Files
pytorch/test/test_nestedtensor.py
Scott Wolchok 90be8fa279 [PyTorch] Make TensorImpl::sizes() customizable and disable it for NestedTensorImpl (#73817)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73817

NestedTensorImpl doesn't have sizes(). Silently getting wrong results back from it is not conducive to efficient software development. Make it throw while allowing sizes() to be inlined in the common case anyway, just like is_contiguous(). Thanks ezyang for the reminder that we could do this.
ghstack-source-id: 151302903

Test Plan: Updated test_nestedtensor.py

Reviewed By: ezyang

Differential Revision: D34660829

fbshipit-source-id: 1289f21127d6a8359893f9174f3c430a290f2c7f
(cherry picked from commit 7098b9fcfbd25a03bac19e1148426ff073810edd)
2022-03-15 19:24:57 +00:00

186 lines
6.4 KiB
Python

# Owner(s): ["module: nestedtensor"]
import torch
import unittest
from torch.testing._internal.common_utils import TestCase, IS_FBCODE
from torch import nested_tensor
# Tests are ported from pytorch/nestedtensor.
# This makes porting as_nested_tensor easier in the future.
def _iter_constructors():
# yield as_nested_tensor
yield nested_tensor
class TestNestedTensor(TestCase):
@torch.inference_mode()
def _test_unbind_case(self, a, b):
nt = nested_tensor([a, b])
a1, b1 = nt.unbind()
self.assertTrue(a is not a1)
self.assertTrue(b is not b1)
nt = nested_tensor([a, b], dtype=a.dtype)
a1, b1 = nt.unbind(0)
self.assertEqual(a, a1)
self.assertEqual(b, b1)
a = torch.randn((2, 3)).add_(1)
nt = nested_tensor([a])
self.assertEqual(a, nt.unbind(0)[0])
@torch.inference_mode()
def test_unbind_0(self):
self._test_unbind_case(
torch.tensor([1, 2]), torch.tensor([7, 8]),
)
@torch.inference_mode()
def test_unbind_1(self):
self._test_unbind_case(
torch.tensor([1]), torch.tensor([7]),
)
# @torch.inference_mode()
# def test_unbind_2(self):
# self._test_unbind_case(
# torch.tensor(1), torch.tensor(7),
# )
@torch.inference_mode()
def test_unbind_3(self):
self._test_unbind_case(
torch.tensor([1.0]), torch.tensor([]),
)
@torch.inference_mode()
def test_unbind_4(self):
self._test_unbind_case(
torch.tensor([]), torch.tensor([]),
)
@torch.inference_mode()
def test_unbind_dim(self):
def _test_fn(unbind_fn):
a = torch.rand(3, 2)
b = torch.rand(2, 3)
nt = nested_tensor([a, b])
self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1))
# Both of these tests are necessary, because we're using
# torch_function.
_test_fn(lambda x, dim: x.unbind(dim))
# TODO: Re-enable this once using torch_dispatch
# _test_fn(lambda x, dim: torch.unbind(x, dim))
@torch.inference_mode()
def test_nested_tensor(self):
self.assertRaises(TypeError, lambda: nested_tensor([3.0]))
self.assertRaises(TypeError, lambda: nested_tensor(torch.tensor([3.0])))
self.assertRaises(TypeError, lambda: nested_tensor(4.0))
@torch.inference_mode()
def test_nested_tensor_matching_dim(self):
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.",
lambda: nested_tensor([torch.tensor(1.0), torch.tensor([])]),
)
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.",
lambda: nested_tensor(
[torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])]
),
)
@torch.inference_mode()
def test_default_nested_tensor(self):
self.assertRaises(TypeError, lambda: nested_tensor())
default_nested_tensor = nested_tensor([])
default_tensor = torch.tensor([])
# self.assertEqual(default_nested_tensor.nested_dim(), 1)
# self.assertEqual(default_nested_tensor.nested_size(), ())
self.assertEqual(default_nested_tensor.dim(), default_tensor.dim())
self.assertEqual(default_nested_tensor.layout, default_tensor.layout)
self.assertEqual(default_nested_tensor.device, default_tensor.device)
self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype)
self.assertEqual(
default_nested_tensor.requires_grad, default_tensor.requires_grad
)
self.assertIsNone(default_tensor.grad)
# TODO: Re-enable once we have a performance driven
# use case and implementation.
# self.assertEqual(default_nested_tensor.is_pinned(),
# default_tensor.is_pinned())
@torch.inference_mode()
def test_dim(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor(3.0)])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor([1, 2, 3, 4])])
self.assertEqual(a1.dim(), 2)
@unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.")
@torch.inference_mode()
def test_numel(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError, "numel is disabled", lambda: a1.numel(),
)
@torch.inference_mode()
def test_size(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"Tensors of type NestedTensorImpl do not have sizes"
if IS_FBCODE
else "NestedTensorImpl doesn't support sizes",
lambda: a1.size(),
)
@unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.")
@torch.inference_mode()
def test_stride(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"NestedTensorImpl doesn't support strides",
lambda: a1.stride(),
)
@unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.")
@torch.inference_mode()
def test_is_contiguous(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError, "is_contiguous is disabled", lambda: a1.is_contiguous()
)
@torch.inference_mode()
def test_repr_string(self):
a = nested_tensor([])
expected = "nested_tensor([" "\n\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = nested_tensor([torch.tensor(1.0)])
expected = "nested_tensor([" "\n tensor(1.)" "\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])])
expected = (
"nested_tensor([" "\n tensor([[1, 2]])" "," "\n tensor([[4, 5]])" "\n])"
)
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)