|
PY_TORCH_DISPATCH_H = CodeTemplate.from_file(template_path + '/python_torch_functions_dispatch.h')
|
|
|
|
def should_bind(declaration):
|
|
return (should_generate_python_binding(declaration) and
|
|
declaration['mode'] != 'NN' and
|
|
declaration.get('python_module') != 'nn' and
|
|
'namespace' in declaration['method_of'])
|
|
|
|
py_torch_functions = group_declarations_by_name(declarations, should_bind)
|
|
|
|
env = create_python_bindings(py_torch_functions, has_self=False)
|
|
write(out, 'python_torch_functions.cpp', PY_TORCH_FUNCTIONS_CPP, env)
|
|
write(out, 'python_torch_functions_dispatch.h', PY_TORCH_DISPATCH_H, env)
|
|
|
|
|
|
def group_declarations_by_name(declarations, should_bind_fn):
|
|
"""Group declarations by name ignoring _out suffix"""
|
|
groups = defaultdict(list)
|
|
for declaration in declarations:
|
|
name = declaration['name']
|
|
if should_bind_fn(declaration):
|
|
if name.endswith('_out'):
|
|
groups[name[:-4]].append(declaration)
|
|
else:
|
|
groups[name].append(declaration)
|
|
return groups
|
|
|
|
|
|
def get_type_default(declaration):
|
|
if declaration['name'].startswith('randperm') or \
|
|
declaration['name'] == 'tril_indices' or \
|
|
declaration['name'] == 'triu_indices':
|
|
return 'torch.int64'
|
|
else:
|
|
return 'None'
|
|
|
|
|
|
def create_python_bindings(python_functions, has_self, is_module=False):
|
|
"""Generates Python bindings to ATen functions"""
|
|
py_methods = []
|
|
py_method_defs = []
|
|
py_method_dispatch = []
|
|
|
|
unpack_methods = {
|
|
'const Tensor &': 'tensor',
|
|
'SparseTensorRef': 'tensor',
|
|
'Tensor &': 'tensor',
|
|
'Generator *': 'generator',
|
|
'Storage &': 'storage',
|
|
'const Type &': 'scalartype',
|
|
'const THPLayout &': 'layout',
|
|
'const Device &': 'device',
|
|
'optional<ScalarType>': 'scalartypeOptional',
|
|
'int64_t': 'toInt64',
|
|
'bool': 'toBool',
|
|
'double': 'toDouble',
|
|
'std::string': 'string',
|
|
}
|
|
|
|
unpack_with_default_methods = {
|
|
'IntList': 'setDefaultIntlist',
|
|
'Scalar': 'scalarWithDefault',
|
|
'int64_t': 'toInt64WithDefault',
|
|
'bool': 'setDefaultBool',
|
|
'double': 'setDefaultDouble',
|
|
'const Type &': 'scalartypeWithDefault',
|
|
'const THPLayout &': 'layoutWithDefault',
|
|
'const Device &': 'deviceWithDefault',
|
|
'ScalarType': 'scalartypeWithDefault',
|
|
}
|
|
|
|
def emit_single_dispatch(declaration, out_idx, base_env):
|
|
env = {}
|
|
simple_return_type = declaration['return_type'].replace(' &', '')
|
|
assert simple_return_type in SUPPORTED_RETURN_TYPES, \
|
|
declaration['name'] + ' returns unsupported type: ' + simple_return_type
|
|
|
|
body = []
|
|
actuals = []
|
|
formal_args = []
|
|
arg_idx = 0
|
|
|
|
def is_output(arg):
|
|
return arg.get('output', False)
|
|
|
|
inputs = [arg for arg in declaration['arguments'] if not is_output(arg)]
|
|
outputs = [arg for arg in declaration['arguments'] if is_output(arg)]
|
|
|
|
has_tensor_options = any(arg['simple_type'] == 'TensorOptions' for arg in declaration['arguments'])
|
|
|
|
def get_type_args(args):
|
|
return [arg for arg in args if arg['simple_type'] == 'Type']
|
|
type_actual_args = get_type_args(declaration['arguments'])
|
|
type_binding_args = get_type_args(declaration['python_binding_arguments'])
|
|
assert len(type_actual_args + type_binding_args) <= 1
|
|
if type_binding_args and len(outputs) == 0:
|
|
# out(s) determines the dtype if it is present, so only use this if there are no outputs.
|
|
type_args = type_binding_args
|
|
else:
|
|
type_args = type_actual_args
|
|
|
|
if type_args and len(outputs) > 1:
|
|
raise RuntimeError("Not supported: type dispatched parameter with multiple outputs")
|
|
|
|
def parse_arg(arg, arg_index, unpack_args=False):
|
|
name = arg['name']
|
|
typename = arg['type']
|
|
if typename.startswith('IntList['):
|
|
typename = 'IntList'
|
|
if typename.startswith('LongTensor'):
|
|
typename = 'Tensor'
|
|
|
|
if arg.get('python_default_init'):
|
|
assert typename in unpack_with_default_methods, \
|
|
'`{}` type is not supported in python_default_init'.format(typename)
|
|
unpack_with_default = unpack_with_default_methods.get(typename)
|
|
default_expr = arg.get('python_default_init')
|
|
# TODO: Type currently maps to ScalarType, figure out a cleaner solution
|
|
if typename == 'const Type &':
|
|
default_expr += '.scalarType()'
|
|
expr = 'r.{}({}, {})'.format(unpack_with_default, arg_index, default_expr)
|
|
else:
|
|
opt_match = re.match(r'c10::optional<(.+)>', typename)
|
|
if (opt_match):
|
|
unpack = opt_match.group(1).lower() + 'Optional'
|
|
else:
|
|
unpack = unpack_methods.get(typename, typename.lower())
|
|
expr = 'r.{}({})'.format(unpack, arg_index)
|
|
|
|
if unpack_args:
|
|
body.append('auto {} = {};'.format(name, expr))
|
|
expr = name
|
|
|
|
if typename == 'SparseTensorRef':
|
|
expr = 'SparseTensorRef({})'.format(expr)
|
|
|
|
dispatch_type = typename
|
|
if dispatch_type == 'Tensor':
|
|
dispatch_type = 'const Tensor &'
|
|
elif dispatch_type == 'Tensor &':
|
|
dispatch_type = 'Tensor'
|
|
elif dispatch_type == 'const Device &':
|
|
dispatch_type = 'c10::optional<int32_t>'
|
|
formal = '{} {}'.format(dispatch_type, name)
|
|
return expr, formal
|
|
|
|
def append_actuals_formals(actual, formal):
|
|
actuals.append(actual)
|
|
formal_args.append(formal)
|
|
|
|
# We always want to unpack when we have TensorOptions.
|
|
unpack = any(arg.get('python_default_init') for arg in inputs) or has_tensor_options
|
|
for arg in inputs:
|
|
if arg['simple_type'] in ['Type', 'TensorOptions']:
|
|
continue
|
|
if has_self and arg['name'] == 'self':
|
|
formal_args.append('Tensor & self')
|
|
actuals.append('self')
|
|
continue
|
|
append_actuals_formals(*parse_arg(arg, arg_idx, unpack))
|
|
arg_idx += 1
|
|
|
|
if len(outputs) == 1:
|
|
append_actuals_formals(*parse_arg(outputs[0], arg_idx))
|
|
elif len(outputs) > 1:
|
|
N = len(outputs)
|
|
body.append('auto results = r.tensorlist_n<{}>({});'.format(N, arg_idx))
|
|
for i, arg in enumerate(outputs):
|
|
formal_args.append('Tensor & {}'.format(arg['name']))
|
|
actuals.append('results[{}]'.format(i))
|
|
|
|
layout = None
|
|
parsed_type_args = None
|
|
# type args go after the outputs to match the signature generation.
|
|
arg_idx = arg_idx if out_idx is None else out_idx + 1
|
|
for arg in type_args:
|
|
parsed_type_args = parse_arg(arg, arg_idx, unpack)
|
|
arg_idx += 1
|
|
|
|
# check python_binding_arguments
|
|
has_device_bind = False
|
|
requires_grad = None
|
|
python_binding_arguments = declaration.get('python_binding_arguments', [])
|
|
if 'dtype' in (a['name'] for a in python_binding_arguments):
|
|
if not has_tensor_options:
|
|
arg_idx += 1
|
|
|
|
if 'layout' in (a['name'] for a in python_binding_arguments):
|
|
layout_idx, device_idx, requires_grad_idx = (arg_idx, arg_idx + 1, arg_idx + 2)
|
|
else:
|
|
device_idx, requires_grad_idx = (arg_idx, arg_idx + 1)
|
|
|
|
device = None
|
|
for arg in python_binding_arguments:
|
|
if arg['name'] == 'dtype' and arg['simple_type'] == 'Type':
|
|
pass # already handled by type_dispatched_args
|
|
elif arg['name'] == 'layout' and arg['simple_type'] == 'Layout':
|
|
# out(s) determines the type and layout if it is present, so only use this if there are no outputs.
|
|
if len(outputs) == 0:
|
|
layout = parse_arg(arg, layout_idx, arg.get('python_default_init'))[0]
|
|
elif arg['name'] == 'device' and arg['simple_type'] == 'Device':
|
|
if len(outputs) == 0:
|
|
assert parsed_type_args
|
|
assert layout
|
|
device, device_type = parse_arg(arg, device_idx, True)
|
|
|
|
if not has_tensor_options:
|
|
# add type, device formals and corresponding actuals.
|
|
# The type actual is the ATen type mapped from (ScalarType, Layout, Device)
|
|
# The device actual is the corresponding AutoGPU index for the Device.
|
|
formal_args.append(parsed_type_args[1])
|
|
formal_args.append(device_type)
|
|
actuals.append("torch::getVariableType({}, {}, {})".format(parsed_type_args[0], layout, device))
|
|
actuals.append('{}.index()'.format(device))
|
|
|
|
has_device_bind = True
|
|
elif arg['name'] == 'requires_grad' and arg['simple_type'] == 'bool':
|
|
requires_grad = parse_arg(arg, requires_grad_idx)[0]
|
|
else:
|
|
raise RuntimeError(("found {} in python_binding_arguments but only "
|
|
"\"bool requires_grad\", \"ScalarType dtype\", \"Layout layout\", "
|
|
"\"Device device\" are supported".format(arg)))
|
|
|
|
dtype = parsed_type_args[0] if parsed_type_args else None
|
|
if has_tensor_options and all([dtype, device, layout, requires_grad]):
|
|
body.append(TENSOR_OPTIONS.substitute({
|
|
'dtype': dtype,
|
|
'layout': layout,
|
|
'device': device,
|
|
'requires_grad': requires_grad
|
|
}))
|
|
formal_args.append('const TensorOptions & options')
|
|
actuals.append('options')
|
|
|
|
env['unpack_args'] = []
|
|
env['formal_args'] = formal_args
|
|
env['actuals'] = actuals
|
|
|
|
if has_tensor_options:
|
|
env['initialize_cuda'] = 'maybe_initialize_cuda(options);'
|
|
else:
|
|
env['initialize_cuda'] = ''
|
|
|
|
if 'call_args' in declaration:
|
|
env['dispatch_args'] = declaration['call_args']
|
|
else:
|
|
env['dispatch_args'] = [arg['name'] for arg in declaration['arguments']]
|
|
|
|
if 'Tensor' in declaration['method_of']:
|
|
env['dispatch_args'] = [arg for arg in env['dispatch_args'] if arg != 'self']
|
|
env['dispatch_call'] = 'self.{}'.format(declaration['name'])
|
|
elif 'namespace' in declaration['method_of']:
|
|
namespace = 'torch' if (has_tensor_options or declaration['name'].endswith('_like')) else 'at'
|
|
env['dispatch_call'] = '{}::{}'.format(namespace, declaration['name'])
|
|
else:
|
|
raise RuntimeError('could not dispatch, neither namespace function nor Tensor method')
|
|
|
|
env['AutoNoGIL'] = 'AutoNoGIL no_gil;' if not declaration['with_gil'] else ''
|
|
|
|
# Use the simple_return_type (Tensor) rather than the fancy return type
|
|
# (Tensor &). This is important because the dispatch functions take
|
|
# mutable arguments *by value*, not by reference. If you then return
|
|
# a a reference to such an argument, you will now have a pointer to a
|
|
# dangling stack entry. Not good.
|
|
#
|
|
# You want:
|
|
#
|
|
# Tensor dispatch_selu_(Tensor self) { return at::selu_(self); }
|
|
#
|
|
# *not*
|
|
#
|
|
# Tensor& dispatch_selu_(Tensor self) { return at::selu_(self); }
|
|
#
|
|
# (NB: We can't make dispatch_selu_ take Tensor&, because the enclosing
|
|
# codegen looks like dispatch_selu_(wrap(tensor)), and you can't take a
|
|
# mutable reference to temporary. Maybe we could assign it to a
|
|
# variable itself.)
|
|
env['simple_return_type'] = simple_return_type
|
|
|
|
env = nested_dict(env, nested_dict(base_env, declaration))
|
|
call_dispatch = PY_VARIABLE_CALL_DISPATCH.substitute(env)
|
|
if requires_grad and not has_tensor_options:
|
|
call_dispatch = PY_VARIABLE_SET_REQUIRES_GRAD.substitute(env, call_dispatch=call_dispatch,
|
|
requires_grad=requires_grad)
|
|
if simple_return_type == 'void':
|
|
body.append('{call_dispatch};'.format(call_dispatch=call_dispatch))
|
|
body.append('Py_RETURN_NONE;')
|
|
else:
|
|
body.append(PY_VARIABLE_WRAP.substitute(env, call_dispatch=call_dispatch))
|
|
py_method_dispatch.append(PY_VARIABLE_DISPATCH.substitute(env))
|
|
return body
|
|
|
|
def emit_dispatch(i, dictionary, base_env):
|
|
if 'out' in dictionary:
|
|
out_idx = len([arg for arg in dictionary['out']['arguments']
|
|
if not arg.get('output', False)])
|
|
env = {}
|
|
env['call_dispatch_out'] = emit_single_dispatch(dictionary['out'], out_idx, base_env)
|
|
env['call_dispatch'] = emit_single_dispatch(dictionary['base'], out_idx, base_env)
|
|
|
|
has_dtype_bind = 'dtype' in [d['name'] for d in dictionary['out'].get('python_binding_arguments', [])]
|
|
if has_dtype_bind:
|
|
body = PY_VARIABLE_OUT_CHECK_TYPE.substitute(env, out_idx=out_idx, type_idx=out_idx + 1,
|
|
layout_idx=out_idx + 2, device_idx=out_idx + 3).split('\n')
|
|
else:
|
|
body = PY_VARIABLE_OUT.substitute(env, out_idx=out_idx).split('\n')
|
|
else:
|
|
body = emit_single_dispatch(dictionary['base'], None, base_env)
|
|
|
|
cond = 'if' if i == 0 else '} else if'
|
|
return PY_VARIABLE_CASE.substitute(i=i, cond=cond, call_dispatch=body)
|
|
|
|
def get_python_binding_arguments(declaration):
|
|
python_binding_arguments = []
|
|
has_tensor_input_arg = False
|
|
has_type_input_arg = False
|
|
has_options_arg = False
|
|
for arg in declaration['arguments']:
|
|
if arg.get('output', False):
|
|
continue
|
|
typename = arg['simple_type']
|
|
if typename in ['Tensor', 'TensorList']:
|
|
has_tensor_input_arg = True
|
|
if arg['simple_type'] == 'Type':
|
|
has_type_input_arg = True
|
|
elif arg['simple_type'] == 'TensorOptions':
|
|
has_options_arg = True
|
|
if arg['name'] == 'requires_grad':
|
|
raise ValueError("argument named requires_grad not supported")
|
|
|
|
has_tensor_return = False
|
|
for ret in declaration['returns']:
|
|
if ret['dynamic_type'] in ['Tensor', 'TensorList']:
|
|
# this probably won't work if one of the returns is not a tensor, but it will
|
|
# produce a compile-time error that is obvious
|
|
has_tensor_return = True
|
|
|
|
is_like_function = name.endswith('_like')
|
|
is_like_function_with_options = is_like_function and has_options_arg
|
|
is_factory_function = has_tensor_return and not has_tensor_input_arg
|
|
is_factory_or_like_function = has_tensor_return and (not has_tensor_input_arg or is_like_function)
|
|
|
|
if (is_factory_function and not has_type_input_arg) or has_options_arg:
|
|
default_type = get_type_default(declaration)
|
|
py_default_dtype = 'self.type()' if is_like_function_with_options else None
|
|
dtype_arg = {
|
|
'default': default_type,
|
|
'dynamic_type': 'Type',
|
|
'kwarg_only': True,
|
|
'name': 'dtype',
|
|
'type': 'const Type &',
|
|
'simple_type': 'Type',
|
|
'python_default_init': py_default_dtype,
|
|
}
|
|
python_binding_arguments.append(dtype_arg)
|
|
if is_factory_function or is_like_function_with_options:
|
|
py_default_layout = '*torch::getLayout(self.type().backend())' if is_like_function_with_options else None
|
|
layout_arg = {
|
|
'default': 'torch.strided',
|
|
'dynamic_type': 'Layout',
|
|
'kwarg_only': True,
|
|
'name': 'layout',
|
|
'type': 'const THPLayout &',
|
|
'simple_type': 'Layout',
|
|
'python_default_init': py_default_layout,
|
|
}
|
|
python_binding_arguments.append(layout_arg)
|
|
py_default_device = 'self.device()' if is_like_function_with_options else None
|
|
device_arg = {
|
|
'default': 'None',
|
|
'default_init': 'None',
|
|
'dynamic_type': 'Device',
|
|
'kwarg_only': True,
|
|
'name': 'device',
|
|
'type': 'const Device &',
|
|
'simple_type': 'Device',
|
|
'python_default_init': py_default_device
|
|
}
|
|
python_binding_arguments.append(device_arg)
|
|
if is_factory_or_like_function:
|
|
requires_grad_arg = {
|
|
'default': False,
|
|
'dynamic_type': 'bool',
|
|
'kwarg_only': True,
|
|
'name': 'requires_grad',
|
|
'type': 'bool',
|
|
'simple_type': 'bool',
|
|
}
|
|
python_binding_arguments.append(requires_grad_arg)
|
|
return python_binding_arguments
|
|
|
|
def process_function(name, declarations):
|
|
for declaration in declarations:
|
|
declaration['python_binding_arguments'] = get_python_binding_arguments(declaration)
|
|
|
|
env = {
|
|
'name': name,
|
|
'dispatch_name': 'dispatch_{}'.format(name),
|
|
'pycname': 'THPVariable_{}'.format(name),
|
|
'signatures': [],
|
|
'max_args': max(len(o['arguments']) + len(o['python_binding_arguments']) for o in declarations),
|
|
'unpack_self': [],
|
|
'dispatch': [],
|
|
}
|
|
|
|
if has_self:
|
|
env['unpack_self'] = [UNPACK_SELF]
|
|
|
|
grouped = group_declarations(declarations)
|
|
for i, dictionary in enumerate(grouped):
|
|
signature = dictionary['signature']
|
|
if has_self:
|
|
signature = signature.replace('Tensor self, ', '')
|
|
signature = signature.replace('Tensor self', '')
|
|
if not has_self:
|
|
# Use 'input' instead of 'self' for NN functions
|
|
signature = signature.replace('Tensor self', 'Tensor input')
|
|
signature = signature.replace('SparseTensorRef', 'Tensor')
|
|
if dictionary['base'].get('deprecated', False):
|
|
signature += '|deprecated'
|
|
env['signatures'].append('"{}",'.format(signature))
|
|
env['dispatch'].append(emit_dispatch(i, dictionary, env))
|
|
|
|
env['dispatch'].append('}')
|
|
|
|
env['traceable'] = 'true' if all(should_trace(d) for d in declarations) else 'false'
|
|
|
|
if len(declarations) == 1 and len(declarations[0]['args']) == 1 and has_self:
|
|
tmpl = PY_VARIABLE_METHOD_NOARGS
|
|
env['actuals'] = ['self']
|
|
env['flags'] = 'METH_NOARGS'
|
|
else:
|
|
tmpl = PY_VARIABLE_METHOD_VARARGS
|
|
env['flags'] = 'METH_VARARGS | METH_KEYWORDS'
|
|
|
|
if not is_module and not has_self:
|
|
env['flags'] += ' | METH_STATIC'
|
|
|
|
py_methods.append(tmpl.substitute(env))
|
|
py_method_defs.append(PY_VARIABLE_METHOD_DEF.substitute(env))
|
|
|
|
for name in sorted(python_functions.keys()):
|
|
process_function(name, python_functions[name])
|
|
|
|
return {
|
|
'py_methods': py_methods,
|
|
'py_method_defs': py_method_defs,
|
|
'py_method_dispatch': py_method_dispatch,
|
|
}
|
|
|
|
|
|
def group_declarations(declarations):
|
|
"""Returns a list of dictionaries containing the optional keys:
|
|
|
|
"base": the regular ATen declaration (e.g. conv2d)
|
|
"out": the out variant (e.g. conv2d_out)
|
|
"signature": the signature used for Python argument parsing
|
|
"""
|
|
grouped = defaultdict(dict)
|
|
|
|
# first group by signature ignoring out arguments
|
|
for declaration in declarations:
|
|
signature = get_python_signature(declaration, False)
|
|
v = grouped[signature]
|
|
if declaration['name'].endswith('_out'):
|
|
v['out'] = declaration
|
|
# prefer the signature with optional out=... arguments
|
|
v['signature'] = get_python_signature(declaration, True)
|
|
else:
|
|
v['base'] = declaration
|
|
if 'signature' not in v:
|
|
v['signature'] = signature
|
|
|
|
result = []
|
|
for _, dictionary in sorted(grouped.items()):
|
|
if 'base' not in dictionary:
|
|
raise RuntimeError("'base' not in dictionary", dictionary)
|
|
result.append(dictionary)
|
|
return sort_declarations(result)
|
|
|
|
|
|
# This function declares a partial order on declarations, and sorts them according
|
|
# to its linear extension. This is necessary, because there's some ambiguity in the
|
|
# choice of overload, and we want a different order.
|
|
#
|
|
# See Note[Order of overloads matters]
|
|
def sort_declarations(grouped_decls):
|
|
|
|
# TODO: This is a hack!
|
|
#
|
|
# For some reason, when you specify a Scalar argument in a native
|
|
# function, you get a Declarations.yaml entry that looks like this:
|
|
#
|
|
# - default: 1
|
|
# dynamic_type: Scalar
|
|
# is_nullable: false
|
|
# kwarg_only: true
|
|
# name: alpha
|
|
# type: Scalar
|
|
#
|
|
# This is contrast to when there is a 'real' argument in TH
|
|
# Declarations.cwrap; this gets (correctly?) translated into
|
|
# dynamic_type: real, and type: Scalar. I would like to fix this
|
|
# at the source but I have never understood what dynamic_type is
|
|
# supposed to be.
|
|
def normalized_dynamic_type(arg):
|
|
if arg['dynamic_type'] == 'real':
|
|
return 'Scalar'
|
|
return arg['dynamic_type']
|
|
|
|
def is_coord_smaller(arg1, arg2):
|
|
return normalized_dynamic_type(arg1) == 'Scalar' and arg2['dynamic_type'] == 'Tensor'
|
|
|
|
def is_smaller(d1, d2):
|
|
"""Returns True if d1 < d2 in the partial order."""
|
|
args1, args2 = d1['base']['arguments'], d2['base']['arguments']
|
|
if len(args1) != len(args2):
|
|
return False
|
|
any_smaller = any(is_coord_smaller(arg1, arg2) for arg1, arg2 in zip(args1, args2))
|
|
all_smaller_or_equal = all(normalized_dynamic_type(arg1) == normalized_dynamic_type(arg2) or
|
|
is_coord_smaller(arg1, arg2)
|
|
for arg1, arg2 in zip(args1, args2))
|
|
return any_smaller and all_smaller_or_equal
|
|
|
|
# Construct the relation graph
|
|
larger_than = defaultdict(set)
|
|
for i1, decl1 in enumerate(grouped_decls):
|
|
for i2, decl2 in enumerate(grouped_decls):
|
|
if is_smaller(decl1, decl2):
|
|
larger_than[i1].add(i2)
|
|
|
|
if not larger_than:
|
|
return grouped_decls
|
|
|
|
# Use a topological sort to sort decls according to the partial order.
|
|
sorted_deps = [(i, decl) for i, decl in enumerate(grouped_decls)
|
|
if i not in larger_than]
|
|
for i, decl in sorted_deps:
|
|
for i2 in sorted(larger_than.keys()):
|
|
larger = larger_than[i2]
|
|
larger.discard(i)
|
|
if not larger:
|
|
del larger_than[i2]
|
|
sorted_deps.append((i2, grouped_decls[i2]))
|
|
|
|
return [decl for i, decl in sorted_deps]
|
|
|
|
|
|
def get_python_signature(declaration, include_out):
|
|
# Compute the Python function signature for argument parsing
|
|
py_formal_args = []
|
|
output_args = []
|
|
type_args = []
|
|
positional = True
|
|
|
|
def get_py_formal_arg(arg):
|
|
typename = arg['simple_type']
|
|
typename = typename if typename != 'Type' else 'ScalarType'
|
|
|
|
# TODO: remove this and make optional types in simple_type to be consistent across
|
|
# tensor and other types after make Tensor? be optional instead of undefined
|
|
if arg.get('is_nullable') and '?' not in typename:
|
|
typename = '{}?'.format(typename)
|
|
|
|
if arg.get('size') is not None:
|
|
typename = '{}[{}]'.format(typename, arg['size'])
|
|
param = typename + ' ' + arg['name']
|
|
default = None
|
|
if arg.get('default') is not None:
|
|
default = arg['default']
|
|
if default == 'nullptr' or default == 'nullopt' or default == '{}':
|
|
default = 'None'
|
|
if arg.get('python_default_init') is not None:
|
|
default = 'None'
|
|
if default is not None:
|
|
param += '=' + str(default)
|
|
return param
|
|
|
|
for arg in declaration['arguments']:
|
|
if arg.get('output', False):
|
|
output_args.append(arg)
|
|
continue
|
|
if arg['simple_type'] == 'Type':
|
|
type_args.append(arg)
|
|
continue
|
|
# Skip `TensorOptions` in Python, as it is only used on the C++ side.
|
|
if arg['simple_type'] == 'TensorOptions':
|
|
continue
|
|
if arg.get('kwarg_only', False) and positional:
|
|
py_formal_args.append('*')
|
|
positional = False
|
|
param = get_py_formal_arg(arg)
|
|
py_formal_args.append(param)
|
|
|
|
# add output arguments
|
|
name = declaration['name']
|
|
if name.endswith('_out'):
|
|
name = name[:-4]
|
|
|
|
if len(output_args) > 0 and include_out:
|
|
assert declaration['name'].endswith('_out')
|
|
if positional:
|
|
py_formal_args.append('*')
|
|
positional = False
|
|
typenames = [arg['simple_type'] for arg in output_args]
|
|
if len(typenames) > 1:
|
|
typename = 'TensorList[{}]'.format(len(typenames))
|
|
else:
|
|
typename = typenames[0]
|
|
py_formal_args.append(typename + ' out=None')
|
|
|
|
# we could put this in the loop above but we want to ensure both type dispatched args
|
|
# and python binding arguments are after the out argument; this matches the case
|
|
# where there is a python binding argument dtype, which is necessary to match
|
|
# the function signatures between the out and non-out variant.
|
|
assert len(type_args) <= 1
|
|
for arg in type_args:
|
|
if positional: # assume type_args should be kwarg_only.
|
|
py_formal_args.append('*')
|
|
positional = False
|
|
py_formal_args.append(get_py_formal_arg(arg))
|
|
|
|
if len(declaration['python_binding_arguments']) > 0:
|
|
for arg in declaration['python_binding_arguments']:
|
|
if arg.get('kwarg_only', False) and positional:
|
|
py_formal_args.append('*')
|
|
positional = False
|
|
py_formal_args.append(get_py_formal_arg(arg))
|
|
|
|
# Python function signature.
|
|
# This is the string that we give to FunctionParameter, which is
|
|
# then parsed into the actual structure which we do parsing
|
|
# with.
|
|
return PYTHON_FUNCTION_SIGNATURE.substitute(name=name, py_formal_args=py_formal_args)
|