mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20740 Provide a way to assemble quantized Tensor from int8 Tensor, scale and zero point. Differential Revision: D15232416 fbshipit-source-id: c3a3d9d7214b1dc569214c019440c2779fbd063b
11676 lines
485 KiB
Python
11676 lines
485 KiB
Python
import sys
|
|
import io
|
|
import os
|
|
import math
|
|
import random
|
|
import copy
|
|
import shutil
|
|
import torch
|
|
import torch.cuda
|
|
import torch.backends.cuda
|
|
import tempfile
|
|
import unittest
|
|
import warnings
|
|
import pickle
|
|
import gzip
|
|
import types
|
|
import textwrap
|
|
import re
|
|
from torch._utils_internal import get_file_path_2
|
|
from torch.utils.dlpack import from_dlpack, to_dlpack
|
|
from torch._utils import _rebuild_tensor
|
|
from torch._six import inf, nan, string_classes, istuple
|
|
from itertools import product, combinations, combinations_with_replacement
|
|
from functools import reduce
|
|
from torch import multiprocessing as mp
|
|
from common_methods_invocations import tri_tests_args, run_additional_tri_tests, \
|
|
_compare_trilu_indices
|
|
from common_utils import TestCase, iter_indices, TEST_NUMPY, TEST_SCIPY, TEST_MKL, \
|
|
TEST_LIBROSA, run_tests, download_file, skipIfNoLapack, suppress_warnings, \
|
|
IS_WINDOWS, PY3, NO_MULTIPROCESSING_SPAWN, skipIfRocm, do_test_dtypes, do_test_empty_full, \
|
|
IS_SANDCASTLE, load_tests, brute_pdist, brute_cdist, slowTest
|
|
from multiprocessing.reduction import ForkingPickler
|
|
|
|
# load_tests from common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
if TEST_NUMPY:
|
|
import numpy as np
|
|
|
|
if TEST_SCIPY:
|
|
from scipy import signal
|
|
|
|
if TEST_LIBROSA:
|
|
import librosa
|
|
|
|
SIZE = 100
|
|
|
|
can_retrieve_source = True
|
|
with warnings.catch_warnings(record=True) as warns:
|
|
with tempfile.NamedTemporaryFile() as checkpoint:
|
|
x = torch.save(torch.nn.Module(), checkpoint)
|
|
for warn in warns:
|
|
if "Couldn't retrieve source code" in warn.message.args[0]:
|
|
can_retrieve_source = False
|
|
break
|
|
|
|
|
|
class FilelikeMock(object):
|
|
def __init__(self, data, has_fileno=True, has_readinto=False):
|
|
if has_readinto:
|
|
self.readinto = self.readinto_opt
|
|
if has_fileno:
|
|
# Python 2's StringIO.StringIO has no fileno attribute.
|
|
# This is used to test that.
|
|
self.fileno = self.fileno_opt
|
|
|
|
self.calls = set()
|
|
self.bytesio = io.BytesIO(data)
|
|
|
|
def trace(fn, name):
|
|
def result(*args, **kwargs):
|
|
self.calls.add(name)
|
|
return fn(*args, **kwargs)
|
|
return result
|
|
|
|
for attr in ['read', 'readline', 'seek', 'tell', 'write', 'flush']:
|
|
traced_fn = trace(getattr(self.bytesio, attr), attr)
|
|
setattr(self, attr, traced_fn)
|
|
|
|
def fileno_opt(self):
|
|
raise io.UnsupportedOperation('Not a real file')
|
|
|
|
def readinto_opt(self, view):
|
|
self.calls.add('readinto')
|
|
return self.bytesio.readinto(view)
|
|
|
|
def was_called(self, name):
|
|
return name in self.calls
|
|
|
|
|
|
class BytesIOContext(io.BytesIO):
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
pass
|
|
|
|
|
|
# This is intentionally prefixed by an underscore. Otherwise pytest will try to
|
|
# run its methods as test cases.
|
|
class _TestTorchMixin(object):
|
|
def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True):
|
|
float_types = [torch.double,
|
|
torch.float]
|
|
int_types = [torch.int64,
|
|
torch.int32,
|
|
torch.int16]
|
|
|
|
def make_contiguous(shape, dtype):
|
|
if dtype in float_types:
|
|
val = torch.randn(shape, dtype=dtype)
|
|
val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0))
|
|
val = val + ((val_range[1] - val_range[0]) / 2.0)
|
|
val = torch.clamp(val, min=val_range[0], max=val_range[1])
|
|
return val
|
|
result = torch.zeros(shape, dtype=dtype)
|
|
result.apply_(lambda x: random.randint(val_range[0], val_range[1]))
|
|
return result
|
|
|
|
def make_non_contiguous(shape, dtype):
|
|
contig = make_contiguous(shape, dtype)
|
|
non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0]
|
|
non_contig = non_contig.select(-1, -1)
|
|
non_contig.copy_(contig)
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
return non_contig
|
|
|
|
def make_contiguous_slice(size, dtype):
|
|
contig = make_contiguous((1, size), dtype)
|
|
non_contig = contig[:1, 1:size - 1]
|
|
self.assertTrue(non_contig.is_contiguous())
|
|
return contig
|
|
|
|
types = []
|
|
if use_floating:
|
|
types += float_types
|
|
if use_integral:
|
|
types += int_types
|
|
tensors = {"cont": [], "noncont": [], "slice": []}
|
|
for dtype in types:
|
|
tensors["cont"].append(make_contiguous(shape, dtype))
|
|
tensors["noncont"].append(make_non_contiguous(shape, dtype))
|
|
tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype))
|
|
|
|
return tensors
|
|
|
|
def test_dir(self):
|
|
dir(torch)
|
|
|
|
def test_type_conversion_via_dtype_name(self):
|
|
x = torch.tensor([1])
|
|
self.assertEqual(x.byte().dtype, torch.uint8)
|
|
self.assertEqual(x.bool().dtype, torch.bool)
|
|
self.assertEqual(x.char().dtype, torch.int8)
|
|
self.assertEqual(x.double().dtype, torch.float64)
|
|
self.assertEqual(x.float().dtype, torch.float32)
|
|
self.assertEqual(x.half().dtype, torch.float16)
|
|
self.assertEqual(x.int().dtype, torch.int32)
|
|
|
|
def test_doc(self):
|
|
checked_types = (types.MethodType, types.FunctionType,
|
|
types.BuiltinFunctionType, types.BuiltinMethodType)
|
|
|
|
def test_namespace(ns, *skips):
|
|
if isinstance(ns, object):
|
|
ns_name = ns.__class__.__name__
|
|
else:
|
|
ns_name = ns.__name__
|
|
skip_regexes = []
|
|
for r in skips:
|
|
if isinstance(r, string_classes):
|
|
skip_regexes.append(re.compile('^{}$'.format(re.escape(r))))
|
|
else:
|
|
skip_regexes.append(r)
|
|
for name in dir(ns):
|
|
if name.startswith('_'):
|
|
continue
|
|
var = getattr(ns, name)
|
|
if not isinstance(var, checked_types):
|
|
continue
|
|
doc = var.__doc__
|
|
has_doc = doc is not None and len(doc.strip()) > 0
|
|
full_name = ns_name + '.' + name
|
|
if any(r.match(name) for r in skip_regexes):
|
|
self.assertFalse(has_doc,
|
|
'New docs have been added for {}, please remove '
|
|
'it from the skipped list in TestTorch.test_doc'.format(full_name))
|
|
else:
|
|
self.assertTrue(has_doc, '{} is missing documentation'.format(full_name))
|
|
|
|
# FIXME: fix all the skipped ones below!
|
|
test_namespace(torch.randn(1),
|
|
'as_strided',
|
|
'as_strided_',
|
|
re.compile('^clamp_(min|max)_?$'),
|
|
'coalesce',
|
|
'is_coalesced',
|
|
'is_distributed',
|
|
'is_complex',
|
|
'is_nonzero',
|
|
'is_same_size',
|
|
'isclose',
|
|
'lgamma',
|
|
'lgamma_',
|
|
'log_softmax',
|
|
'map2_',
|
|
'new',
|
|
'polygamma',
|
|
'polygamma_',
|
|
'record_stream',
|
|
'reinforce',
|
|
'relu',
|
|
'relu_',
|
|
'prelu',
|
|
'resize',
|
|
'resize_as',
|
|
'smm',
|
|
'softmax',
|
|
'split_with_sizes',
|
|
'sspaddmm',
|
|
'to_dense',
|
|
'sparse_resize_',
|
|
'sparse_resize_and_clear_',
|
|
)
|
|
test_namespace(torch.nn)
|
|
test_namespace(torch.nn.functional, 'assert_int_or_pair', 'bilinear', 'feature_alpha_dropout')
|
|
# TODO: add torch.* tests when we have proper namespacing on ATen functions
|
|
# test_namespace(torch)
|
|
|
|
def test_dot(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
for tname, _prec in types.items():
|
|
v1 = torch.randn(100).type(tname)
|
|
v2 = torch.randn(100).type(tname)
|
|
res1 = torch.dot(v1, v2)
|
|
res2 = 0
|
|
for i, j in zip(v1, v2):
|
|
res2 += i * j
|
|
self.assertEqual(res1, res2)
|
|
out = torch.randn(()).type(tname)
|
|
torch.dot(v1, v2, out=out)
|
|
self.assertEqual(res1, out)
|
|
|
|
# Test 0-strided
|
|
for tname, _prec in types.items():
|
|
v1 = torch.randn(1).type(tname).expand(100)
|
|
v2 = torch.randn(100).type(tname)
|
|
res1 = torch.dot(v1, v2)
|
|
res2 = 0
|
|
for i, j in zip(v1, v2):
|
|
res2 += i * j
|
|
self.assertEqual(res1, res2)
|
|
out = torch.randn(()).type(tname)
|
|
torch.dot(v1, v2, out=out)
|
|
self.assertEqual(res1, out)
|
|
|
|
def test_ger(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
for tname, _prec in types.items():
|
|
v1 = torch.randn(100).type(tname)
|
|
v2 = torch.randn(100).type(tname)
|
|
res1 = torch.ger(v1, v2)
|
|
res2 = torch.zeros(100, 100).type(tname)
|
|
for i in range(100):
|
|
for j in range(100):
|
|
res2[i, j] = v1[i] * v2[j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Test 0-strided
|
|
for tname, _prec in types.items():
|
|
v1 = torch.randn(1).type(tname).expand(100)
|
|
v2 = torch.randn(100).type(tname)
|
|
res1 = torch.ger(v1, v2)
|
|
res2 = torch.zeros(100, 100).type(tname)
|
|
for i in range(100):
|
|
for j in range(100):
|
|
res2[i, j] = v1[i] * v2[j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_addr(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
|
|
def run_test(m, v1, v2, m_transform=lambda x: x):
|
|
m = m_transform(m.clone())
|
|
ref = m.clone()
|
|
torch.addr(m, v1, v2, out=m)
|
|
for i in range(m.size(0)):
|
|
for j in range(m.size(1)):
|
|
ref[i, j] += v1[i] * v2[j]
|
|
self.assertEqual(m, ref)
|
|
|
|
for tname, _prec in types.items():
|
|
for h, w in [(100, 110), (1, 20), (200, 2)]:
|
|
m = torch.randn(h, w).type(tname)
|
|
v1 = torch.randn(h).type(tname)
|
|
v2 = torch.randn(w).type(tname)
|
|
run_test(m, v1, v2)
|
|
# test transpose
|
|
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
|
|
# test 0 strided
|
|
v1 = torch.randn(1).type(tname).expand(h)
|
|
run_test(m, v1, v2)
|
|
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
|
|
|
|
def test_addmv(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
for tname, _prec in types.items():
|
|
t = torch.randn(10).type(tname)
|
|
m = torch.randn(10, 100).type(tname)
|
|
v = torch.randn(100).type(tname)
|
|
res1 = torch.addmv(t, m, v)
|
|
res2 = torch.zeros(10).type(tname)
|
|
res2 += t
|
|
for i in range(10):
|
|
for j in range(100):
|
|
res2[i] += m[i, j] * v[j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Test 0-strided
|
|
for tname, _prec in types.items():
|
|
t = torch.randn(1).type(tname).expand(10)
|
|
m = torch.randn(10, 1).type(tname).expand(10, 100)
|
|
v = torch.randn(100).type(tname)
|
|
res1 = torch.addmv(t, m, v)
|
|
res2 = torch.zeros(10).type(tname)
|
|
res2 += t
|
|
for i in range(10):
|
|
for j in range(100):
|
|
res2[i] += m[i, j] * v[j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_addmm(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
for tname, _prec in types.items():
|
|
M = torch.randn(10, 25).type(tname)
|
|
m1 = torch.randn(10, 50).type(tname)
|
|
m2 = torch.randn(50, 25).type(tname)
|
|
res1 = torch.addmm(M, m1, m2)
|
|
res2 = torch.zeros(10, 25).type(tname)
|
|
res2 += M
|
|
for i in range(10):
|
|
for j in range(25):
|
|
for k in range(50):
|
|
res2[i, j] += m1[i, k] * m2[k, j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Test 0-strided
|
|
for tname, _prec in types.items():
|
|
M = torch.randn(10, 1).type(tname).expand(10, 25)
|
|
m1 = torch.randn(10, 1).type(tname).expand(10, 50)
|
|
m2 = torch.randn(50, 25).type(tname)
|
|
res1 = torch.addmm(M, m1, m2)
|
|
res2 = torch.zeros(10, 25).type(tname)
|
|
res2 += M
|
|
for i in range(10):
|
|
for j in range(25):
|
|
for k in range(50):
|
|
res2[i, j] += m1[i, k] * m2[k, j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_logical_any(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.zeros([2, 3, 400], dtype=torch.uint8, device=device)
|
|
|
|
self.assertEqual(
|
|
torch.tensor(0, dtype=torch.uint8, device=device),
|
|
x.any())
|
|
|
|
self.assertEqual(
|
|
torch.zeros([1, 3, 400], dtype=torch.uint8, device=device),
|
|
x.any(0, keepdim=True))
|
|
|
|
self.assertEqual(
|
|
torch.zeros([2, 1, 400], dtype=torch.uint8, device=device),
|
|
x.any(1, keepdim=True))
|
|
|
|
self.assertEqual(
|
|
torch.zeros([2, 3, 1], dtype=torch.uint8, device=device),
|
|
x.any(2, keepdim=True))
|
|
|
|
# set the last element to 0
|
|
x[-1][-1][-1] = 1
|
|
|
|
self.assertEqual(
|
|
torch.tensor(1, dtype=torch.uint8, device=device),
|
|
x.any())
|
|
|
|
y = torch.zeros([1, 3, 400], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 1
|
|
self.assertEqual(y, x.any(0, keepdim=True))
|
|
|
|
y = torch.zeros([2, 1, 400], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 1
|
|
self.assertEqual(y, x.any(1, keepdim=True))
|
|
|
|
y = torch.zeros([2, 3, 1], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 1
|
|
self.assertEqual(y, x.any(2, keepdim=True))
|
|
|
|
def test_logical_all(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.ones([2, 3, 400], dtype=torch.uint8, device=device)
|
|
|
|
self.assertEqual(
|
|
torch.tensor(1, dtype=torch.uint8, device=device),
|
|
x.all())
|
|
|
|
self.assertEqual(
|
|
torch.ones([1, 3, 400], dtype=torch.uint8, device=device),
|
|
x.all(0, keepdim=True))
|
|
|
|
self.assertEqual(
|
|
torch.ones([2, 1, 400], dtype=torch.uint8, device=device),
|
|
x.all(1, keepdim=True))
|
|
|
|
self.assertEqual(
|
|
torch.ones([2, 3, 1], dtype=torch.uint8, device=device),
|
|
x.all(2, keepdim=True))
|
|
|
|
# set the last element to 0
|
|
x[-1][-1][-1] = 0
|
|
|
|
self.assertEqual(
|
|
torch.tensor(0, dtype=torch.uint8, device=device),
|
|
x.all())
|
|
|
|
y = torch.ones([1, 3, 400], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 0
|
|
self.assertEqual(y, x.all(0, keepdim=True))
|
|
|
|
y = torch.ones([2, 1, 400], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 0
|
|
self.assertEqual(y, x.all(1, keepdim=True))
|
|
|
|
y = torch.ones([2, 3, 1], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 0
|
|
self.assertEqual(y, x.all(2, keepdim=True))
|
|
|
|
def test_allclose(self):
|
|
x = torch.tensor([1.0, 2.0, 3.0])
|
|
y = torch.tensor([1.01, 2.01, 3.01])
|
|
self.assertTrue(torch.allclose(x, y, rtol=0, atol=0.02))
|
|
self.assertTrue(torch.allclose(x, y, rtol=0.01, atol=0.0))
|
|
self.assertFalse(torch.allclose(x, y))
|
|
self.assertTrue(torch.allclose(torch.tensor([0.0]), torch.tensor([1e-8])))
|
|
x = torch.tensor([2.0, 3.0, nan])
|
|
y = torch.tensor([2.01, 3.01, nan])
|
|
self.assertFalse(torch.allclose(x, y, rtol=1e-2))
|
|
self.assertTrue(torch.allclose(x, y, rtol=1e-2, equal_nan=True))
|
|
self.assertFalse(torch.allclose(x, y, rtol=1e-3, equal_nan=True))
|
|
inf_t = torch.tensor([inf])
|
|
self.assertTrue(torch.allclose(inf_t, inf_t))
|
|
self.assertTrue(torch.allclose(-inf_t, -inf_t))
|
|
self.assertFalse(torch.allclose(inf_t, -inf_t))
|
|
self.assertFalse(torch.allclose(inf_t, torch.tensor([1e20])))
|
|
self.assertFalse(torch.allclose(-inf_t, torch.tensor([-1e20])))
|
|
|
|
def test_linear_algebra_scalar_raises(self):
|
|
m = torch.randn(5, 5)
|
|
v = torch.randn(5)
|
|
s = torch.tensor(7)
|
|
self.assertRaises(RuntimeError, lambda: torch.mv(m, s))
|
|
self.assertRaises(RuntimeError, lambda: torch.addmv(v, m, s))
|
|
self.assertRaises(RuntimeError, lambda: torch.ger(v, s))
|
|
self.assertRaises(RuntimeError, lambda: torch.ger(s, v))
|
|
self.assertRaises(RuntimeError, lambda: torch.addr(m, v, s))
|
|
self.assertRaises(RuntimeError, lambda: torch.addr(m, s, v))
|
|
|
|
def _test_math(self, torchfn, mathfn, input=None, test_expand=False):
|
|
if input is None:
|
|
input = []
|
|
input.append(list(range(-5, 5)))
|
|
input.append([0 for x in range(-5, 5)])
|
|
input.append([x + 1e-6 for x in range(-5, 5)])
|
|
# Some vectorized implementations don't support large ranges
|
|
input.append([x + 1e10 for x in range(-5, 5)])
|
|
input.append([x - 1e10 for x in range(-5, 5)])
|
|
input.append(torch.randn(10).tolist())
|
|
input.append((torch.randn(10) + 1e6).tolist())
|
|
input.append([math.pi * (x / 2) for x in range(-5, 5)])
|
|
|
|
def compare_reference(input, dtype):
|
|
input = torch.tensor(input, dtype=dtype)
|
|
res1 = torchfn(input.clone())
|
|
res2 = input.clone().apply_(mathfn)
|
|
torch.testing.assert_allclose(res1, res2)
|
|
|
|
# compare against the reference math function
|
|
compare_reference(input, torch.double)
|
|
compare_reference(input, torch.float)
|
|
|
|
def check_non_contiguous(shape, dtype):
|
|
contig = torch.randn(shape, dtype=dtype)
|
|
non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0]
|
|
non_contig.copy_(contig)
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous')
|
|
|
|
# compare application against contiguous vs. non-contiguous
|
|
check_non_contiguous((5, 7), torch.double)
|
|
check_non_contiguous((1024,), torch.double)
|
|
check_non_contiguous((5, 7), torch.float)
|
|
check_non_contiguous((1024,), torch.float)
|
|
|
|
def check_non_contiguous_index(dtype):
|
|
contig = torch.randn((2, 2, 1, 2), dtype=dtype)
|
|
non_contig = contig[:, 1, ...]
|
|
contig = non_contig.clone()
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous index')
|
|
|
|
check_non_contiguous_index(torch.float)
|
|
check_non_contiguous_index(torch.double)
|
|
|
|
def check_non_contiguous_expand(shape, dtype):
|
|
contig = torch.randn(shape, dtype=dtype)
|
|
non_contig = contig.clone().expand(3, -1, -1)
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
contig = torchfn(contig)
|
|
non_contig = torchfn(non_contig)
|
|
for i in range(3):
|
|
self.assertEqual(contig, non_contig[i], 'non-contiguous expand[' + str(i) + ']')
|
|
|
|
# Expand is not defined for in-place operations
|
|
if test_expand:
|
|
# The size 1 case is special as it leads to 0 stride and needs to persists
|
|
check_non_contiguous_expand((1, 3), torch.double)
|
|
check_non_contiguous_expand((1, 7), torch.double)
|
|
check_non_contiguous_expand((5, 7), torch.float)
|
|
|
|
# If size(dim) == 1, stride(dim) is not defined.
|
|
# The code needs to be able to handle this
|
|
def check_contiguous_size1(dtype):
|
|
contig = torch.randn((5, 100), dtype=dtype)
|
|
contig = contig[:1, :50]
|
|
contig2 = torch.empty(contig.size(), dtype=dtype)
|
|
contig2.copy_(contig)
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertTrue(contig2.is_contiguous())
|
|
self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1')
|
|
|
|
check_contiguous_size1(torch.double)
|
|
check_contiguous_size1(torch.float)
|
|
|
|
def check_contiguous_size1_largedim(dtype):
|
|
contig = torch.randn((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), dtype=dtype)
|
|
contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :]
|
|
contig2 = torch.empty(contig.size(), dtype=dtype)
|
|
contig2.copy_(contig)
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertTrue(contig2.is_contiguous())
|
|
self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1')
|
|
|
|
check_contiguous_size1_largedim(torch.double)
|
|
check_contiguous_size1_largedim(torch.float)
|
|
|
|
def check_large(dtype):
|
|
input = torch.randn(1024, 512, dtype=dtype)
|
|
actual = torchfn(input)
|
|
expected = torch.stack([torchfn(slice) for slice in input])
|
|
self.assertEqual(actual, expected, 'large')
|
|
|
|
# compare large tensor vs. repeated small applications to expose
|
|
# possible parallelism bugs.
|
|
check_large(torch.double)
|
|
check_large(torch.float)
|
|
|
|
def __test_math_by_name(self, function_name, mathfn, selffn):
|
|
mathfn = getattr(math, mathfn)
|
|
if selffn:
|
|
def torchfn(x):
|
|
return getattr(x, function_name)()
|
|
else:
|
|
torchfn = getattr(torch, function_name)
|
|
self._test_math(torchfn, mathfn, test_expand=(not selffn))
|
|
|
|
def _test_math_by_name(self, function_name, test_self=True):
|
|
if test_self:
|
|
self.__test_math_by_name(function_name + "_", function_name, True)
|
|
self.__test_math_by_name(function_name, function_name, False)
|
|
|
|
def test_sin(self):
|
|
self._test_math_by_name('sin')
|
|
|
|
def test_sinh(self):
|
|
def sinh(x):
|
|
try:
|
|
return math.sinh(x)
|
|
except OverflowError:
|
|
return inf if x > 0 else -inf
|
|
self._test_math(torch.sinh, sinh)
|
|
|
|
def test_lgamma(self):
|
|
def lgamma(x):
|
|
if x <= 0 and x == int(x):
|
|
return inf
|
|
return math.lgamma(x)
|
|
self._test_math(torch.lgamma, lgamma)
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
|
|
def test_mvlgamma(self):
|
|
from scipy.special import multigammaln
|
|
for d in range(1, 5):
|
|
input = torch.empty(10).uniform_(d, 10)
|
|
res_torch = torch.mvlgamma(input, d)
|
|
res_scipy = multigammaln(input.numpy(), d)
|
|
self.assertEqual(res_torch.numpy(), res_scipy)
|
|
|
|
def test_mvlgamma_argcheck(self):
|
|
def run_test(d):
|
|
input = torch.linspace((d - 2) / 2, 10, 10)
|
|
torch.mvlgamma(input, d)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Condition for computing multivariate log-gamma not met"):
|
|
run_test(3)
|
|
|
|
def _digamma_input(self, test_poles=True):
|
|
input = []
|
|
input.append((torch.randn(10).abs() + 1e-4).tolist())
|
|
input.append((torch.randn(10).abs() + 1e6).tolist())
|
|
zeros = torch.linspace(-9.5, -0.5, 10)
|
|
input.append(zeros.tolist())
|
|
input.append((zeros - 0.49).tolist())
|
|
input.append((zeros + 0.49).tolist())
|
|
input.append((zeros + (torch.rand(10) * 0.99) - 0.5).tolist())
|
|
|
|
if test_poles:
|
|
input.append([-0.999999994, -1.999999994, -2.0000000111,
|
|
-100.99999994, -1931.99999994, 0.000000111,
|
|
-0.000000111, 0, -2, -329])
|
|
return input
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
|
|
def test_digamma(self):
|
|
from scipy.special import digamma
|
|
|
|
# scipy 1.1.0 changed when it returns +/-inf vs. NaN
|
|
def torch_digamma_without_inf(inp):
|
|
res = torch.digamma(inp)
|
|
res[(res == -inf) | (res == inf)] = nan
|
|
return res
|
|
|
|
def scipy_digamma_without_inf(inp):
|
|
res = digamma(inp)
|
|
if np.isscalar(res):
|
|
return res if np.isfinite(res) else nan
|
|
res[np.isinf(res)] = nan
|
|
return res
|
|
|
|
self._test_math(torch_digamma_without_inf, scipy_digamma_without_inf, self._digamma_input())
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
|
|
def test_polygamma(self):
|
|
from scipy.special import polygamma
|
|
for n in [0, 1]:
|
|
self._test_math(lambda x: torch.polygamma(n, x),
|
|
lambda x: polygamma(n, x).item(),
|
|
self._digamma_input(test_poles=False))
|
|
|
|
def test_asin(self):
|
|
self._test_math(torch.asin, lambda x: math.asin(x) if abs(x) <= 1 else nan)
|
|
|
|
def test_cos(self):
|
|
self._test_math_by_name('cos')
|
|
|
|
def test_cosh(self):
|
|
def cosh(x):
|
|
try:
|
|
return math.cosh(x)
|
|
except OverflowError:
|
|
# Return inf on overflow.
|
|
# See http://en.cppreference.com/w/cpp/numeric/math/cosh
|
|
return inf
|
|
self._test_math(torch.cosh, cosh)
|
|
|
|
def test_acos(self):
|
|
self._test_math(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else nan)
|
|
|
|
def test_tan(self):
|
|
self._test_math_by_name('tan')
|
|
|
|
def test_tanh(self):
|
|
self._test_math_by_name('tanh')
|
|
|
|
def test_atan(self):
|
|
self._test_math_by_name('atan')
|
|
|
|
def test_log(self):
|
|
def log(x):
|
|
if x == 0:
|
|
return -inf
|
|
elif x < 0:
|
|
return nan
|
|
return math.log(x)
|
|
self._test_math(torch.log, log)
|
|
|
|
def test_log10(self):
|
|
def log10(x):
|
|
if x == 0:
|
|
return -inf
|
|
elif x < 0:
|
|
return nan
|
|
return math.log10(x)
|
|
self._test_math(torch.log10, log10)
|
|
|
|
def test_log1p(self):
|
|
def log1p(x):
|
|
if x == -1:
|
|
return -inf
|
|
elif x < -1:
|
|
return nan
|
|
return math.log1p(x)
|
|
self._test_math(torch.log1p, log1p)
|
|
|
|
def test_log2(self):
|
|
def log2(x):
|
|
if x == 0:
|
|
return -inf
|
|
elif x < 0:
|
|
return nan
|
|
try:
|
|
return math.log2(x)
|
|
except AttributeError:
|
|
return math.log(x, 2)
|
|
self._test_math(torch.log2, log2)
|
|
|
|
def test_sqrt(self):
|
|
self._test_math(torch.sqrt, lambda x: math.sqrt(x) if x >= 0 else nan)
|
|
|
|
def test_erf(self):
|
|
self._test_math_by_name('erf')
|
|
|
|
def test_erfc(self):
|
|
self._test_math_by_name('erfc')
|
|
|
|
def test_erfinv(self):
|
|
def checkType(tensor):
|
|
inputValues = torch.randn(4, 4, out=tensor()).clamp(-2., 2.)
|
|
self.assertEqual(tensor(inputValues).erf().erfinv(), tensor(inputValues))
|
|
# test inf
|
|
self.assertTrue(torch.equal(tensor([-1, 1]).erfinv(), tensor([-inf, inf])))
|
|
# test nan
|
|
self.assertEqual(tensor([-2, 2]).erfinv(), tensor([nan, nan]))
|
|
|
|
checkType(torch.FloatTensor)
|
|
checkType(torch.DoubleTensor)
|
|
|
|
def test_exp(self):
|
|
def exp(x):
|
|
try:
|
|
return math.exp(x)
|
|
except OverflowError:
|
|
return inf
|
|
self._test_math(torch.exp, exp)
|
|
|
|
@slowTest
|
|
def test_exp_slow(self):
|
|
# Test for https://github.com/pytorch/pytorch/issues/17271
|
|
# This is pretty slow on my Macbook but it only takes a few
|
|
# seconds on a beefy Xeon server
|
|
a = torch.exp(torch.ones(2 ** 31, dtype=torch.float32))
|
|
b = torch.exp(torch.ones(1, dtype=torch.float32))
|
|
self.assertEqual(a, b.expand(2 ** 31))
|
|
|
|
def test_expm1(self):
|
|
def expm1(x):
|
|
try:
|
|
return math.expm1(x)
|
|
except OverflowError:
|
|
return inf
|
|
self._test_math(torch.expm1, expm1)
|
|
|
|
def test_floor(self):
|
|
self._test_math_by_name('floor')
|
|
|
|
def test_ceil(self):
|
|
self._test_math_by_name('ceil')
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_ceil_out_cpu_cuda(self):
|
|
a = torch.randn(1)
|
|
b = torch.randn(1, device="cuda")
|
|
self.assertRaises(RuntimeError, lambda: torch.ceil(a, out=b))
|
|
|
|
def test_rsqrt(self):
|
|
def rsqrt(x):
|
|
if x == 0:
|
|
return inf
|
|
elif x < 0:
|
|
return nan
|
|
return 1.0 / math.sqrt(x)
|
|
|
|
self._test_math(torch.rsqrt, rsqrt)
|
|
|
|
def test_sigmoid(self):
|
|
# TODO: why not simulate math.sigmoid like with rsqrt?
|
|
inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000]
|
|
expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000]
|
|
precision_4dps = 0.0002
|
|
|
|
def checkType(tensor):
|
|
self.assertEqual(tensor(inputValues).sigmoid(), tensor(expectedOutput), precision_4dps)
|
|
|
|
checkType(torch.FloatTensor)
|
|
checkType(torch.DoubleTensor)
|
|
|
|
def test_frac(self):
|
|
self._test_math(torch.frac, lambda x: math.fmod(x, 1))
|
|
|
|
def test_trunc(self):
|
|
self._test_math(torch.trunc, lambda x: x - math.fmod(x, 1))
|
|
|
|
def test_round(self):
|
|
self._test_math(torch.round, round)
|
|
|
|
def test_has_storage(self):
|
|
self.assertIsNotNone(torch.Tensor().storage())
|
|
self.assertIsNotNone(torch.Tensor(0).storage())
|
|
self.assertIsNotNone(torch.Tensor([]).storage())
|
|
self.assertIsNotNone(torch.Tensor().clone().storage())
|
|
self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage())
|
|
self.assertIsNotNone(torch.Tensor().new().storage())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_has_storage_numpy(self):
|
|
for dtype in [np.float32, np.float64, np.int64,
|
|
np.int32, np.int16, np.uint8]:
|
|
arr = np.array([1], dtype=dtype)
|
|
self.assertIsNotNone(torch.FloatTensor(arr).storage())
|
|
self.assertIsNotNone(torch.DoubleTensor(arr).storage())
|
|
self.assertIsNotNone(torch.IntTensor(arr).storage())
|
|
self.assertIsNotNone(torch.LongTensor(arr).storage())
|
|
self.assertIsNotNone(torch.ByteTensor(arr).storage())
|
|
if torch.cuda.is_available():
|
|
self.assertIsNotNone(torch.cuda.FloatTensor(arr).storage())
|
|
self.assertIsNotNone(torch.cuda.DoubleTensor(arr).storage())
|
|
self.assertIsNotNone(torch.cuda.IntTensor(arr).storage())
|
|
self.assertIsNotNone(torch.cuda.LongTensor(arr).storage())
|
|
self.assertIsNotNone(torch.cuda.ByteTensor(arr).storage())
|
|
|
|
def _testSelection(self, torchfn, mathfn):
|
|
# contiguous
|
|
m1 = torch.randn(100, 100)
|
|
res1 = torchfn(m1)
|
|
res2 = m1[0, 0]
|
|
for i, j in iter_indices(m1):
|
|
res2 = mathfn(res2, m1[i, j])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10, 10)
|
|
m2 = m1[:, 4]
|
|
res1 = torchfn(m2)
|
|
res2 = m2[0, 0]
|
|
for i, j in iter_indices(m2):
|
|
res2 = mathfn(res2, m2[i][j])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# with indices
|
|
m1 = torch.randn(100, 100)
|
|
res1val, res1ind = torchfn(m1, 1, False)
|
|
res2val = m1[:, 0:1].clone().squeeze()
|
|
res2ind = res1ind.clone().fill_(0)
|
|
for i, j in iter_indices(m1):
|
|
if mathfn(res2val[i], m1[i, j]) != res2val[i]:
|
|
res2val[i] = m1[i, j]
|
|
res2ind[i] = j
|
|
|
|
maxerr = 0
|
|
for i in range(res1val.size(0)):
|
|
maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
|
|
self.assertEqual(res1ind[i], res2ind[i])
|
|
self.assertLessEqual(abs(maxerr), 1e-5)
|
|
|
|
# NaNs
|
|
for index in (0, 4, 99):
|
|
m1 = torch.randn(100)
|
|
m1[index] = nan
|
|
res1val, res1ind = torch.max(m1, 0)
|
|
self.assertTrue(math.isnan(res1val))
|
|
self.assertEqual(res1ind, index)
|
|
res1val = torchfn(m1)
|
|
self.assertTrue(math.isnan(res1val))
|
|
|
|
def test_max(self):
|
|
self._testSelection(torch.max, max)
|
|
|
|
def test_log_normal(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
a = torch.tensor([10], dtype=torch.float, device=device).log_normal_()
|
|
self.assertEqual(a.dtype, torch.float)
|
|
self.assertEqual(a.size(), torch.Size([1]))
|
|
|
|
def test_geometric(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
a = torch.tensor([10], dtype=torch.float, device=device).geometric_(0.5)
|
|
self.assertEqual(a.dtype, torch.float)
|
|
self.assertEqual(a.size(), torch.Size([1]))
|
|
|
|
@staticmethod
|
|
def _test_max_with_inf(self, dtypes=(torch.float, torch.double), device='cpu'):
|
|
for dtype in dtypes:
|
|
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
|
|
self.assertTrue(torch.all(torch.max(a, dim=1)[0] == inf).item())
|
|
self.assertTrue(torch.max(a).item() == inf)
|
|
|
|
def test_max_with_inf(self):
|
|
self._test_max_with_inf(self)
|
|
|
|
def test_min(self):
|
|
self._testSelection(torch.min, min)
|
|
|
|
@staticmethod
|
|
def _test_min_with_inf(self, dtypes=(torch.float, torch.double), device='cpu'):
|
|
for dtype in dtypes:
|
|
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
|
|
self.assertTrue(torch.all(torch.min(a, dim=1)[0] == (-inf)).item())
|
|
self.assertTrue(torch.min(a).item() == -inf)
|
|
|
|
def test_min_with_inf(self):
|
|
self._test_min_with_inf(self)
|
|
|
|
@staticmethod
|
|
def _test_norm(self, device):
|
|
# full reduction
|
|
x = torch.randn(25, device=device)
|
|
xn = x.cpu().numpy()
|
|
for p in [0, 1, 2, 3, 4, inf, -inf]:
|
|
res = x.norm(p).item()
|
|
expected = np.linalg.norm(xn, p)
|
|
self.assertEqual(res, expected, "full reduction failed for {}-norm".format(p))
|
|
|
|
# one dimension
|
|
x = torch.randn(25, 25, device=device)
|
|
xn = x.cpu().numpy()
|
|
for p in [0, 1, 2, 3, 4, inf, -inf]:
|
|
res = x.norm(p, 1).cpu().numpy()
|
|
expected = np.linalg.norm(xn, p, 1)
|
|
self.assertEqual(res.shape, expected.shape)
|
|
self.assertTrue(np.allclose(res, expected), "dim reduction failed for {}-norm".format(p))
|
|
|
|
# matrix norm
|
|
for p in ['fro', 'nuc']:
|
|
res = x.norm(p).cpu().numpy()
|
|
expected = np.linalg.norm(xn, p)
|
|
self.assertEqual(res.shape, expected.shape)
|
|
self.assertTrue(np.allclose(res, expected), "dim reduction failed for {}-norm".format(p))
|
|
|
|
# larger tensor sanity check
|
|
self.assertEqual(2 * torch.norm(torch.ones(10000)), torch.norm(torch.ones(40000)))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
@skipIfNoLapack
|
|
def test_norm(self):
|
|
self._test_norm(self, device='cpu')
|
|
|
|
@staticmethod
|
|
def _test_dist(self, device):
|
|
def run_test(x, y):
|
|
for p in [0, 1, 2, 3, 4, inf, -inf]:
|
|
dist_xy = torch.dist(x, y, p)
|
|
dist_xy_norm = torch.norm(x - y, p)
|
|
self.assertEqual(dist_xy, dist_xy_norm)
|
|
|
|
run_test(torch.randn(5, device=device), torch.randn(5, device=device))
|
|
|
|
x = torch.zeros(3, device=device)
|
|
y = torch.zeros(3, device=device)
|
|
y[1] = 1.
|
|
run_test(x, y)
|
|
|
|
def test_dist(self):
|
|
self._test_dist(self, device='cpu')
|
|
|
|
def test_dim_reduction_uint8_overflow(self):
|
|
example = [[-1, 2, 1], [5, 3, 6]]
|
|
x = torch.tensor(example, dtype=torch.uint8)
|
|
self.assertEqual(x.sum(dtype=torch.uint8).item(), 16)
|
|
self.assertEqual(x.sum(0, dtype=torch.uint8), torch.FloatTensor([4, 5, 7]))
|
|
self.assertEqual(x.sum(1, dtype=torch.uint8), torch.FloatTensor([2, 14]))
|
|
y = torch.tensor(example, dtype=torch.uint8)
|
|
torch.sum(x, 0, out=y)
|
|
self.assertEqual(x.sum(0, dtype=torch.uint8), y)
|
|
|
|
@staticmethod
|
|
def _test_dim_reduction(self, cast):
|
|
example = [[-1, 2, 1], [5, 3, 6]]
|
|
|
|
types = [torch.double,
|
|
torch.float,
|
|
torch.int64,
|
|
torch.int32,
|
|
torch.int16]
|
|
|
|
# This won't test for 256bit instructions, since we usually
|
|
# only work on 1 cacheline (1024bit) at a time and these
|
|
# examples aren't big enough to trigger that.
|
|
for dtype in types:
|
|
x = cast(torch.tensor(example, dtype=dtype))
|
|
self.assertEqual(x.sum().item(), 16)
|
|
self.assertEqual(x.sum(0), torch.FloatTensor([4, 5, 7]))
|
|
self.assertEqual(x.sum(1), torch.FloatTensor([2, 14]))
|
|
y = cast(torch.tensor(example, dtype=dtype))
|
|
torch.sum(x, 0, out=y)
|
|
self.assertEqual(x.sum(0), y)
|
|
|
|
# Mean not supported for Int types
|
|
for dtype in types[:2]:
|
|
x = cast(torch.tensor(example, dtype=dtype))
|
|
self.assertEqual(x.mean().item(), 16.0 / 6)
|
|
self.assertEqual(x.mean(0), torch.FloatTensor([2.0, 2.5, 7.0 / 2]))
|
|
self.assertEqual(x.mean(1), torch.FloatTensor([2.0 / 3, 14.0 / 3]))
|
|
self.assertEqual(x.mean(), x.mean((0, 1)))
|
|
|
|
for dtype in types:
|
|
x = cast(torch.tensor(example, dtype=dtype))
|
|
self.assertEqual(x.prod().item(), -180)
|
|
self.assertEqual(x.prod(0), torch.FloatTensor([-5, 6, 6]))
|
|
self.assertEqual(x.prod(1), torch.FloatTensor([-2, 90]))
|
|
|
|
for dtype in types:
|
|
x = cast(torch.tensor(example, dtype=dtype))
|
|
self.assertEqual(x.max().item(), 6)
|
|
self.assertEqual(x.max(0), (torch.FloatTensor([5, 3, 6]), torch.FloatTensor([1, 1, 1])))
|
|
self.assertEqual(x.max(1), (torch.FloatTensor([2, 6]), torch.FloatTensor([1, 2])))
|
|
|
|
for dtype in types:
|
|
x = cast(torch.tensor(example, dtype=dtype))
|
|
self.assertEqual(x.min().item(), -1)
|
|
self.assertEqual(x.min(0), (torch.FloatTensor([-1, 2, 1]), torch.FloatTensor([0, 0, 0])))
|
|
self.assertEqual(x.min(1), (torch.FloatTensor([-1, 3]), torch.FloatTensor([0, 1])))
|
|
|
|
for dtype in types:
|
|
x = cast(torch.tensor(example, dtype=dtype))
|
|
self.assertEqual(x.argmax().item(), 5)
|
|
self.assertEqual(x.argmax(dim=None).item(), 5)
|
|
self.assertEqual(x.argmax(dim=0), torch.FloatTensor([1, 1, 1]))
|
|
self.assertEqual(x.argmax(dim=1), torch.FloatTensor([1, 2]))
|
|
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.FloatTensor([[1, 1, 1]]))
|
|
# test that non-contiguous tensors work
|
|
self.assertEqual(x[:, :2].argmax().item(), 2)
|
|
|
|
for dtype in types:
|
|
x = cast(torch.tensor(example, dtype=dtype))
|
|
self.assertEqual(x.argmin().item(), 0)
|
|
self.assertEqual(x.argmin(dim=None).item(), 0)
|
|
self.assertEqual(x.argmin(dim=0), torch.FloatTensor([0, 0, 0]))
|
|
self.assertEqual(x.argmin(dim=1), torch.FloatTensor([0, 1]))
|
|
self.assertEqual(x.argmin(dim=1, keepdim=True), torch.FloatTensor([[0], [1]]))
|
|
# test that non-contiguous tensors work
|
|
self.assertEqual(x[:, :2].argmin().item(), 0)
|
|
|
|
dim_red_fns = [
|
|
"mean", "median", "mode", "norm", "prod",
|
|
"std", "sum", "var", "max", "min"]
|
|
|
|
def normfn_attr(t, dim, keepdim=False, out=None):
|
|
attr = torch.norm
|
|
return attr(t, 2, dim, keepdim, out=out)
|
|
|
|
for fn_name in dim_red_fns:
|
|
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
|
|
|
|
def fn(x, dim, keepdim=False, out=None):
|
|
ans = fn_attr(x, dim, keepdim=keepdim, out=out)
|
|
return ans if not istuple(ans) else ans[0]
|
|
|
|
def fn_tuple(x, dim, keepdim=False, out=None):
|
|
return fn_attr(x, dim, keepdim=keepdim, out=out)
|
|
|
|
def test_multidim(x, dim):
|
|
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
|
|
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
|
|
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
|
|
|
|
# general case
|
|
x = cast(torch.randn(3, 4, 5))
|
|
dim = random.randint(0, 2)
|
|
test_multidim(x, dim)
|
|
|
|
# check 1-d behavior
|
|
x = cast(torch.randn(1))
|
|
dim = 0
|
|
self.assertEqual(fn(x, dim).shape, ())
|
|
self.assertEqual(fn(x, dim, keepdim=True).shape, (1,))
|
|
|
|
# check reducing of a singleton dimension
|
|
dims = [3, 4, 5]
|
|
singleton_dim = random.randint(0, 2)
|
|
dims[singleton_dim] = 1
|
|
x = cast(torch.randn(dims))
|
|
test_multidim(x, singleton_dim)
|
|
|
|
# check reducing with output kwargs
|
|
if fn_name in ['median', 'mode', 'max', 'min']:
|
|
y = cast(torch.randn(5, 3))
|
|
values = cast(torch.randn(5, 3))
|
|
indices = cast(torch.zeros(5, 3).long() - 1)
|
|
fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1]))
|
|
values_expected, indices_expected = fn_tuple(y, 1, keepdim=False)
|
|
self.assertEqual(values[:, 1], values_expected,
|
|
'{} values with out= kwarg'.format(fn_name))
|
|
self.assertEqual(indices[:, 1], indices_expected,
|
|
'{} indices with out= kwarg'.format(fn_name))
|
|
continue
|
|
|
|
x = cast(torch.randn(5, 3))
|
|
y = cast(torch.randn(5, 3))
|
|
fn(y, 1, keepdim=False, out=x[:, 1])
|
|
expected = fn(y, 1, keepdim=False)
|
|
self.assertEqual(x[:, 1], expected, '{} with out= kwarg'.format(fn_name))
|
|
|
|
def test_dim_reduction(self):
|
|
self._test_dim_reduction(self, lambda t: t)
|
|
|
|
def test_reduction_empty(self):
|
|
fns_to_test = [
|
|
# name, function, identity
|
|
('max', torch.max, None),
|
|
('kthvalue', lambda *args, **kwargs: torch.kthvalue(*args, k=1, **kwargs), None),
|
|
('argmax', torch.argmax, None),
|
|
('min', torch.min, None),
|
|
('argmin', torch.argmin, None),
|
|
('mode', torch.mode, None),
|
|
('median', torch.median, None),
|
|
|
|
('prod', torch.prod, 1),
|
|
('sum', torch.sum, 0),
|
|
('norm', torch.norm, 0),
|
|
('mean', torch.mean, nan),
|
|
('var', torch.var, nan),
|
|
('std', torch.std, nan),
|
|
('logsumexp', torch.logsumexp, -inf),
|
|
]
|
|
|
|
shape = (2, 0, 4)
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.randn(shape, device=device)
|
|
|
|
for item in fns_to_test:
|
|
name, fn, identity = item
|
|
if identity is None:
|
|
ident_err = 'does not have an identity'
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2))
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2, keepdim=True))
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1))
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1, keepdim=True))
|
|
else:
|
|
self.assertEqual(torch.empty((2, 0), device=device), fn(x, dim=2))
|
|
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(x, dim=2, keepdim=True))
|
|
# assertEqual doesn't work with inf, -inf, nan and two tensors.
|
|
check = (torch.testing.assert_allclose if math.isnan(identity) or math.isinf(identity) else
|
|
self.assertEqual)
|
|
check(torch.full((2, 4), identity, device=device), fn(x, dim=1))
|
|
check(torch.full((2, 1, 4), identity, device=device), fn(x, dim=1, keepdim=True))
|
|
try:
|
|
check(torch.full((), identity, device=device), fn(x))
|
|
except TypeError as err:
|
|
# ignore if there is no allreduce.
|
|
self.assertTrue('required positional arguments: "dim"' in str(err))
|
|
|
|
# any
|
|
xb = x.to(torch.uint8)
|
|
yb = x.to(torch.uint8)
|
|
self.assertEqual((2, 0), xb.any(2).shape)
|
|
self.assertEqual((2, 0, 1), xb.any(2, keepdim=True).shape)
|
|
self.assertEqual(torch.zeros((2, 4), device=device), xb.any(1))
|
|
self.assertEqual(torch.zeros((2, 1, 4), device=device), xb.any(1, keepdim=True))
|
|
self.assertEqual(torch.zeros((), device=device), xb.any())
|
|
|
|
# all
|
|
self.assertEqual((2, 0), xb.all(2).shape)
|
|
self.assertEqual((2, 0, 1), xb.all(2, keepdim=True).shape)
|
|
self.assertEqual(torch.ones((2, 4), device=device), xb.all(1))
|
|
self.assertEqual(torch.ones((2, 1, 4), device=device), xb.all(1, keepdim=True))
|
|
self.assertEqual(torch.ones((), device=device), xb.all())
|
|
|
|
def test_pairwise_distance_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
shape = (2, 0)
|
|
x = torch.randn(shape, device=device)
|
|
y = torch.randn(shape, device=device)
|
|
|
|
self.assertEqual(torch.zeros(2, device=device), torch.pairwise_distance(x, y))
|
|
self.assertEqual(torch.zeros((2, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
|
|
|
|
shape = (0, 2)
|
|
x = torch.randn(shape, device=device)
|
|
y = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.zeros(0, device=device), torch.pairwise_distance(x, y))
|
|
self.assertEqual(torch.zeros((0, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
|
|
|
|
def test_pdist_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
shape = (0, 2)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
|
|
|
|
shape = (1, 2)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
|
|
|
|
shape = (3, 0)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.zeros(3, device=device), torch.pdist(x))
|
|
|
|
def test_pdist_norm(self):
|
|
def test_pdist_single(shape, device, p, dtype, trans):
|
|
x = torch.randn(shape, dtype=dtype, device=device)
|
|
if trans:
|
|
x.transpose_(-2, -1)
|
|
actual = torch.pdist(x, p=p)
|
|
expected = brute_pdist(x, p=p)
|
|
self.assertEqual(expected.shape, actual.shape)
|
|
self.assertTrue(torch.allclose(expected, actual))
|
|
|
|
for device in torch.testing.get_all_device_types():
|
|
for shape in [(4, 5), (3, 2), (2, 1)]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
for trans in [False, True]:
|
|
for dtype in [torch.float32, torch.float64]:
|
|
test_pdist_single(shape, device, p, dtype, trans)
|
|
|
|
# do a simplified comparison with big inputs, see:
|
|
# https://github.com/pytorch/pytorch/issues/15511
|
|
for dtype in [torch.float32, torch.float64]:
|
|
test_pdist_single((1000, 2), device, 2, dtype, False)
|
|
|
|
def test_cdist_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.randn((0, 5), device=device)
|
|
y = torch.randn((4, 5), device=device)
|
|
self.assertEqual(torch.empty(0, 4, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 5), device=device)
|
|
y = torch.randn((0, 5), device=device)
|
|
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 0), device=device)
|
|
y = torch.randn((3, 0), device=device)
|
|
self.assertEqual(torch.zeros(2, 3, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 0), device=device)
|
|
y = torch.randn((0, 0), device=device)
|
|
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
|
|
|
|
def test_cdist_norm(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for r1 in [3, 4, 5, 6]:
|
|
for m in [2, 3, 4, 10]:
|
|
for r2 in [4, 6, 7, 8]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
x = torch.randn(r1, m, device=device)
|
|
y = torch.randn(r2, m, device=device)
|
|
actual = torch.cdist(x, y, p=p)
|
|
expected = brute_cdist(x, y, p=p)
|
|
self.assertTrue(torch.allclose(expected, actual))
|
|
|
|
def test_cdist_large(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.randn(1000, 10, device=device)
|
|
y = torch.randn(1000, 10, device=device)
|
|
actual = torch.cdist(x, y, p=2)
|
|
expected = brute_cdist(x, y, p=2)
|
|
self.assertTrue(torch.allclose(expected, actual))
|
|
|
|
def test_cdist_non_contiguous(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.randn(5, 7, device=device).t()
|
|
y = torch.randn(5, 3, device=device).t()
|
|
actual = torch.cdist(x, y, p=2)
|
|
expected = brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertTrue(torch.allclose(expected, actual))
|
|
|
|
x = torch.randn(7, 5, device=device)
|
|
y = torch.randn(5, 3, device=device).t()
|
|
actual = torch.cdist(x, y, p=2)
|
|
expected = brute_cdist(x, y, p=2)
|
|
self.assertTrue(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertTrue(torch.allclose(expected, actual))
|
|
|
|
x = torch.randn(5, 7, device=device).t()
|
|
y = torch.randn(3, 5, device=device)
|
|
actual = torch.cdist(x, y, p=2)
|
|
expected = brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertTrue(y.is_contiguous())
|
|
self.assertTrue(torch.allclose(expected, actual))
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
|
|
def test_logsumexp(self):
|
|
from scipy.special import logsumexp
|
|
a = torch.randn(5, 4)
|
|
a[0, 0] = inf
|
|
a[1, :] = -inf
|
|
actual = a.logsumexp(1)
|
|
expected = logsumexp(a.numpy(), 1)
|
|
self.assertEqual(expected.shape, actual.shape)
|
|
self.assertTrue(np.allclose(expected, actual.numpy()))
|
|
# check that out is actually inplace
|
|
b = torch.zeros(5, 2)
|
|
c = b[:, 0]
|
|
torch.logsumexp(a, 1, out=c)
|
|
self.assertTrue(np.allclose(expected, b[:, 0].numpy()))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_cpu_parallel(self):
|
|
# To use parallel branches we'll need to compare on tensors
|
|
# that are relatively large. Even if this is run on a single
|
|
# core machine these tests will still give you signal on
|
|
# the correctness
|
|
|
|
def _run_test(size):
|
|
for dim in range(len(size) + 1):
|
|
nv = np.round(np.random.rand(*size)) # 0s and 1s
|
|
tv = torch.from_numpy(nv)
|
|
# Parallelisim is only used if numel is
|
|
# larger than grainsize defined in Parallel.h
|
|
self.assertTrue(tv.numel() > 32768)
|
|
if dim == len(size):
|
|
nvs = nv.sum()
|
|
tvs = tv.sum()
|
|
else:
|
|
nvs = nv.sum(dim)
|
|
tvs = tv.sum(dim)
|
|
diff = np.abs(nvs - tvs.numpy()).sum()
|
|
self.assertEqual(diff, 0)
|
|
|
|
_run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3])
|
|
_run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
|
|
_run_test([1, 32 * 8 * 32 * 8])
|
|
_run_test([1, 32770])
|
|
|
|
def _testCSelection(self, torchfn, mathfn):
|
|
# Two tensors
|
|
size = (100, 100)
|
|
a = torch.rand(*size)
|
|
b = torch.rand(*size)
|
|
c = torchfn(a, b)
|
|
expected_c = torch.zeros(*size)
|
|
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
|
|
self.assertEqual(expected_c, c, 0)
|
|
|
|
def test_max_elementwise(self):
|
|
self._testCSelection(torch.max, max)
|
|
|
|
def test_min_elementwise(self):
|
|
self._testCSelection(torch.min, min)
|
|
|
|
@staticmethod
|
|
def _test_lerp(self, cast):
|
|
start_end_shapes = [(), (5,), (5, 5), (5, 5, 5)]
|
|
for shapes in product(start_end_shapes, start_end_shapes):
|
|
start = cast(torch.randn(shapes[0]))
|
|
end = cast(torch.randn(shapes[1]))
|
|
|
|
# Tensor weights
|
|
for weight in [cast(torch.randn(shapes[0])), random.random()]:
|
|
actual = torch.lerp(start, end, weight)
|
|
actual_method = start.lerp(end, weight)
|
|
self.assertEqual(actual, actual_method)
|
|
actual_out = cast(torch.Tensor())
|
|
torch.lerp(start, end, weight, out=actual_out)
|
|
self.assertEqual(actual, actual_out)
|
|
expected = start + weight * (end - start)
|
|
self.assertEqual(expected, actual)
|
|
|
|
def test_lerp(self):
|
|
self._test_lerp(self, lambda t: t)
|
|
|
|
def test_all_any(self):
|
|
def test(size):
|
|
x = torch.ones(*size).byte()
|
|
self.assertTrue(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
x[3] = 0
|
|
self.assertFalse(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
x.zero_()
|
|
self.assertFalse(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
x.fill_(2)
|
|
self.assertTrue(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
test((10,))
|
|
test((5, 5))
|
|
|
|
def test_all_any_empty(self):
|
|
x = torch.ByteTensor()
|
|
self.assertTrue(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
def test_all_any_with_dim(self):
|
|
def test(x):
|
|
r1 = x.prod(dim=0, keepdim=False).byte()
|
|
r2 = x.all(dim=0, keepdim=False)
|
|
self.assertEqual(r1.shape, r2.shape)
|
|
self.assertTrue((r1 == r2).all())
|
|
|
|
r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte()
|
|
r4 = x.any(dim=1, keepdim=True)
|
|
self.assertEqual(r3.shape, r4.shape)
|
|
self.assertTrue((r3 == r4).all())
|
|
|
|
test(torch.ByteTensor([[0, 0, 0],
|
|
[0, 0, 1],
|
|
[0, 1, 1],
|
|
[1, 1, 1]]))
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_all_any_empty_cuda(self):
|
|
x = torch.cuda.ByteTensor()
|
|
self.assertTrue(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
def test_mv(self):
|
|
m1 = torch.randn(100, 100)
|
|
v1 = torch.randn(100)
|
|
|
|
res1 = torch.mv(m1, v1)
|
|
res2 = res1.clone().zero_()
|
|
for i, j in iter_indices(m1):
|
|
res2[i] += m1[i][j] * v1[j]
|
|
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_numpy_args(self):
|
|
x1 = torch.randn(10)
|
|
x2 = torch.randn(10)
|
|
res1 = torch.add(input=x1, other=x2)
|
|
res2 = torch.add(x1=x1, x2=x2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
x1 = torch.randn(10, 10, 10)
|
|
res1 = x1.sum(dim=(0, 2), keepdim=True)
|
|
res2 = x1.sum(axis=(0, 2), keepdims=True)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_add(self):
|
|
# [res] torch.add([res,] tensor1, tensor2)
|
|
m1 = torch.randn(100, 100)
|
|
v1 = torch.randn(100)
|
|
|
|
# contiguous
|
|
res1 = torch.add(m1[4], v1)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(m1.size(1)):
|
|
res2[i] = m1[4, i] + v1[i]
|
|
self.assertEqual(res1, res2)
|
|
|
|
m1 = torch.randn(100, 100)
|
|
v1 = torch.randn(100)
|
|
|
|
# non-contiguous
|
|
res1 = torch.add(m1[:, 4], v1)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(m1.size(0)):
|
|
res2[i] = m1[i, 4] + v1[i]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# [res] torch.add([res,] tensor, value)
|
|
m1 = torch.randn(10, 10)
|
|
|
|
# contiguous
|
|
res1 = m1.clone()
|
|
res1[3].add_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(1)):
|
|
res2[3, i] = res2[3, i] + 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10)
|
|
res1 = m1.clone()
|
|
res1[:, 3].add_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(0)):
|
|
res2[i, 3] = res2[i, 3] + 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
# inter-type
|
|
m1 = torch.randn(10, 10)
|
|
self.assertEqual(m1 + 3, m1 + torch.tensor(3))
|
|
self.assertEqual(3 + m1, torch.tensor(3) + m1)
|
|
one = torch.tensor(1, dtype=torch.uint8)
|
|
self.assertEqual(torch.add(one, 1), 2)
|
|
self.assertEqual(torch.add(one, 1).dtype, torch.uint8)
|
|
|
|
# contiguous + non-contiguous
|
|
m1 = torch.randn(10, 10)
|
|
m2 = torch.randn(10, 10).t()
|
|
res = m1 + m2
|
|
self.assertTrue(res.is_contiguous())
|
|
self.assertEqual(res, m1 + m2.contiguous())
|
|
|
|
# 1d + empty
|
|
m1 = torch.tensor([1.0], dtype=torch.float)
|
|
m2 = torch.tensor([], dtype=torch.float)
|
|
self.assertEqual(m1 + m2, [])
|
|
|
|
# [res] torch.add([res,] tensor1, value, tensor2)
|
|
|
|
def test_csub(self):
|
|
# with a tensor
|
|
a = torch.randn(100, 90)
|
|
b = a.clone().normal_()
|
|
|
|
res_add = torch.add(a, -1, b)
|
|
res_csub = a.clone()
|
|
res_csub.sub_(b)
|
|
self.assertEqual(res_add, res_csub)
|
|
|
|
# with a scalar
|
|
a = torch.randn(100, 100)
|
|
|
|
scalar = 123.5
|
|
res_add = torch.add(a, -scalar)
|
|
res_csub = a.clone()
|
|
res_csub.sub_(scalar)
|
|
self.assertEqual(res_add, res_csub)
|
|
|
|
@staticmethod
|
|
def _test_neg(self, cast):
|
|
float_types = [torch.DoubleTensor, torch.FloatTensor, torch.LongTensor]
|
|
int_types = [torch.IntTensor, torch.ShortTensor, torch.ByteTensor,
|
|
torch.CharTensor]
|
|
|
|
for t in float_types + int_types:
|
|
if t in float_types:
|
|
a = cast(torch.randn(100, 90).type(t))
|
|
else:
|
|
a = cast(torch.randint(-128, 128, (100, 90), dtype=t.dtype))
|
|
zeros = cast(torch.Tensor().type(t)).resize_as_(a).zero_()
|
|
|
|
if t == torch.ByteTensor:
|
|
res_add = torch.add(zeros, a, alpha=255)
|
|
else:
|
|
res_add = torch.add(zeros, a, alpha=-1)
|
|
res_neg = a.clone()
|
|
res_neg.neg_()
|
|
self.assertEqual(res_neg, res_add)
|
|
|
|
# test out of place as well
|
|
res_neg_out_place = a.clone().neg()
|
|
self.assertEqual(res_neg_out_place, res_add)
|
|
|
|
# test via __neg__ operator
|
|
res_neg_op = -a.clone()
|
|
self.assertEqual(res_neg_op, res_add)
|
|
|
|
def test_neg(self):
|
|
self._test_neg(self, lambda t: t)
|
|
|
|
def test_threshold(self):
|
|
for dtype in torch.testing.get_all_math_dtypes('cpu'):
|
|
if dtype != torch.uint8 and dtype != torch.float16:
|
|
# 100 is wide enough to use AVX2 instructions for all types
|
|
x = torch.randn(100).sign().to(dtype=dtype)
|
|
y = torch.threshold(x, 0, 0)
|
|
self.assertTrue(y.le(0).any())
|
|
|
|
def test_reciprocal(self):
|
|
for dtype in [torch.float, torch.double]:
|
|
a = torch.randn(100, 89, dtype=dtype)
|
|
res_div = 1 / a
|
|
res_reciprocal = a.clone()
|
|
res_reciprocal.reciprocal_()
|
|
self.assertEqual(res_reciprocal, res_div)
|
|
|
|
def test_mul(self):
|
|
m1 = torch.randn(10, 10)
|
|
res1 = m1.clone()
|
|
res1[:, 3].mul_(2)
|
|
res2 = m1.clone()
|
|
for i in range(res1.size(0)):
|
|
res2[i, 3] = res2[i, 3] * 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_div(self):
|
|
m1 = torch.randn(10, 10)
|
|
res1 = m1.clone()
|
|
res1[:, 3].div_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(0)):
|
|
res2[i, 3] = res2[i, 3] / 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_floordiv(self):
|
|
for dtype in torch.testing.get_all_math_dtypes('cpu'):
|
|
if dtype is torch.float16:
|
|
continue
|
|
x = torch.randn(100).mul(10).to(dtype)
|
|
y = x // 3
|
|
self.assertEqual(y.dtype, x.dtype)
|
|
z = torch.tensor([math.trunc(v.item() / 3.) for v in x], dtype=y.dtype)
|
|
self.assertEqual(y, z)
|
|
|
|
def test_rdiv(self):
|
|
for dtype in torch.testing.get_all_math_dtypes('cpu'):
|
|
if dtype is torch.float16:
|
|
continue
|
|
x = torch.rand(100).add(1).mul(4).to(dtype)
|
|
y = 30 / x
|
|
if dtype.is_floating_point:
|
|
z = torch.tensor([30 / v.item() for v in x], dtype=dtype)
|
|
else:
|
|
z = torch.tensor([math.trunc(30. / v.item()) for v in x], dtype=dtype)
|
|
self.assertEqual(y, z)
|
|
|
|
def test_fmod(self):
|
|
m1 = torch.Tensor(10, 10).uniform_(-10., 10.)
|
|
res1 = m1.clone()
|
|
q = 2.1
|
|
res1[:, 3].fmod_(q)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(1)):
|
|
res2[i, 3] = math.fmod(res2[i, 3], q)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_remainder(self):
|
|
# Check the Floating point case, both tensor and scalar overloads
|
|
for use_item in [True, False]:
|
|
m1 = torch.Tensor(10, 10).uniform_(-10., 10.)
|
|
res1 = m1.clone()
|
|
res2 = m1.clone()
|
|
qs = torch.arange(-5.1, 4.1)
|
|
# Check the case where the divisor is a simple float
|
|
for col_idx, q in enumerate(qs):
|
|
# Reference
|
|
for i in range(m1.size(0)):
|
|
res2[i, col_idx] = res2[i, col_idx] % q
|
|
# To test
|
|
res1[:, col_idx].remainder_(q if not use_item else q.item())
|
|
self.assertEqual(res1, res2)
|
|
# Check the case where the divisor is a tensor
|
|
res1 = m1.clone()
|
|
res1.remainder_(qs.unsqueeze(0).expand_as(res1))
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Check the LongTensor case, both tensor and scalar overloads
|
|
for use_item in [True, False]:
|
|
long_m1 = torch.LongTensor(10, 10).random_(-10, 10)
|
|
long_res1 = long_m1.clone()
|
|
long_res2 = long_m1.clone()
|
|
long_qs = torch.arange(-5, 5)
|
|
long_qs[5] = 5 # Can't handle the divisor=0 case
|
|
for col_idx, long_q in enumerate(long_qs):
|
|
# Reference
|
|
for i in range(long_m1.size(0)):
|
|
long_res2[i, col_idx] = long_res2[i, col_idx] % long_q
|
|
# To test
|
|
long_res1[:, col_idx].remainder_(long_q if not use_item else long_q.item())
|
|
self.assertEqual(long_res1, long_res2)
|
|
# Divisor is a tensor case
|
|
long_res1 = long_m1.clone()
|
|
long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1))
|
|
|
|
@staticmethod
|
|
def _test_remainder_overflow(self, dtype, device):
|
|
# Check Integer Overflows
|
|
x = torch.tensor(23500, dtype=dtype, device=device)
|
|
q = 392486996410368
|
|
self.assertEqual(x % q, x)
|
|
self.assertEqual(-x % q, q - x)
|
|
self.assertEqual(x % -q, x - q)
|
|
self.assertEqual(-x % -q, -x)
|
|
|
|
def test_remainder_overflow(self):
|
|
self._test_remainder_overflow(self, dtype=torch.int64, device='cpu')
|
|
|
|
def test_mm(self):
|
|
def _test_mm(n, m, p, dtype, genf):
|
|
# helper function
|
|
def matrixmultiply(mat1, mat2):
|
|
n = mat1.size(0)
|
|
m = mat1.size(1)
|
|
p = mat2.size(1)
|
|
res = torch.zeros(n, p, dtype=dtype)
|
|
for i, j in iter_indices(res):
|
|
res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m))
|
|
return res
|
|
|
|
# contiguous case
|
|
mat1 = genf(n, m)
|
|
mat2 = genf(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 1
|
|
mat1 = genf(n, m)
|
|
mat2 = genf(p, m).t()
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 2
|
|
mat1 = genf(m, n).t()
|
|
mat2 = genf(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 3
|
|
mat1 = genf(m, n).t()
|
|
mat2 = genf(p, m).t()
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# test with zero stride
|
|
mat1 = genf(n, m)
|
|
mat2 = genf(m, 1).expand(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# explicitly exercise the _out variant in torch.mm().
|
|
# contiguous case
|
|
mat1 = genf(n, m)
|
|
mat2 = genf(m, p)
|
|
res = genf(n, p)
|
|
torch.mm(mat1, mat2, out=res)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# explicitly exercise the _out variant in torch.mm().
|
|
# non contiguous case 3
|
|
mat1 = genf(m, n).t()
|
|
mat2 = genf(p, m).t()
|
|
res = genf(n, p)
|
|
torch.mm(mat1, mat2, out=res)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
for (n, m, p) in [(20, 10, 5), (15, 5, 10), (5, 18, 10)]:
|
|
_test_mm(n, m, p, torch.float32, lambda x, y: torch.randn(x, y, dtype=torch.float32))
|
|
_test_mm(n, m, p, torch.float64, lambda x, y: torch.randn(x, y, dtype=torch.float64))
|
|
_test_mm(n, m, p, torch.int32, lambda x, y: torch.randint(0, 100, (x, y), dtype=torch.int32))
|
|
_test_mm(n, m, p, torch.int64, lambda x, y: torch.randint(0, 100, (x, y), dtype=torch.int64))
|
|
|
|
@staticmethod
|
|
def _test_lu(self, cast):
|
|
from common_utils import random_fullrank_matrix_distinct_singular_value as fullrank
|
|
|
|
def run_test(matrix_size, batches, cast):
|
|
a = cast(fullrank(matrix_size, *batches))
|
|
a_LU_info, pivots_info, info_ = a.lu(get_infos=True)
|
|
self.assertEqual(a_LU_info.size(), torch.Size(batches + (matrix_size, matrix_size)))
|
|
self.assertEqual(pivots_info.size(), torch.Size(batches + (matrix_size,)))
|
|
self.assertEqual(info_.size(), torch.Size(batches))
|
|
self.assertEqual(info_.abs().sum(), 0)
|
|
a_LU, pivots = a.lu()
|
|
self.assertEqual(a_LU, a_LU_info)
|
|
self.assertEqual(pivots_info, pivots)
|
|
if a.is_cuda:
|
|
a_LU_info_nopiv, nopiv, info_nopiv = a.lu(pivot=False, get_infos=True)
|
|
self.assertEqual(nopiv, cast(torch.zeros(a.shape[:-1], dtype=torch.int32)))
|
|
self.assertEqual(info_, info_nopiv)
|
|
P, L, U = torch.lu_unpack(a_LU, pivots)
|
|
self.assertEqual(P.matmul(L.matmul(U)), a)
|
|
|
|
for ms, batch in product([3, 5, 7], [(), (2,), (3,), (3, 5)]):
|
|
run_test(ms, batch, cast)
|
|
|
|
# Info should be positive for rank deficient matrices
|
|
a = cast(torch.ones(5, 3, 3))
|
|
self.assertGreater(a.lu(get_infos=True)[2][0], 0)
|
|
|
|
# Error checking, no pivoting variant on CPU
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
'lu without pivoting is not implemented on the CPU'):
|
|
torch.lu(torch.empty(1, 2, 2), pivot=False)
|
|
|
|
@skipIfNoLapack
|
|
def test_lu(self):
|
|
self._test_lu(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_lu_solve(self, cast):
|
|
a = torch.FloatTensor((((1.3722, -0.9020),
|
|
(1.8849, 1.9169)),
|
|
((0.7187, -1.1695),
|
|
(-0.0139, 1.3572)),
|
|
((-1.6181, 0.7148),
|
|
(1.3728, 0.1319))))
|
|
b = torch.FloatTensor(((4.02, 6.19),
|
|
(-1.56, 4.00),
|
|
(9.81, -4.09)))
|
|
a, b = cast(a), cast(b)
|
|
LU_data, pivots, info = a.lu(get_infos=True)
|
|
self.assertEqual(info.abs().sum(), 0)
|
|
x = torch.lu_solve(b, LU_data, pivots)
|
|
b_ = torch.bmm(a, x.unsqueeze(2)).squeeze()
|
|
self.assertEqual(b_, b)
|
|
|
|
@skipIfNoLapack
|
|
def test_lu_solve(self):
|
|
self._test_lu_solve(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_lu_unpack(self, cast):
|
|
def run_test(shape, cast):
|
|
a = cast(torch.randn(*shape))
|
|
a_lu, p = torch.lu(a)
|
|
p_ref, l_ref, u_ref = torch.lu_unpack(a_lu, p)
|
|
self.assertEqual(p_ref.matmul(l_ref.matmul(u_ref)), a)
|
|
|
|
run_test((3, 3), cast)
|
|
run_test((5, 3, 3), cast)
|
|
run_test((7, 3, 5, 5), cast)
|
|
run_test((7, 5, 3, 3, 3), cast)
|
|
|
|
@skipIfNoLapack
|
|
def test_lu_unpack(self):
|
|
self._test_lu_unpack(self, lambda t: t)
|
|
|
|
def test_bmm(self):
|
|
num_batches = 10
|
|
M, N, O = 23, 8, 12
|
|
b1 = torch.randn(num_batches, M, N)
|
|
b2 = torch.randn(num_batches, N, O)
|
|
res = torch.bmm(b1, b2)
|
|
for i in range(num_batches):
|
|
r = torch.mm(b1[i], b2[i])
|
|
self.assertEqual(r, res[i])
|
|
if torch.cuda.is_available():
|
|
# check that mixed arguments are rejected
|
|
self.assertRaises(RuntimeError, lambda: torch.bmm(b1, b2.cuda()))
|
|
self.assertRaises(RuntimeError, lambda: torch.bmm(b1.cuda(), b2))
|
|
|
|
def test_addbmm(self):
|
|
# num_batches = 10
|
|
# M, N, O = 12, 8, 5
|
|
num_batches = 2
|
|
M, N, O = 2, 3, 4
|
|
b1 = torch.randn(num_batches, M, N)
|
|
b2 = torch.randn(num_batches, N, O)
|
|
res = torch.bmm(b1, b2)
|
|
res2 = torch.Tensor().resize_as_(res[0]).zero_()
|
|
|
|
res2.addbmm_(b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False))
|
|
|
|
res2.addbmm_(1, b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False) * 2)
|
|
|
|
res2.addbmm_(1., .5, b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False) * 2.5)
|
|
|
|
res3 = torch.addbmm(1, res2, 0, b1, b2)
|
|
self.assertEqual(res3, res2)
|
|
|
|
res4 = torch.addbmm(1, res2, .5, b1, b2)
|
|
self.assertEqual(res4, res.sum(0, False) * 3)
|
|
|
|
res5 = torch.addbmm(0, res2, 1, b1, b2)
|
|
self.assertEqual(res5, res.sum(0, False))
|
|
|
|
res6 = torch.addbmm(.1, res2, .5, b1, b2)
|
|
self.assertEqual(res6, res2 * .1 + (res.sum(0) * .5))
|
|
|
|
def test_baddbmm(self):
|
|
num_batches = 10
|
|
M, N, O = 12, 8, 5
|
|
b1 = torch.randn(num_batches, M, N)
|
|
b2 = torch.randn(num_batches, N, O)
|
|
res = torch.bmm(b1, b2)
|
|
res2 = torch.Tensor().resize_as_(res).zero_()
|
|
|
|
res2.baddbmm_(b1, b2)
|
|
self.assertEqual(res2, res)
|
|
|
|
res2.baddbmm_(1, b1, b2)
|
|
self.assertEqual(res2, res * 2)
|
|
|
|
res2.baddbmm_(1, .5, b1, b2)
|
|
self.assertEqual(res2, res * 2.5)
|
|
|
|
res3 = torch.baddbmm(1, res2, 0, b1, b2)
|
|
self.assertEqual(res3, res2)
|
|
|
|
res4 = torch.baddbmm(1, res2, .5, b1, b2)
|
|
self.assertEqual(res4, res * 3)
|
|
|
|
res5 = torch.baddbmm(0, res2, 1, b1, b2)
|
|
self.assertEqual(res5, res)
|
|
|
|
res6 = torch.baddbmm(.1, res2, .5, b1, b2)
|
|
self.assertEqual(res6, res2 * .1 + res * .5)
|
|
|
|
@staticmethod
|
|
def _test_clamp(self, device='cpu'):
|
|
m1 = torch.rand(100, device=device).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
|
|
# just in case we're extremely lucky.
|
|
min_val = -1
|
|
max_val = 1
|
|
m1[1] = min_val
|
|
m1[2] = max_val
|
|
|
|
res1 = m1.clone()
|
|
res1.clamp_(min_val, max_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(min_val, min(max_val, res2[i]))
|
|
self.assertEqual(res1, res2)
|
|
|
|
out = m1.clone()
|
|
torch.clamp(m1, min=min_val, max=max_val, out=out)
|
|
self.assertEqual(out, res1)
|
|
|
|
res1 = torch.clamp(m1, min=min_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(min_val, res2[i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
torch.clamp(m1, min=min_val, out=out)
|
|
self.assertEqual(out, res1)
|
|
|
|
res1 = torch.clamp(m1, max=max_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = min(max_val, res2[i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
torch.clamp(m1, max=max_val, out=out)
|
|
self.assertEqual(out, res1)
|
|
|
|
# if the tensor contains nan case
|
|
test_tens = torch.tensor([nan], device=device)
|
|
|
|
res1 = test_tens.clone()
|
|
res1.clamp_(min_val, max_val)
|
|
res2 = test_tens.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(min(res2[i], max_val), min_val)
|
|
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
|
|
|
|
out = test_tens.clone()
|
|
torch.clamp(test_tens, min=min_val, max=max_val, out=out)
|
|
self.assertEqual(torch.isnan(out), torch.isnan(res1))
|
|
|
|
res1 = torch.clamp(test_tens, min=min_val)
|
|
res2 = test_tens.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(res2[i], min_val)
|
|
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
|
|
|
|
torch.clamp(test_tens, min=min_val, out=out)
|
|
self.assertEqual(torch.isnan(out), torch.isnan(res1))
|
|
|
|
res1 = torch.clamp(test_tens, max=max_val)
|
|
res2 = test_tens.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = min(res2[i], max_val)
|
|
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
|
|
|
|
torch.clamp(test_tens, max=max_val, out=out)
|
|
self.assertEqual(torch.isnan(out), torch.isnan(res1))
|
|
|
|
error_msg = 'At least one of \'min\' or \'max\' must not be None'
|
|
with self.assertRaisesRegex(RuntimeError, error_msg):
|
|
m1.clamp()
|
|
with self.assertRaisesRegex(RuntimeError, error_msg):
|
|
m1.clamp_()
|
|
|
|
def test_clamp(self):
|
|
self._test_clamp(self)
|
|
|
|
def test_pow(self):
|
|
# [res] torch.pow([res,] x)
|
|
|
|
# pow has dedicated implementation for different exponents
|
|
for exponent in [-2, -1, -0.5, 0.5, 1, 2, 3, 4]:
|
|
# base - tensor, exponent - number
|
|
# contiguous
|
|
m1 = torch.rand(100, 100) + 0.5
|
|
res1 = torch.pow(m1[4], exponent)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(m1[4][i], exponent)
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.rand(100, 100) + 0.5
|
|
res1 = torch.pow(m1[:, 4], exponent)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(m1[i, 4], exponent)
|
|
self.assertEqual(res1, res2)
|
|
|
|
# base - number, exponent - tensor
|
|
# contiguous
|
|
m1 = torch.randn(100, 100)
|
|
res1 = torch.pow(3, m1[4])
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(3, m1[4, i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(100, 100)
|
|
res1 = torch.pow(3, m1[:, 4])
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(3, m1[i][4])
|
|
self.assertEqual(res1, res2)
|
|
|
|
@staticmethod
|
|
def _test_rpow(self, cast):
|
|
m = cast(torch.randn(10, 10))
|
|
self.assertEqual(torch.pow(2, m), 2**m)
|
|
|
|
# test with scalar
|
|
m = cast(torch.randn(1).squeeze())
|
|
assert m.dim() == 0, "m is intentionally a scalar"
|
|
self.assertEqual(torch.pow(2, m), 2**m)
|
|
|
|
def test_rpow(self):
|
|
self._test_rpow(self, lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_int_pow(self, cast):
|
|
if not TEST_NUMPY:
|
|
return
|
|
|
|
def check_against_np(tensor, exp):
|
|
tensor_np = tensor.cpu().numpy()
|
|
exp_np = exp if isinstance(exp, int) else exp.cpu().numpy()
|
|
expected = torch.LongTensor(tensor_np ** exp_np).type_as(tensor)
|
|
self.assertEqual(torch.pow(tensor, exp), expected)
|
|
self.assertEqual(tensor.pow(exp), torch.pow(tensor, exp))
|
|
|
|
typecasts = [
|
|
lambda x: x.long(),
|
|
lambda x: x.short(),
|
|
lambda x: x.byte(),
|
|
]
|
|
|
|
if not IS_WINDOWS:
|
|
typecasts.append(lambda x: x.int())
|
|
|
|
shape = (11, 5)
|
|
tensor = cast(torch.LongTensor(shape).random_(-10, 10))
|
|
exps = [0, 1, 2, 5, cast(torch.LongTensor(shape).random_(0, 20))]
|
|
|
|
for typecast in typecasts:
|
|
for exp in exps:
|
|
t = typecast(tensor)
|
|
e = exp if isinstance(exp, int) else typecast(exp)
|
|
check_against_np(t, e)
|
|
|
|
def test_int_pow(self):
|
|
self._test_int_pow(self, lambda x: x)
|
|
|
|
def _test_cop(self, torchfn, mathfn):
|
|
def reference_implementation(res2):
|
|
for i, j in iter_indices(sm1):
|
|
idx1d = i * sm1.size(0) + j
|
|
res2[i, j] = mathfn(sm1[i, j], sm2[idx1d])
|
|
return res2
|
|
|
|
# contiguous
|
|
m1 = torch.randn(10, 10, 10)
|
|
m2 = torch.randn(10, 10 * 10)
|
|
sm1 = m1[4]
|
|
sm2 = m2[4]
|
|
|
|
res1 = torchfn(sm1, sm2.view(10, 10))
|
|
res2 = reference_implementation(res1.clone())
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10, 10)
|
|
m2 = torch.randn(10 * 10, 10 * 10)
|
|
sm1 = m1[:, 4]
|
|
sm2 = m2[:, 4]
|
|
# view as sm1.size()
|
|
sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0]))
|
|
res1 = torchfn(sm1, sm2)
|
|
# reference_implementation assumes 1-d sm2
|
|
sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride())
|
|
res2 = reference_implementation(res1.clone())
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cdiv(self):
|
|
self._test_cop(torch.div, lambda x, y: x / y)
|
|
|
|
def test_cfmod(self):
|
|
self._test_cop(torch.fmod, math.fmod)
|
|
|
|
def test_cremainder(self):
|
|
self._test_cop(torch.remainder, lambda x, y: x % y)
|
|
|
|
def test_cmul(self):
|
|
self._test_cop(torch.mul, lambda x, y: x * y)
|
|
|
|
def test_cpow(self):
|
|
self._test_cop(torch.pow, lambda x, y: nan if x < 0 else math.pow(x, y))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_einsum(self):
|
|
# test cases taken from https://gist.github.com/rockt/15ee013889d65342088e9260a377dc8f
|
|
x = torch.randn(5)
|
|
y = torch.randn(7)
|
|
A = torch.randn(3, 5)
|
|
B = torch.randn(2, 5)
|
|
C = torch.randn(2, 3, 5)
|
|
D = torch.randn(2, 5, 7)
|
|
E = torch.randn(7, 9)
|
|
F = torch.randn(2, 3, 5, 7)
|
|
G = torch.randn(7, 11, 13)
|
|
H = torch.randn(4, 4)
|
|
I = torch.randn(3, 4, 4)
|
|
l = torch.randn(5, 10)
|
|
r = torch.randn(5, 20)
|
|
w = torch.randn(30, 10, 20)
|
|
test_list = [
|
|
# -- Vector
|
|
("i->", x), # sum
|
|
("i,i->", x, x), # dot
|
|
("i,i->i", x, x), # vector element-wise mul
|
|
("i,j->ij", x, y), # outer
|
|
# -- Matrix
|
|
("ij->ji", A), # transpose
|
|
("ij->j", A), # row sum
|
|
("ij->i", A), # col sum
|
|
("ij,ij->ij", A, A), # matrix element-wise mul
|
|
("ij,j->i", A, x), # matrix vector multiplication
|
|
("ij,kj->ik", A, B), # matmul
|
|
("ij,ab->ijab", A, E), # matrix outer product
|
|
# -- Tensor
|
|
("aij,ajk->aik", C, D), # batch matmul
|
|
("ijk,jk->i", C, A), # tensor matrix contraction
|
|
("aij,jk->aik", D, E), # tensor matrix contraction
|
|
("abcd,dfg->abcfg", F, G), # tensor tensor contraction
|
|
("ijk,jk->ik", C, A), # tensor matrix contraction with double indices
|
|
("ijk,jk->ij", C, A), # tensor matrix contraction with double indices
|
|
("ijk,ik->j", C, B), # non contiguous
|
|
("ijk,ik->jk", C, B), # non contiguous with double indices
|
|
# -- Diagonal
|
|
("ii", H), # trace
|
|
("ii->i", H), # diagonal
|
|
# -- Ellipsis
|
|
("i...->...", H),
|
|
("ki,...k->i...", A.t(), B),
|
|
("k...,jk", A.t(), B),
|
|
("...ii->...i", I), # batch diagonal
|
|
# -- Other
|
|
("bn,anm,bm->ba", l, w, r), # as torch.bilinear
|
|
("... ii->...i ", I), # batch diagonal with spaces
|
|
]
|
|
for test in test_list:
|
|
actual = torch.einsum(test[0], test[1:])
|
|
expected = np.einsum(test[0], *[t.numpy() for t in test[1:]])
|
|
self.assertEqual(expected.shape, actual.shape, test[0])
|
|
self.assertTrue(np.allclose(expected, actual.numpy()), test[0])
|
|
# test vararg
|
|
actual2 = torch.einsum(test[0], *test[1:])
|
|
self.assertEqual(expected.shape, actual2.shape, test[0])
|
|
self.assertTrue(np.allclose(expected, actual2.numpy()), test[0])
|
|
|
|
def do_einsum(*args):
|
|
return torch.einsum(test[0], args)
|
|
# FIXME: following test cases fail gradcheck
|
|
if test[0] not in {"i,i->", "i,i->i", "ij,ij->ij"}:
|
|
gradcheck_inps = tuple(t.detach().requires_grad_() for t in test[1:])
|
|
self.assertTrue(torch.autograd.gradcheck(do_einsum, gradcheck_inps))
|
|
self.assertTrue(A._version == 0) # check that we do not use inplace ops
|
|
|
|
def test_sum_all(self):
|
|
def check_sum_all(tensor):
|
|
pylist = tensor.reshape(-1).tolist()
|
|
self.assertEqual(tensor.sum(), sum(pylist))
|
|
|
|
check_sum_all(torch.tensor([1, 2, 3, 4, 5]))
|
|
check_sum_all(torch.randn(200000))
|
|
check_sum_all(torch.randn(2000, 2)[:, 0])
|
|
|
|
def _assert_matches_numpy(self, t, n):
|
|
self.assertEqual(n.shape, t.shape)
|
|
if t.dtype == torch.float:
|
|
self.assertTrue(np.allclose(n, t.numpy(), rtol=1e-03, atol=1e-05,
|
|
equal_nan=True))
|
|
else:
|
|
self.assertTrue(np.allclose(n, t.numpy(), equal_nan=True))
|
|
|
|
def _test_dim_ops(self, pytorch_op, numpy_op,
|
|
use_floating=True, use_integral=True):
|
|
def do_one(tensors_dict, dim):
|
|
for category, tensors in tensors_dict.items():
|
|
if category == "slice":
|
|
dim = 0
|
|
for tensor in tensors:
|
|
# we have no control over NumPy warnings...
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
expected = numpy_op(tensor.numpy(), dim)
|
|
actual = pytorch_op(tensor, dim)
|
|
self._assert_matches_numpy(actual, expected)
|
|
if torch.cuda.is_available():
|
|
self._assert_matches_numpy(pytorch_op(tensor.cuda(),
|
|
dim).cpu(),
|
|
expected)
|
|
do_one(self._make_tensors((5, 400000), use_floating=use_floating,
|
|
use_integral=use_integral), 1)
|
|
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
|
|
use_integral=use_integral), 0)
|
|
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
|
|
use_integral=use_integral), 1)
|
|
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
|
|
use_integral=use_integral), 2)
|
|
do_one(self._make_tensors((100000, ), use_floating=use_floating,
|
|
use_integral=use_integral), -1)
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral), 0)
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral), 1)
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral), 2)
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral), (1, 2))
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral), (1, -1))
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral), (0, 2))
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral), (0, 2, 1))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_sum_dim(self):
|
|
self._test_dim_ops(
|
|
lambda t, d: t.sum(d),
|
|
lambda n, d: n.sum(d))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_mean_dim(self):
|
|
self._test_dim_ops(
|
|
lambda t, d: t.mean(d),
|
|
lambda n, d: n.mean(d),
|
|
use_integral=False)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_std_dim(self):
|
|
for unbiased in [False, True]:
|
|
self._test_dim_ops(
|
|
lambda t, d: t.std(d, unbiased=unbiased),
|
|
lambda n, d: n.std(d, ddof=1 if unbiased else 0),
|
|
use_integral=False)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_var_dim(self):
|
|
for unbiased in [False, True]:
|
|
self._test_dim_ops(
|
|
lambda t, d: t.var(d, unbiased=unbiased),
|
|
lambda n, d: n.var(d, ddof=1 if unbiased else 0),
|
|
use_integral=False)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
@unittest.skipIf(not TEST_SCIPY, 'Scipy not found')
|
|
def test_logsumexp_dim(self):
|
|
from scipy.special import logsumexp
|
|
self._test_dim_ops(
|
|
lambda t, d: t.logsumexp(d),
|
|
lambda n, d: logsumexp(n, d),
|
|
use_integral=False)
|
|
|
|
def test_sum_out(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.sum(x, 1)
|
|
res2 = torch.Tensor()
|
|
torch.sum(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
x = torch.rand(100, 100, 100)
|
|
res1 = x.sum(2).sum(1)
|
|
res2 = torch.Tensor()
|
|
torch.sum(x, (2, 1), out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
# TODO: these tests only check if it's possible to pass a return value
|
|
# it'd be good to expand them
|
|
def test_prod(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.prod(x, 1)
|
|
res2 = torch.Tensor()
|
|
torch.prod(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cumsum(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.cumsum(x, 1)
|
|
res2 = torch.Tensor()
|
|
torch.cumsum(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cumprod(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.cumprod(x, 1)
|
|
res2 = torch.Tensor()
|
|
torch.cumprod(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def _test_reduce_integer_upcast(self, fn, has_out=True):
|
|
shape = (3, 4, 5)
|
|
reduced_shape = fn(torch.ones(shape)).shape
|
|
|
|
def _test_out(dtype, other_dtype):
|
|
out = torch.ones(reduced_shape, dtype=dtype)
|
|
result = fn(x, out=out)
|
|
self.assertIs(out.dtype, result.dtype)
|
|
self.assertEqual(fn(x.type(dtype)), result)
|
|
result = fn(x, out=out, dtype=dtype)
|
|
self.assertIs(out.dtype, result.dtype)
|
|
self.assertEqual(fn(x.type(dtype)), result)
|
|
# 'out' is favored over dtype, check error
|
|
self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype))
|
|
|
|
for dtype in [dtype for dtype in torch.testing.get_all_math_dtypes('cpu') if dtype != torch.float16]:
|
|
x = torch.ones(shape, dtype=dtype)
|
|
expected_dtype = dtype if dtype.is_floating_point else torch.int64
|
|
self.assertIs(expected_dtype, fn(x).dtype)
|
|
self.assertEqual(fn(x.type(expected_dtype)), fn(x))
|
|
|
|
if dtype.is_floating_point:
|
|
other_dtype = torch.float32 if dtype == torch.float64 else torch.float64
|
|
else:
|
|
other_dtype = torch.int32 if dtype != torch.int32 else torch.int16
|
|
self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype)
|
|
self.assertEqual(fn(x.type(other_dtype)), fn(x, dtype=other_dtype))
|
|
|
|
# test mixed int/float
|
|
mixed_dtype = torch.int32 if dtype.is_floating_point else torch.float32
|
|
self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype)
|
|
self.assertEqual(fn(x.type(mixed_dtype)), fn(x, dtype=mixed_dtype))
|
|
|
|
if has_out:
|
|
_test_out(dtype, other_dtype)
|
|
_test_out(dtype, mixed_dtype)
|
|
|
|
def test_sum_integer_upcast(self):
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False)
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs))
|
|
|
|
def test_prod_integer_upcast(self):
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False)
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs))
|
|
|
|
def test_cumsum_integer_upcast(self):
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs))
|
|
|
|
def test_cumprod_integer_upcast(self):
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs))
|
|
|
|
def test_cross(self):
|
|
x = torch.rand(100, 3, 100)
|
|
y = torch.rand(100, 3, 100)
|
|
res1 = torch.cross(x, y)
|
|
res2 = torch.Tensor()
|
|
torch.cross(x, y, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cross_with_and_without_dim(self):
|
|
x = torch.rand(100, 3)
|
|
y = torch.rand(100, 3)
|
|
res1 = torch.cross(x, y, dim=1)
|
|
res2 = torch.cross(x, y, dim=-1)
|
|
res3 = torch.cross(x, y)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res1, res3)
|
|
|
|
def test_cross_validation(self):
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "inconsistent tensors dimensions",
|
|
lambda: torch.cross(torch.rand(100, 3), torch.rand(100, 3, 10)))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "inconsistent tensors sizes",
|
|
lambda: torch.cross(torch.rand(5, 3), torch.rand(3, 5)))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "no dimension of size 3 in input",
|
|
lambda: torch.cross(torch.rand(5, 4), torch.rand(5, 4)))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "dimension 0 does not have size 3",
|
|
lambda: torch.cross(torch.rand(5, 4, 3), torch.rand(5, 4, 3), dim=0))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "dimension -1 does not have size 3",
|
|
lambda: torch.cross(torch.rand(5, 3, 4), torch.rand(5, 3, 4), dim=-1))
|
|
self.assertRaisesRegex(
|
|
IndexError, "Dimension out of range",
|
|
lambda: torch.cross(torch.rand(5, 3, 4), torch.rand(5, 3, 4), dim=-5))
|
|
|
|
def test_zeros(self):
|
|
res1 = torch.zeros(100, 100)
|
|
res2 = torch.Tensor()
|
|
torch.zeros(100, 100, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
boolTensor = torch.zeros(2, 2, dtype=torch.bool)
|
|
expected = torch.tensor([[False, False], [False, False]], dtype=torch.bool)
|
|
self.assertEqual(boolTensor, expected)
|
|
|
|
halfTensor = torch.zeros(1, 1, dtype=torch.half)
|
|
expected = torch.tensor([[0.]], dtype=torch.float16)
|
|
self.assertEqual(halfTensor, expected)
|
|
|
|
def test_std_mean(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.rand(100, 50, 20, device=device)
|
|
for dim in range(x.dim()):
|
|
for unbiased in [False, True]:
|
|
for keepdim in [False, True]:
|
|
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
mean2 = x.mean(dim=dim, keepdim=keepdim)
|
|
self.assertEqual(std1, std2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_std_mean_all_dims(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.rand(100, 50, 20, device=device)
|
|
for unbiased in [False, True]:
|
|
std1, mean1 = torch.std_mean(x, unbiased=unbiased)
|
|
std2 = x.std(unbiased=unbiased)
|
|
mean2 = x.mean()
|
|
self.assertEqual(std1, std2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_var_mean(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.rand(100, 300, 50, device=device)
|
|
for dim in range(x.dim()):
|
|
for unbiased in [False, True]:
|
|
for keepdim in [False, True]:
|
|
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
mean2 = x.mean(dim=dim, keepdim=keepdim)
|
|
self.assertEqual(var1, var2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_var_mean_all_dims(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.rand(100, 50, 20, device=device)
|
|
for unbiased in [False, True]:
|
|
var1, mean1 = torch.var_mean(x, unbiased=unbiased)
|
|
var2 = x.var(unbiased=unbiased)
|
|
mean2 = x.mean()
|
|
self.assertEqual(var1, var2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_zeros_like(self):
|
|
expected = torch.zeros(100, 100)
|
|
|
|
res1 = torch.zeros_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_zeros_like_cuda(self):
|
|
expected = torch.zeros(100, 100).cuda()
|
|
|
|
res1 = torch.zeros_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
|
|
def test_zeros_like_multiple_device(self):
|
|
expected = torch.zeros(100, 100).cuda()
|
|
x = torch.cuda.FloatTensor(100, 100, device=1)
|
|
output = torch.zeros_like(x)
|
|
self.assertEqual(output, expected)
|
|
|
|
def test_zeros_out(self):
|
|
shape = (3, 4)
|
|
out = torch.zeros(shape)
|
|
torch.zeros(shape, out=out)
|
|
|
|
# change the dtype, layout, device
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, dtype=torch.int64, out=out))
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, layout=torch.sparse_coo, out=out))
|
|
if torch.cuda.is_available():
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, device='cuda', out=out))
|
|
|
|
# leave them the same
|
|
self.assertEqual(torch.zeros(shape), torch.zeros(shape, dtype=out.dtype, out=out))
|
|
self.assertEqual(torch.zeros(shape), torch.zeros(shape, layout=torch.strided, out=out))
|
|
self.assertEqual(torch.zeros(shape), torch.zeros(shape, device='cpu', out=out))
|
|
|
|
def test_histc(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
# negative nbins throws
|
|
with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'):
|
|
torch.histc(torch.tensor([1], dtype=torch.float, device=device), bins=-1)
|
|
|
|
# without nbins
|
|
actual = torch.histc(
|
|
torch.tensor([2, 5], dtype=torch.float, device=device))
|
|
expected = torch.zeros(100, dtype=torch.float, device=device)
|
|
expected.data[0] = 1
|
|
expected.data[99] = 1
|
|
self.assertEqual(expected, actual)
|
|
# tensor with the same element
|
|
actual = torch.histc(torch.ones(5, dtype=torch.float, device=device), bins=5)
|
|
self.assertEqual(
|
|
torch.tensor([0, 0, 5, 0, 0], dtype=torch.float, device=device),
|
|
actual)
|
|
# no element falls between [min, max]
|
|
actual = torch.histc(
|
|
torch.ones(5, dtype=torch.float, device=device), bins=5, min=2, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([0, 0, 0, 0, 0], dtype=torch.float, device=device),
|
|
actual)
|
|
# element falls below min + integral bin size and
|
|
actual = torch.histc(
|
|
torch.tensor([2, 4, 2, 2, 5, 4], dtype=torch.float, device=device),
|
|
bins=5, min=1, max=5)
|
|
self.assertEqual(
|
|
torch.tensor([0, 3, 0, 2, 1], dtype=torch.float, device=device),
|
|
actual)
|
|
# non-integral bin size
|
|
actual = torch.histc(
|
|
torch.tensor([1, 2, 1], dtype=torch.float, device=device),
|
|
bins=4, min=0, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
|
|
actual)
|
|
# double input
|
|
actual = torch.histc(
|
|
torch.tensor([1, 2, 1], dtype=torch.double, device=device), bins=4, min=0, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([0, 2, 1, 0], dtype=torch.double, device=device),
|
|
actual)
|
|
self.assertEqual(actual.dtype, torch.double)
|
|
# mixed input
|
|
actual = torch.histc(
|
|
torch.tensor([1., 2, 1], dtype=torch.float, device=device),
|
|
bins=4, min=0, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
|
|
actual)
|
|
self.assertEqual(actual.dtype, torch.float)
|
|
|
|
# test against numpy.histogram()
|
|
def test_against_np(tensor, bins=100, min=0, max=0):
|
|
if min == 0 and max == 0:
|
|
min = tensor.min().item()
|
|
max = tensor.max().item()
|
|
nparr = tensor.cpu().numpy()
|
|
actual = torch.histc(tensor, bins=bins, min=min, max=max)
|
|
expected = torch.from_numpy(np.histogram(nparr, bins=bins, range=(min, max))[0])
|
|
self.assertEqual(actual.cpu(), expected)
|
|
|
|
if TEST_NUMPY:
|
|
test_against_np(torch.tensor([1., 2, 1], device=device))
|
|
test_against_np(torch.randn(5000, device=device))
|
|
|
|
# Test bins arg
|
|
test_against_np(torch.randn(301, device=device), bins=10)
|
|
|
|
# Test truncated range
|
|
test_against_np(torch.randn(201, device=device), min=0.1, max=1)
|
|
|
|
noncontig = torch.randn(100, 3, device=device)[:, 2]
|
|
test_against_np(noncontig)
|
|
|
|
multidim = torch.randn(3, 5, 7, 2, device=device)
|
|
test_against_np(multidim)
|
|
|
|
expanded = torch.randn(1, 5, 1, 2, device=device).expand(3, 5, 7, 2)
|
|
test_against_np(expanded)
|
|
|
|
def test_ones(self):
|
|
res1 = torch.ones(100, 100)
|
|
res2 = torch.Tensor()
|
|
torch.ones(100, 100, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
# test boolean tensor
|
|
res1 = torch.ones(1, 2, dtype=torch.bool)
|
|
expected = torch.tensor([[True, True]], dtype=torch.bool)
|
|
self.assertEqual(res1, expected)
|
|
|
|
def test_ones_like(self):
|
|
expected = torch.ones(100, 100)
|
|
|
|
res1 = torch.ones_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
# test boolean tensor
|
|
expected = torch.tensor([True, True], dtype=torch.bool)
|
|
res1 = torch.ones_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_ones_like_cuda(self):
|
|
expected = torch.ones(100, 100).cuda()
|
|
|
|
res1 = torch.ones_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
|
|
def test_ones_like_multiple_device(self):
|
|
expected = torch.ones(100, 100).cuda()
|
|
x = torch.cuda.FloatTensor(100, 100, device=1)
|
|
output = torch.ones_like(x)
|
|
self.assertEqual(output, expected)
|
|
|
|
def test_dtypes(self):
|
|
all_dtypes = torch.testing.get_all_dtypes()
|
|
do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cpu'))
|
|
if torch.cuda.is_available():
|
|
do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cuda:0'))
|
|
|
|
def test_copy_dtypes(self):
|
|
all_dtypes = torch.testing.get_all_dtypes()
|
|
for dtype in all_dtypes:
|
|
copied_dtype = copy.deepcopy(dtype)
|
|
self.assertIs(dtype, copied_dtype)
|
|
|
|
def test_copy_transpose(self):
|
|
x = torch.arange(100 * 100, dtype=torch.float).reshape(100, 100).t()
|
|
y = torch.empty(100, 100, dtype=torch.float)
|
|
y.copy_(x)
|
|
self.assertEqual(y[:, 0], range(100))
|
|
self.assertEqual(y[:, 40], range(4000, 4100))
|
|
|
|
y = torch.empty(100, 100, dtype=torch.double)
|
|
y.copy_(x)
|
|
self.assertEqual(y[:, 0], range(100))
|
|
self.assertEqual(y[:, 40], range(4000, 4100))
|
|
|
|
def test_device(self):
|
|
cpu = torch.device('cpu')
|
|
self.assertEqual('cpu', str(cpu))
|
|
self.assertEqual('cpu', cpu.type)
|
|
self.assertEqual(None, cpu.index)
|
|
|
|
cpu0 = torch.device('cpu:0')
|
|
self.assertEqual('cpu:0', str(cpu0))
|
|
self.assertEqual('cpu', cpu0.type)
|
|
self.assertEqual(0, cpu0.index)
|
|
|
|
cpu0 = torch.device('cpu', 0)
|
|
self.assertEqual('cpu:0', str(cpu0))
|
|
self.assertEqual('cpu', cpu0.type)
|
|
self.assertEqual(0, cpu0.index)
|
|
|
|
cuda = torch.device('cuda')
|
|
self.assertEqual('cuda', str(cuda))
|
|
self.assertEqual('cuda', cuda.type)
|
|
self.assertEqual(None, cuda.index)
|
|
|
|
cuda1 = torch.device('cuda:1')
|
|
self.assertEqual('cuda:1', str(cuda1))
|
|
self.assertEqual('cuda', cuda1.type)
|
|
self.assertEqual(1, cuda1.index)
|
|
|
|
cuda1 = torch.device('cuda', 1)
|
|
self.assertEqual('cuda:1', str(cuda1))
|
|
self.assertEqual('cuda', cuda1.type)
|
|
self.assertEqual(1, cuda1.index)
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu:1'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu', -1))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu', 1))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda', -1))
|
|
self.assertRaises(RuntimeError, lambda: torch.device(-1))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.device('other'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('other:0'))
|
|
|
|
device_set = {'cpu', 'cpu:0', 'cuda', 'cuda:0', 'cuda:1', 'cuda:10', 'cuda:100'}
|
|
device_hash_set = set()
|
|
for device in list(device_set):
|
|
device_hash_set.add(hash(torch.device(device)))
|
|
self.assertEqual(len(device_set), len(device_hash_set))
|
|
|
|
def test_tensor_device(self):
|
|
def assertEqual(device_str, fn):
|
|
self.assertEqual(torch.device(device_str), fn().device)
|
|
self.assertEqual(device_str, str(fn().device))
|
|
|
|
assertEqual('cpu', lambda: torch.tensor(5))
|
|
assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu'))
|
|
# NOTE: 'cpu' is the canonical representation of 'cpu:0', but 'cuda:X' is the canonical
|
|
# representation of cuda devices.
|
|
assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu:0'))
|
|
assertEqual('cpu', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0'))
|
|
if TEST_NUMPY:
|
|
assertEqual('cpu', lambda: torch.tensor(np.random.randn(2, 3), device='cpu'))
|
|
|
|
if torch.cuda.is_available():
|
|
assertEqual('cuda:0', lambda: torch.tensor(5).cuda(0))
|
|
assertEqual('cuda:0', lambda: torch.tensor(5).cuda('cuda:0'))
|
|
self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu:0'))
|
|
assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device=0))
|
|
assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:0'))
|
|
assertEqual('cuda:' + str(torch.cuda.current_device()),
|
|
lambda: torch.tensor(5, dtype=torch.int64, device='cuda'))
|
|
assertEqual('cuda:0', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0'))
|
|
if TEST_NUMPY:
|
|
assertEqual('cuda:0', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:0'))
|
|
|
|
if torch.cuda.device_count() > 1:
|
|
assertEqual('cuda:1', lambda: torch.tensor(5).cuda(1))
|
|
assertEqual('cuda:1', lambda: torch.tensor(5).cuda('cuda:1'))
|
|
assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device=1))
|
|
assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:1'))
|
|
assertEqual('cuda:1', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1'))
|
|
if TEST_NUMPY:
|
|
assertEqual('cuda:1', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:1'))
|
|
|
|
def test_qtensor(self):
|
|
num_elements = 10
|
|
r = torch.ones(num_elements, dtype=torch.float)
|
|
scale = 1.0
|
|
zero_point = 2
|
|
qr = r.quantize_linear(scale, zero_point, torch.quint8)
|
|
self.assertEqual(qr.q_scale(), scale)
|
|
self.assertEqual(qr.q_zero_point(), zero_point)
|
|
self.assertTrue(qr.is_quantized)
|
|
self.assertFalse(r.is_quantized)
|
|
# slicing and int_repr
|
|
int_repr = qr.int_repr()
|
|
for num in int_repr:
|
|
self.assertEqual(num, 3)
|
|
for num in qr[2:].int_repr():
|
|
self.assertEqual(num, 3)
|
|
# dequantize
|
|
rqr = qr.dequantize()
|
|
for i in range(num_elements):
|
|
self.assertEqual(r[i], rqr[i])
|
|
# Scalar Tensor
|
|
# item
|
|
r = torch.ones(1, dtype=torch.float)
|
|
qr = r.quantize_linear(scale, zero_point, torch.quint8)
|
|
self.assertEqual(qr.item(), 1)
|
|
self.assertEqual(qr[0].item(), 1)
|
|
# assignment
|
|
self.assertTrue(qr[0].is_quantized)
|
|
qr[0] = 11.3 # float asignment
|
|
self.assertEqual(qr.item(), 11)
|
|
x = torch.ones(1, dtype=torch.float) * 15.3
|
|
# Copying from a float Tensor
|
|
qr[:] = x
|
|
self.assertEqual(qr.item(), 15)
|
|
# we can also print a qtensor
|
|
self.assertEqual(str(qr),
|
|
"tensor([15.], size=(1,), dtype=torch.quint8, " +
|
|
"scale=1.0, zero_point=2)")
|
|
empty_r = torch.ones((0, 1), dtype=torch.float)
|
|
empty_qr = empty_r.quantize_linear(scale, zero_point, torch.quint8)
|
|
self.assertEqual(str(empty_qr),
|
|
"tensor([], size=(0, 1), dtype=torch.quint8, " +
|
|
"scale=1.0, zero_point=2)")
|
|
|
|
def test_qtensor_quant_dequant(self):
|
|
r = np.random.rand(3, 2) * 2 - 4
|
|
r = torch.from_numpy(r).float()
|
|
scale = 2
|
|
zero_point = 2
|
|
qr = r.quantize_linear(scale, zero_point, torch.quint8)
|
|
rqr = qr.dequantize()
|
|
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
|
|
|
|
def test_qtensor_creation(self):
|
|
scale = 0.5
|
|
zero_point = 10
|
|
val = 100
|
|
numel = 10
|
|
q = torch._empty_affine_quantized([numel], scale=scale, zero_point=zero_point, dtype=torch.quint8)
|
|
self.assertEqual(scale, q.q_scale())
|
|
self.assertEqual(zero_point, q.q_zero_point())
|
|
|
|
# create Tensor from uint8_t Tensor, scale and zero_point
|
|
int_tensor = torch.randint(0, 100, size=(10,), dtype=torch.uint8)
|
|
q = torch._per_tensor_affine_qtensor(int_tensor, scale, zero_point)
|
|
self.assertEqual(int_tensor, q.int_repr())
|
|
self.assertEqual(scale, q.q_scale())
|
|
self.assertEqual(zero_point, q.q_zero_point())
|
|
|
|
def test_qtensor_dtypes(self):
|
|
r = np.random.rand(3, 2) * 2 - 4
|
|
r = torch.from_numpy(r).float()
|
|
scale = 2
|
|
zero_point = 2
|
|
qr = r.quantize_linear(scale, zero_point, torch.qint8)
|
|
rqr = qr.dequantize()
|
|
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
|
|
qr = r.quantize_linear(scale, zero_point, torch.quint8)
|
|
rqr = qr.dequantize()
|
|
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
|
|
qr = r.quantize_linear(scale, zero_point, torch.qint32)
|
|
rqr = qr.dequantize()
|
|
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
|
|
|
|
def test_qtensor_dequantize_linear(self):
|
|
t = torch.arange(-10, 10, dtype=torch.int8)
|
|
scale = 3
|
|
zero_point = 2
|
|
qt = torch.dequantize_linear(t, scale, zero_point, torch.float)
|
|
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, 'fewer than 2 GPUs detected')
|
|
def test_device_guard(self):
|
|
# verify that all operators with `device_guard: False` behave properly with multiple devices.
|
|
# TODO: if we had operator introspection we could figure out this set of operators automatically...
|
|
current_device = torch.cuda.current_device()
|
|
device = torch.device('cuda:1') if current_device == 0 else torch.device('cuda:0')
|
|
x = torch.randn((1, 2, 3), device=device)
|
|
y = torch.zeros((1, 3, 2), device=device)
|
|
scalar = torch.tensor(5, device=device)
|
|
|
|
# property ops
|
|
torch.cudnn_is_acceptable(x)
|
|
x.is_distributed()
|
|
x.is_floating_point()
|
|
x.is_complex()
|
|
x.is_same_size(y)
|
|
x.is_signed()
|
|
x.size(0)
|
|
x.stride(0)
|
|
x.numel()
|
|
x.is_set_to(y)
|
|
x.data_ptr()
|
|
scalar.is_nonzero()
|
|
|
|
# sparse property ops
|
|
y[0][1] = 5
|
|
y_sparse = y.to_sparse()
|
|
y_sparse.sparse_dim()
|
|
y_sparse._dimI()
|
|
y_sparse.dense_dim()
|
|
y_sparse._dimV()
|
|
y_sparse._nnz()
|
|
y_sparse.is_coalesced()
|
|
y_sparse._indices()
|
|
y_sparse._values()
|
|
y_sparse.indices()
|
|
y_sparse.values()
|
|
|
|
# in-place ops
|
|
def inplace():
|
|
return torch.randn((1, 2, 3), device=device)
|
|
inplace().as_strided_(y.size(), y.stride())
|
|
inplace().resize_(y.size())
|
|
inplace().squeeze_()
|
|
inplace().squeeze_(0)
|
|
inplace().unsqueeze_(2)
|
|
inplace().transpose_(1, 2)
|
|
inplace().squeeze_().t_()
|
|
inplace().set_(x.storage())
|
|
inplace().set_(x.storage(), x.storage_offset(), x.size(), x.stride())
|
|
inplace().set_(x)
|
|
inplace().set_()
|
|
y_sparse._coalesced_(True)
|
|
|
|
# shape modification
|
|
x.as_strided(y.size(), y.stride())
|
|
x.expand((5, 2, 3))
|
|
x.expand_as(x)
|
|
x.sum_to_size((1,))
|
|
torch.broadcast_tensors(x , x)
|
|
x.reshape((1, 3, 2))
|
|
x.reshape_as(y)
|
|
x.squeeze()
|
|
x.squeeze(0)
|
|
x.squeeze().t()
|
|
x.transpose(1, 2)
|
|
x.unsqueeze(2)
|
|
x.view((1, 3, 2))
|
|
x.view_as(y)
|
|
|
|
# chunk, split, etc.
|
|
x.chunk(2, dim=1)
|
|
x.split(1, dim=2)
|
|
x.split_with_sizes([1, 2], dim=2)
|
|
x.unfold(dimension=2, size=1, step=1)
|
|
|
|
x.narrow(1, 1, 1)
|
|
x.select(1, 1)
|
|
torch.isnan(x)
|
|
|
|
torch.empty((1, 3, 2), out=y)
|
|
torch.empty_like(x)
|
|
torch.empty_like(x, dtype=torch.int64)
|
|
|
|
# to
|
|
x.to(x)
|
|
x.to(y)
|
|
x.to(x, copy=True)
|
|
|
|
def test_to(self):
|
|
def test_copy_behavior(t, non_blocking=False):
|
|
self.assertIs(t, t.to(t, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking))
|
|
self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True))
|
|
|
|
devices = [t.device]
|
|
if t.device.type == 'cuda':
|
|
if t.device.index == -1:
|
|
devices.append('cuda:{}'.format(torch.cuda.current_device()))
|
|
elif t.device.index == torch.cuda.current_device():
|
|
devices.append('cuda')
|
|
for device in devices:
|
|
self.assertIs(t, t.to(device, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking))
|
|
self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True))
|
|
|
|
a = torch.tensor(5)
|
|
test_copy_behavior(a)
|
|
self.assertEqual(a.device, a.to('cpu').device)
|
|
self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device)
|
|
self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype)
|
|
self.assertEqual(a.device, a.to(torch.float32).device)
|
|
self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype)
|
|
self.assertEqual(a.data_ptr(), a.to('cpu').data_ptr())
|
|
self.assertEqual(a.data_ptr(), a.to(dtype=a.dtype, device=a.device, copy=False).data_ptr())
|
|
self.assertEqual(a.data_ptr(), a.to('cpu', copy=False).data_ptr())
|
|
self.assertNotEqual(a.data_ptr(), a.to('cpu', copy=True).data_ptr())
|
|
|
|
if torch.cuda.is_available():
|
|
for non_blocking in [True, False]:
|
|
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
|
|
b = torch.tensor(5., device=cuda)
|
|
test_copy_behavior(b, non_blocking)
|
|
self.assertEqual(b.device, b.to(cuda, non_blocking=non_blocking).device)
|
|
self.assertEqual(a.device, b.to('cpu', non_blocking=non_blocking).device)
|
|
self.assertEqual(b.device, a.to(cuda, non_blocking=non_blocking).device)
|
|
self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype)
|
|
self.assertEqual(a.device, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device)
|
|
self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype)
|
|
self.assertEqual(b.device, b.to(dtype=torch.int32).device)
|
|
|
|
def test_to_with_tensor(self):
|
|
a = torch.tensor(5)
|
|
self.assertEqual(a.device, a.to(a).device)
|
|
|
|
if torch.cuda.is_available():
|
|
for non_blocking in [True, False]:
|
|
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
|
|
b = torch.tensor(5., device=cuda)
|
|
self.assertEqual(b.device, b.to(b, non_blocking=non_blocking).device)
|
|
self.assertEqual(a.device, b.to(a, non_blocking=non_blocking).device)
|
|
self.assertEqual(b.device, a.to(b, non_blocking=non_blocking).device)
|
|
|
|
def test_empty_full(self):
|
|
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch.device('cpu'))
|
|
if torch.cuda.device_count() > 0:
|
|
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, None)
|
|
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch.device('cuda:0'))
|
|
|
|
def test_dtype_out_match(self):
|
|
d = torch.autograd.Variable(torch.DoubleTensor(2, 3))
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), out=d, dtype=torch.float32))
|
|
|
|
def test_constructor_dtypes(self):
|
|
default_type = torch.Tensor().type()
|
|
self.assertIs(torch.Tensor().dtype, torch.get_default_dtype())
|
|
|
|
self.assertIs(torch.uint8, torch.ByteTensor.dtype)
|
|
self.assertIs(torch.float32, torch.FloatTensor.dtype)
|
|
self.assertIs(torch.float64, torch.DoubleTensor.dtype)
|
|
|
|
torch.set_default_tensor_type('torch.FloatTensor')
|
|
self.assertIs(torch.float32, torch.get_default_dtype())
|
|
self.assertIs(torch.FloatStorage, torch.Storage)
|
|
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertIs(torch.float64, torch.get_default_dtype())
|
|
self.assertIs(torch.DoubleStorage, torch.Storage)
|
|
|
|
torch.set_default_tensor_type(torch.FloatTensor)
|
|
self.assertIs(torch.float32, torch.get_default_dtype())
|
|
self.assertIs(torch.FloatStorage, torch.Storage)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
self.assertIs(torch.float32, torch.get_default_dtype())
|
|
self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype)
|
|
self.assertIs(torch.cuda.FloatStorage, torch.Storage)
|
|
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertIs(torch.float64, torch.get_default_dtype())
|
|
self.assertIs(torch.cuda.DoubleStorage, torch.Storage)
|
|
|
|
# don't support integral or sparse default types.
|
|
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor'))
|
|
self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64))
|
|
|
|
# don't allow passing dtype to set_default_tensor_type
|
|
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32))
|
|
|
|
torch.set_default_tensor_type(default_type)
|
|
|
|
def test_constructor_device_legacy(self):
|
|
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda'))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda'))
|
|
|
|
x = torch.randn((3,), device='cpu')
|
|
self.assertRaises(RuntimeError, lambda: x.new(device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda'))
|
|
|
|
if torch.cuda.is_available():
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu'))
|
|
|
|
default_type = torch.Tensor().type()
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu'))
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
torch.set_default_tensor_type(default_type)
|
|
|
|
x = torch.randn((3,), device='cuda')
|
|
self.assertRaises(RuntimeError, lambda: x.new(device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu'))
|
|
|
|
def test_type(self):
|
|
x = torch.randn(3, 3).double()
|
|
self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32)
|
|
self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32)
|
|
self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype())
|
|
self.assertEqual(x.type(torch.int32).dtype, torch.int32)
|
|
|
|
def test_tensor_factory(self):
|
|
expected = torch.Tensor([1, 1])
|
|
# test data
|
|
res1 = torch.tensor([1, 1])
|
|
self.assertEqual(res1, expected)
|
|
|
|
res1 = torch.tensor([1, 1], dtype=torch.int)
|
|
self.assertEqual(res1, expected)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
|
|
# test copy
|
|
res2 = torch.tensor(expected)
|
|
self.assertEqual(res2, expected)
|
|
res2[1] = 2
|
|
self.assertEqual(expected, torch.ones_like(expected))
|
|
|
|
res2 = torch.tensor(expected, dtype=torch.int)
|
|
self.assertEqual(res1, expected)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
|
|
# test copy with numpy
|
|
if TEST_NUMPY:
|
|
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
|
|
a = np.array([5.]).astype(dtype)
|
|
res1 = torch.tensor(a)
|
|
self.assertEqual(5., res1[0].item())
|
|
a[0] = 7.
|
|
self.assertEqual(5., res1[0].item())
|
|
|
|
# test boolean tensor
|
|
a = torch.tensor([True, True, False, True, True], dtype=torch.bool)
|
|
b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_tensor_factory_copy_var(self):
|
|
|
|
def check_copy(copy, is_leaf, requires_grad, data_ptr=None):
|
|
if data_ptr is None:
|
|
data_ptr = copy.data_ptr
|
|
self.assertEqual(copy.data, source.data)
|
|
self.assertTrue(copy.is_leaf == is_leaf)
|
|
self.assertTrue(copy.requires_grad == requires_grad)
|
|
self.assertTrue(copy.data_ptr == data_ptr)
|
|
|
|
source = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
|
|
# test torch.tensor()
|
|
check_copy(torch.tensor(source), True, False)
|
|
check_copy(torch.tensor(source, requires_grad=False), True, False)
|
|
check_copy(torch.tensor(source, requires_grad=True), True, True)
|
|
|
|
# test tensor.new_tensor()
|
|
copy = torch.randn(1)
|
|
check_copy(copy.new_tensor(source), True, False)
|
|
check_copy(copy.new_tensor(source, requires_grad=False), True, False)
|
|
check_copy(copy.new_tensor(source, requires_grad=True), True, True)
|
|
|
|
# test torch.as_tensor()
|
|
check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy
|
|
check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph
|
|
|
|
def test_tensor_factory_type_inference(self):
|
|
def test_inference(default_dtype):
|
|
saved_dtype = torch.get_default_dtype()
|
|
torch.set_default_dtype(default_dtype)
|
|
self.assertIs(default_dtype, torch.tensor(()).dtype)
|
|
self.assertIs(default_dtype, torch.tensor(5.).dtype)
|
|
self.assertIs(torch.int64, torch.tensor(5).dtype)
|
|
self.assertIs(torch.uint8, torch.tensor(True).dtype)
|
|
self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype)
|
|
self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype)
|
|
self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype)
|
|
self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype)
|
|
|
|
if TEST_NUMPY:
|
|
self.assertIs(torch.float64, torch.tensor(np.array(())).dtype)
|
|
self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype)
|
|
if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows)
|
|
self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype)
|
|
else:
|
|
self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype)
|
|
self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype)
|
|
self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype)
|
|
self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype)
|
|
self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype)
|
|
torch.set_default_dtype(saved_dtype)
|
|
|
|
test_inference(torch.float64)
|
|
test_inference(torch.float32)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_tensor_factory_cuda_type_inference(self):
|
|
saved_type = torch.Tensor().type()
|
|
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
|
|
torch.set_default_dtype(torch.float32)
|
|
self.assertIs(torch.float32, torch.tensor(0.).dtype)
|
|
self.assertEqual(torch.device('cuda:0'), torch.tensor(0.).device)
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertIs(torch.float64, torch.tensor(0.).dtype)
|
|
self.assertEqual(torch.device('cuda:0'), torch.tensor(0.).device)
|
|
torch.set_default_tensor_type(saved_type)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_tensor_factory_cuda_type(self):
|
|
saved_type = torch.Tensor().type()
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
x = torch.zeros((5, 5))
|
|
self.assertIs(torch.float32, x.dtype)
|
|
self.assertTrue(x.is_cuda)
|
|
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
|
|
x = torch.zeros((5, 5))
|
|
self.assertIs(torch.float64, x.dtype)
|
|
self.assertTrue(x.is_cuda)
|
|
torch.set_default_tensor_type(saved_type)
|
|
|
|
def test_bool_tensor_comparison_ops(self):
|
|
a = torch.tensor([True, False, True, False, True, False], dtype=torch.bool)
|
|
b = torch.tensor([True, False, True, True, True, True], dtype=torch.bool)
|
|
for device in torch.testing.get_all_device_types():
|
|
self.assertEqual(a == b, torch.tensor([1, 1, 1, 0, 1, 0], dtype=torch.uint8))
|
|
self.assertEqual(a != b, torch.tensor([0, 0, 0, 1, 0, 1], dtype=torch.uint8))
|
|
self.assertEqual(a < b, torch.tensor([0, 0, 0, 1, 0, 1], dtype=torch.uint8))
|
|
self.assertEqual(a > b, torch.tensor([0, 0, 0, 0, 0, 0], dtype=torch.uint8))
|
|
self.assertEqual(a >= b, torch.tensor([1, 1, 1, 0, 1, 0], dtype=torch.uint8))
|
|
self.assertEqual(a <= b, torch.tensor([1, 1, 1, 1, 1, 1], dtype=torch.uint8))
|
|
self.assertEqual(a > False, torch.tensor([1, 0, 1, 0, 1, 0], dtype=torch.uint8))
|
|
self.assertEqual(a == torch.tensor(True, dtype=torch.bool), torch.tensor([1, 0, 1, 0, 1, 0], dtype=torch.uint8))
|
|
self.assertEqual(a == torch.tensor(0, dtype=torch.bool), torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.uint8))
|
|
self.assertFalse(a.equal(b))
|
|
|
|
def test_bool_tensor_value_change(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.tensor([True, False], dtype=torch.bool)
|
|
x[0] = False
|
|
x[1] = True
|
|
self.assertEqual(x, torch.tensor([False, True], dtype=torch.bool))
|
|
|
|
def test_unfold_all_devices_and_dtypes(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt in torch.testing.get_all_dtypes():
|
|
if dt == torch.half and device == 'cpu':
|
|
# fix once random is implemented for Half on CPU
|
|
self.assertRaises(RuntimeError, lambda: torch.randint(5, (0, 1, 3, 0), dtype=dt, device=device))
|
|
else:
|
|
x = torch.randint(5, (0, 1, 3, 0), dtype=dt, device=device)
|
|
self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape)
|
|
|
|
def test_copy_all_dtypes_and_devices(self):
|
|
from copy import copy
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([1, 2, 3, 4], dtype=dt, device=device)
|
|
x_clone = x.clone()
|
|
|
|
y = copy(x)
|
|
y.fill_(1)
|
|
|
|
# copy is a shallow copy, only copies the tensor view,
|
|
# not the data
|
|
self.assertEqual(x, y)
|
|
|
|
def test_resize_all_dtypes_and_devices(self):
|
|
shape = (2, 2)
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
x.resize_(shape)
|
|
self.assertEqual(shape, x.shape)
|
|
|
|
def test_resize_as_all_dtypes_and_devices(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
y = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=dt, device=device)
|
|
x.resize_as_(y)
|
|
self.assertEqual(y.shape, x.shape)
|
|
|
|
def test_view_all_dtypes_and_devices(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
self.assertEqual(x.view(6).shape, [6])
|
|
|
|
def test_fill_all_dtypes_and_devices(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor((1, 1), dtype=dt, device=device)
|
|
x.fill_(1)
|
|
|
|
self.assertEqual(x, torch.tensor([1, 1], dtype=dt, device=device))
|
|
self.assertEqual(dt, x.dtype)
|
|
|
|
def test_clone_all_dtypes_and_devices(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor((1, 1), dtype=dt, device=device)
|
|
y = x.clone()
|
|
self.assertEqual(x, y)
|
|
|
|
def test_cat_all_dtypes_and_devices(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device)
|
|
expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device)
|
|
self.assertEqual(torch.cat((x, x), 0), expected1)
|
|
|
|
expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device)
|
|
self.assertEqual(torch.cat((x, x), 1), expected2)
|
|
|
|
def test_tensor_factories_empty(self):
|
|
# ensure we can create empty tensors from each factory function
|
|
shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)]
|
|
|
|
for device in torch.testing.get_all_device_types():
|
|
for shape in shapes:
|
|
for dt in torch.testing.get_all_dtypes():
|
|
self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape)
|
|
self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape)
|
|
self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape)
|
|
self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape)
|
|
self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape)
|
|
|
|
if dt == torch.half and device == "cpu":
|
|
# update once random is implemented for half on CPU
|
|
self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape)
|
|
else:
|
|
self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape)
|
|
|
|
if dt != torch.double and dt != torch.float and dt != torch.half:
|
|
self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape)
|
|
|
|
if dt == torch.double or dt == torch.float:
|
|
self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape)
|
|
|
|
self.assertEqual((0,), torch.arange(0, device=device).shape)
|
|
self.assertEqual((0, 0), torch.eye(0, device=device).shape)
|
|
self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape)
|
|
self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape)
|
|
self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape)
|
|
self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape)
|
|
self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape)
|
|
self.assertEqual((0,), torch.randperm(0, device=device).shape)
|
|
self.assertEqual((0,), torch.bartlett_window(0, device=device).shape)
|
|
self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape)
|
|
self.assertEqual((0,), torch.hamming_window(0, device=device).shape)
|
|
self.assertEqual((0,), torch.hann_window(0, device=device).shape)
|
|
self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape)
|
|
self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape)
|
|
|
|
def test_new_tensor(self):
|
|
expected = torch.autograd.Variable(torch.ByteTensor([1, 1]))
|
|
# test data
|
|
res1 = expected.new_tensor([1, 1])
|
|
self.assertEqual(res1, expected)
|
|
res1 = expected.new_tensor([1, 1], dtype=torch.int)
|
|
self.assertEqual(res1, expected)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
|
|
# test copy
|
|
res2 = expected.new_tensor(expected)
|
|
self.assertEqual(res2, expected)
|
|
res2[1] = 2
|
|
self.assertEqual(expected, torch.ones_like(expected))
|
|
res2 = expected.new_tensor(expected, dtype=torch.int)
|
|
self.assertEqual(res2, expected)
|
|
self.assertIs(torch.int, res2.dtype)
|
|
|
|
# test copy with numpy
|
|
if TEST_NUMPY:
|
|
a = np.array([5.])
|
|
res1 = torch.tensor(a)
|
|
res1 = res1.new_tensor(a)
|
|
self.assertEqual(5., res1[0].item())
|
|
a[0] = 7.
|
|
self.assertEqual(5., res1[0].item())
|
|
|
|
if torch.cuda.device_count() >= 2:
|
|
expected = expected.cuda(1)
|
|
res1 = expected.new_tensor([1, 1])
|
|
self.assertEqual(res1.get_device(), expected.get_device())
|
|
res1 = expected.new_tensor([1, 1], dtype=torch.int)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
self.assertEqual(res1.get_device(), expected.get_device())
|
|
|
|
res2 = expected.new_tensor(expected)
|
|
self.assertEqual(res2.get_device(), expected.get_device())
|
|
res2 = expected.new_tensor(expected, dtype=torch.int)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
self.assertEqual(res2.get_device(), expected.get_device())
|
|
res2 = expected.new_tensor(expected, dtype=torch.int, device=0)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
self.assertEqual(res2.get_device(), 0)
|
|
|
|
res1 = expected.new_tensor(1)
|
|
self.assertEqual(res1.get_device(), expected.get_device())
|
|
res1 = expected.new_tensor(1, dtype=torch.int)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
self.assertEqual(res1.get_device(), expected.get_device())
|
|
|
|
def test_as_tensor(self):
|
|
# from python data
|
|
x = [[0, 1], [2, 3]]
|
|
self.assertEqual(torch.tensor(x), torch.as_tensor(x))
|
|
self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32))
|
|
|
|
# python data with heterogeneous types
|
|
z = [0, 'torch']
|
|
with self.assertRaisesRegex(TypeError, "invalid data type"):
|
|
torch.tensor(z)
|
|
torch.as_tensor(z)
|
|
|
|
# python data with self-referential lists
|
|
z = [0]
|
|
z += [z]
|
|
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
|
|
torch.tensor(z)
|
|
torch.as_tensor(z)
|
|
|
|
z = [[1, 2], z]
|
|
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
|
|
torch.tensor(z)
|
|
torch.as_tensor(z)
|
|
|
|
# from tensor (doesn't copy unless type is different)
|
|
y = torch.tensor(x)
|
|
self.assertIs(y, torch.as_tensor(y))
|
|
self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32))
|
|
if torch.cuda.is_available():
|
|
self.assertIsNot(y, torch.as_tensor(y, device='cuda'))
|
|
y_cuda = y.to('cuda')
|
|
self.assertIs(y_cuda, torch.as_tensor(y_cuda))
|
|
self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda'))
|
|
|
|
if TEST_NUMPY:
|
|
# doesn't copy
|
|
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
|
|
n = np.random.rand(5, 6).astype(dtype)
|
|
n_astensor = torch.as_tensor(n)
|
|
self.assertEqual(torch.tensor(n), n_astensor)
|
|
n_astensor[0][0] = 25.7
|
|
self.assertEqual(torch.tensor(n), n_astensor)
|
|
|
|
# changing dtype causes copy
|
|
n = np.random.rand(5, 6).astype(np.float32)
|
|
n_astensor = torch.as_tensor(n, dtype=torch.float64)
|
|
self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
|
|
n_astensor[0][1] = 250.8
|
|
self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
|
|
|
|
# changing device causes copy
|
|
if torch.cuda.is_available():
|
|
n = np.random.randn(5, 6)
|
|
n_astensor = torch.as_tensor(n, device='cuda')
|
|
self.assertEqual(torch.tensor(n, device='cuda'), n_astensor)
|
|
n_astensor[0][2] = 250.9
|
|
self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor)
|
|
|
|
def test_diag(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.diag(x)
|
|
res2 = torch.Tensor()
|
|
torch.diag(x, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
@staticmethod
|
|
def _test_diagonal(self, dtype, device):
|
|
x = torch.randn((100, 100), dtype=dtype, device=device)
|
|
result = torch.diagonal(x)
|
|
expected = torch.diag(x)
|
|
self.assertEqual(result, expected)
|
|
|
|
x = torch.randn((100, 100), dtype=dtype, device=device)
|
|
result = torch.diagonal(x, 17)
|
|
expected = torch.diag(x, 17)
|
|
self.assertEqual(result, expected)
|
|
|
|
def test_diagonal(self):
|
|
self._test_diagonal(self, dtype=torch.float32, device='cpu')
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_diagonal_multidim(self):
|
|
x = torch.randn(10, 11, 12, 13)
|
|
xn = x.numpy()
|
|
for args in [(2, 2, 3),
|
|
(2,),
|
|
(-2, 1, 2),
|
|
(0, -2, -1)]:
|
|
result = torch.diagonal(x, *args)
|
|
expected = xn.diagonal(*args)
|
|
self.assertEqual(expected.shape, result.shape)
|
|
self.assertTrue(np.allclose(expected, result.numpy()))
|
|
# test non-continguous
|
|
xp = x.permute(1, 2, 3, 0)
|
|
result = torch.diagonal(xp, 0, -2, -1)
|
|
expected = xp.numpy().diagonal(0, -2, -1)
|
|
self.assertEqual(expected.shape, result.shape)
|
|
self.assertTrue(np.allclose(expected, result.numpy()))
|
|
|
|
@staticmethod
|
|
def _test_diag_embed(self, dtype, device):
|
|
x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4)
|
|
result = torch.diag_embed(x)
|
|
expected = torch.stack([torch.diag(r) for r in x], 0)
|
|
self.assertEqual(result, expected)
|
|
|
|
result = torch.diag_embed(x, offset=1, dim1=0, dim2=2)
|
|
expected = torch.stack([torch.diag(r, 1) for r in x], 1)
|
|
self.assertEqual(result, expected)
|
|
|
|
def test_diag_embed(self):
|
|
self._test_diag_embed(self, dtype=torch.float32, device='cpu')
|
|
|
|
@staticmethod
|
|
def _test_diagflat(self, dtype, device):
|
|
# Basic sanity test
|
|
x = torch.randn((100,), dtype=dtype, device=device)
|
|
result = torch.diagflat(x)
|
|
expected = torch.diag(x)
|
|
self.assertEqual(result, expected)
|
|
|
|
# Test offset
|
|
x = torch.randn((100,), dtype=dtype, device=device)
|
|
result = torch.diagflat(x, 17)
|
|
expected = torch.diag(x, 17)
|
|
self.assertEqual(result, expected)
|
|
|
|
# Test where input has more than one dimension
|
|
x = torch.randn((2, 3, 4), dtype=dtype, device=device)
|
|
result = torch.diagflat(x)
|
|
expected = torch.diag(x.contiguous().view(-1))
|
|
self.assertEqual(result, expected)
|
|
|
|
# Noncontig input
|
|
x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0)
|
|
self.assertFalse(x.is_contiguous())
|
|
result = torch.diagflat(x)
|
|
expected = torch.diag(x.contiguous().view(-1))
|
|
self.assertEqual(result, expected)
|
|
|
|
def test_diagflat(self):
|
|
self._test_diagflat(self, dtype=torch.float32, device='cpu')
|
|
|
|
def test_eye(self):
|
|
res1 = torch.eye(100, 100)
|
|
res2 = torch.Tensor()
|
|
torch.eye(100, 100, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_renorm(self):
|
|
m1 = torch.randn(10, 5)
|
|
res1 = torch.Tensor()
|
|
|
|
def renorm(matrix, value, dim, max_norm):
|
|
m1 = matrix.transpose(dim, 0).contiguous()
|
|
# collapse non-dim dimensions.
|
|
m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
|
|
norms = m2.norm(value, 1, True)
|
|
# clip
|
|
new_norms = norms.clone()
|
|
new_norms[torch.gt(norms, max_norm)] = max_norm
|
|
new_norms.div_(norms.add_(1e-7))
|
|
# renormalize
|
|
m1.mul_(new_norms.expand_as(m1))
|
|
return m1.transpose(dim, 0)
|
|
|
|
# note that the axis fed to torch.renorm is different (2~=1)
|
|
maxnorm = m1.norm(2, 1).mean()
|
|
m2 = renorm(m1, 2, 1, maxnorm)
|
|
m1.renorm_(2, 1, maxnorm)
|
|
self.assertEqual(m1, m2, 1e-5)
|
|
self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)
|
|
|
|
m1 = torch.randn(3, 4, 5)
|
|
m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
|
|
maxnorm = m2.norm(2, 0).mean()
|
|
m2 = renorm(m2, 2, 1, maxnorm)
|
|
m1.renorm_(2, 1, maxnorm)
|
|
m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
|
|
self.assertEqual(m3, m2)
|
|
self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
|
|
|
|
@staticmethod
|
|
def _test_renorm_ps(self, device):
|
|
# full reduction
|
|
x = torch.randn(5, 5)
|
|
xn = x.numpy()
|
|
for p in [1, 2, 3, 4, inf]:
|
|
res = x.renorm(p, 1, 1)
|
|
expected = x / x.norm(p, 0, keepdim=True).clamp(min=1)
|
|
self.assertEqual(res.numpy(), expected.numpy(), "renorm failed for {}-norm".format(p))
|
|
|
|
def test_renorm_ps(self):
|
|
self._test_renorm_ps(self, device='cpu')
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_renorm_ps_cuda(self):
|
|
self._test_renorm_ps(self, device='cuda')
|
|
|
|
@staticmethod
|
|
def _test_multinomial(self, type):
|
|
def make_prob_dist(shape, is_contiguous):
|
|
if is_contiguous:
|
|
return type(*shape).uniform_()
|
|
elif len(shape) == 1:
|
|
return type(*(shape + [5])).uniform_()[:, 2]
|
|
else:
|
|
# num dim = 2
|
|
new_shape = [2, shape[1], 7, 1, shape[0], 1, 10]
|
|
prob_dist = type(*new_shape).uniform_()
|
|
prob_dist = prob_dist.transpose(1, 4)
|
|
prob_dist = prob_dist[1, :, 5, 0, :, 0, 4]
|
|
assert not prob_dist.is_contiguous() # sanity check
|
|
return prob_dist
|
|
|
|
for is_contiguous in (True, False):
|
|
# with replacement
|
|
n_row = 3
|
|
for n_col in range(4, 5 + 1):
|
|
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
|
|
# indices that shouldn't be sampled (<0 means none)
|
|
zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist()
|
|
for i, j in enumerate(zero_prob_indices):
|
|
if j >= 0:
|
|
prob_dist[i, j] = 0
|
|
n_sample = n_col * 3
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
self.assertEqual(prob_dist.dim(), 2)
|
|
self.assertEqual(sample_indices.size(1), n_sample)
|
|
for i in range(n_row):
|
|
zero_prob_idx = zero_prob_indices[i]
|
|
if zero_prob_idx < 0:
|
|
continue
|
|
for j in range(n_sample):
|
|
self.assertNotEqual(sample_indices[i, j], zero_prob_idx,
|
|
"sampled an index with zero probability")
|
|
|
|
# without replacement
|
|
n_row = 3
|
|
for n_col in range(2, 10 + 1, 2):
|
|
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
|
|
# indices that shouldn't be sampled (<0 means none)
|
|
zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist()
|
|
for i, j in enumerate(zero_prob_indices):
|
|
if j >= 0:
|
|
prob_dist[i, j] = 0
|
|
n_sample = max(1, n_col - 2)
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, False)
|
|
self.assertEqual(prob_dist.dim(), 2)
|
|
self.assertEqual(sample_indices.size(1), n_sample)
|
|
for i in range(n_row):
|
|
row_samples = {}
|
|
zero_prob_idx = zero_prob_indices[i]
|
|
for j in range(n_sample):
|
|
sample_idx = sample_indices[i, j]
|
|
if zero_prob_idx >= 0:
|
|
self.assertNotEqual(sample_idx, zero_prob_idx,
|
|
"sampled an index with zero probability")
|
|
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
|
|
row_samples[sample_idx] = True
|
|
|
|
# vector
|
|
n_col = 4
|
|
prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1)
|
|
zero_prob_idx = 1 # index that shouldn't be sampled
|
|
prob_dist[zero_prob_idx] = 0
|
|
n_sample = 20
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
for sample_index in sample_indices:
|
|
self.assertNotEqual(sample_index, zero_prob_idx, "sampled an index with zero probability")
|
|
s_dim = sample_indices.dim()
|
|
self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions")
|
|
self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions")
|
|
self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples")
|
|
|
|
def test_multinomial(self):
|
|
self._test_multinomial(self, torch.FloatTensor)
|
|
|
|
@staticmethod
|
|
def _test_multinomial_alias(self, cast):
|
|
# Get probs vector to use in setup
|
|
def get_probs(length, is_contiguous):
|
|
probs = torch.softmax(torch.randn(length), 0)
|
|
if not is_contiguous:
|
|
probs = torch.softmax(torch.randn(length, 2), 0)[:, 1]
|
|
assert not (is_contiguous ^ probs.is_contiguous()), "contiguity requirement not met"
|
|
return cast(probs)
|
|
|
|
for is_contiguous in [True, False]:
|
|
probs = get_probs(4, is_contiguous)
|
|
alias_table, prob_table = torch._multinomial_alias_setup(probs)
|
|
for n_samples in [-1, 1, 10]:
|
|
if n_samples > 0:
|
|
samples = torch._multinomial_alias_draw(prob_table, alias_table, n_samples)
|
|
self.assertEqual(prob_table.size(), torch.Size([4]), "size mismatch: probability table")
|
|
self.assertEqual(alias_table.size(), torch.Size([4]), "size mismatch: alias table")
|
|
self.assertEqual(samples.size(), torch.Size([n_samples]), "wrong number of samples")
|
|
else:
|
|
with self.assertRaisesRegex(RuntimeError, "cannot sample <= 0 samples"):
|
|
torch._multinomial_alias_draw(prob_table, alias_table, n_samples)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected 1-D"):
|
|
probs = probs.view(2, 2)
|
|
torch._multinomial_alias_setup(probs)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected 1-D"):
|
|
a_t, p_t = torch._multinomial_alias_setup(probs)
|
|
torch._multinomial_alias_draw(p_t.view(2, 2), a_t.view(2, 2))
|
|
|
|
def test_multinomial_alias(self):
|
|
self._test_multinomial_alias(self, lambda t: t)
|
|
|
|
def _spawn_method(self, method, arg):
|
|
try:
|
|
mp.set_start_method('spawn')
|
|
except RuntimeError:
|
|
pass
|
|
with mp.Pool(1) as pool:
|
|
self.assertTrue(pool.map(method, [arg]))
|
|
|
|
@staticmethod
|
|
def _test_multinomial_invalid_probs(probs):
|
|
try:
|
|
# n_sample = 1 is a special case, test n_sample=2 which is more general
|
|
torch.multinomial(probs.to('cpu'), 2)
|
|
return False # Should not be reached
|
|
except RuntimeError as e:
|
|
return 'invalid multinomial distribution' in str(e)
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows')
|
|
@unittest.skipIf(not PY3,
|
|
"spawn start method is not supported in Python 2, \
|
|
but we need it for for testing failure case for CPU RNG on Windows")
|
|
def test_multinomial_invalid_probs(self):
|
|
test_method = _TestTorchMixin._test_multinomial_invalid_probs
|
|
self._spawn_method(test_method, torch.Tensor([1, -1, 1]))
|
|
self._spawn_method(test_method, torch.Tensor([1, inf, 1]))
|
|
self._spawn_method(test_method, torch.Tensor([1, -inf, 1]))
|
|
self._spawn_method(test_method, torch.Tensor([1, 1, nan]))
|
|
self._spawn_method(test_method, torch.Tensor([0, 1, 0]))
|
|
|
|
@suppress_warnings
|
|
def test_range(self):
|
|
res1 = torch.range(0, 1)
|
|
res2 = torch.Tensor()
|
|
torch.range(0, 1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Check range for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
torch.range(0, 3, out=x.narrow(1, 1, 2))
|
|
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
|
|
self.assertEqual(x, res2, 1e-16)
|
|
|
|
# Check negative
|
|
res1 = torch.Tensor((1, 0))
|
|
res2 = torch.Tensor()
|
|
torch.range(1, 0, -1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Equal bounds
|
|
res1 = torch.ones(1)
|
|
res2 = torch.Tensor()
|
|
torch.range(1, 1, -1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
torch.range(1, 1, 1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# FloatTensor
|
|
res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 4)
|
|
res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 31)
|
|
|
|
# DoubleTensor
|
|
res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 4)
|
|
res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 31)
|
|
|
|
def test_range_warning(self):
|
|
with warnings.catch_warnings(record=True) as w:
|
|
torch.range(0, 10)
|
|
self.assertEqual(len(w), 1)
|
|
|
|
def test_arange(self):
|
|
res1 = torch.arange(0, 1)
|
|
res2 = torch.Tensor()
|
|
torch.arange(0, 1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Check arange with only one argument
|
|
res1 = torch.arange(10)
|
|
res2 = torch.arange(0, 10)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Check arange for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
torch.arange(0, 4, out=x.narrow(1, 1, 2))
|
|
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
|
|
self.assertEqual(x, res2, 1e-16)
|
|
|
|
# Check negative
|
|
res1 = torch.Tensor((1, 0))
|
|
res2 = torch.Tensor()
|
|
torch.arange(1, -1, -1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Equal bounds
|
|
res1 = torch.ones(1)
|
|
res2 = torch.Tensor()
|
|
torch.arange(1, 0, -1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
torch.arange(1, 2, 1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# FloatTensor
|
|
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor())
|
|
self.assertEqual(res1, [0.6, 0.7, 0.8])
|
|
res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 30)
|
|
self.assertEqual(res1[0], 1)
|
|
self.assertEqual(res1[29], 9.7)
|
|
|
|
# DoubleTensor
|
|
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor())
|
|
self.assertEqual(res1, [0.6, 0.7, 0.8])
|
|
res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 30)
|
|
self.assertEqual(res1[0], 1)
|
|
self.assertEqual(res1[29], 9.7)
|
|
|
|
# Check that it's exclusive
|
|
r = torch.arange(0, 5)
|
|
self.assertEqual(r.min(), 0)
|
|
self.assertEqual(r.max(), 4)
|
|
self.assertEqual(r.numel(), 5)
|
|
|
|
r = torch.arange(0, 5, 2)
|
|
self.assertEqual(r.min(), 0)
|
|
self.assertEqual(r.max(), 4)
|
|
self.assertEqual(r.numel(), 3)
|
|
|
|
r1 = torch.arange(0, 5 + 1e-6)
|
|
r2 = torch.arange(0, 5)
|
|
r3 = torch.arange(0, 5 - 1e-6)
|
|
self.assertEqual(r1[:-1], r2, 0)
|
|
self.assertEqual(r2, r3, 0)
|
|
|
|
r1 = torch.arange(10, -1 + 1e-6, -1)
|
|
r2 = torch.arange(10, -1, -1)
|
|
r3 = torch.arange(10, -1 - 1e-6, -1)
|
|
self.assertEqual(r1, r2, 0)
|
|
self.assertEqual(r2, r3[:-1], 0)
|
|
|
|
msg = "unsupported range"
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf')))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf')))
|
|
|
|
for device in torch.testing.get_all_device_types():
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device))
|
|
# check with step size
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device))
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "overflow",
|
|
lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device))
|
|
|
|
# check that it holds a consistent output shape on precision-cornered step sizes
|
|
d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device)
|
|
self.assertEqual(d.shape[0], 800)
|
|
|
|
def test_arange_inference(self):
|
|
saved_dtype = torch.get_default_dtype()
|
|
torch.set_default_dtype(torch.float32)
|
|
# end only
|
|
self.assertIs(torch.float32, torch.arange(1.).dtype)
|
|
self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype)
|
|
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype)
|
|
|
|
self.assertIs(torch.int64, torch.arange(1).dtype)
|
|
self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype)
|
|
self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype)
|
|
|
|
# start, end, [step]
|
|
self.assertIs(torch.float32, torch.arange(1., 3).dtype)
|
|
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype)
|
|
self.assertIs(torch.float32, torch.arange(1, 3.).dtype)
|
|
self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype)
|
|
self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype)
|
|
self.assertIs(torch.float32,
|
|
torch.arange(torch.tensor(1),
|
|
torch.tensor(3, dtype=torch.int16),
|
|
torch.tensor(1., dtype=torch.float64)).dtype)
|
|
|
|
self.assertIs(torch.int64, torch.arange(1, 3).dtype)
|
|
self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype)
|
|
self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype)
|
|
self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype)
|
|
self.assertIs(torch.int64,
|
|
torch.arange(torch.tensor(1),
|
|
torch.tensor(3),
|
|
torch.tensor(1, dtype=torch.int16)).dtype)
|
|
torch.set_default_dtype(saved_dtype)
|
|
|
|
def test_randint_inference(self):
|
|
size = (2, 1)
|
|
for args in [(3,), (1, 3)]: # (low,) and (low, high)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size).dtype)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype)
|
|
self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype)
|
|
out = torch.empty(size, dtype=torch.float32)
|
|
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype)
|
|
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype)
|
|
out = torch.empty(size, dtype=torch.int64)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype)
|
|
|
|
@staticmethod
|
|
def _select_broadcastable_dims(dims_full=None):
|
|
# select full dimensionality
|
|
if dims_full is None:
|
|
dims_full = []
|
|
ndims = random.randint(1, 4)
|
|
dims_full = [random.randint(1, 8) for _ in range(ndims)]
|
|
else:
|
|
ndims = len(dims_full)
|
|
|
|
# select actual dimensions for ops:
|
|
# larger: full ndims, individual sizes may be reduced
|
|
# smaller: possibly reduced ndims, sizes may be reduced
|
|
smaller_ndims = random.randint(1, ndims)
|
|
dims_small = []
|
|
dims_large = []
|
|
for i in range(ndims - 1, -1, -1):
|
|
j = random.randint(1, 3)
|
|
if j == 1: # no reduced singleton dimension
|
|
ds = dims_full[i]
|
|
dl = dims_full[i]
|
|
elif j == 2: # larger may have reduced singleton dimension
|
|
ds = dims_full[i]
|
|
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
|
|
elif j == 3: # smaller may have reduced singleton dimension
|
|
ds = 1
|
|
dl = dims_full[i]
|
|
dims_large = [dl] + dims_large
|
|
if len(dims_small) < smaller_ndims:
|
|
dims_small = [ds] + dims_small
|
|
return (dims_small, dims_large, dims_full)
|
|
|
|
@staticmethod
|
|
def _test_broadcast(self, cast):
|
|
|
|
# all functions
|
|
fns = {
|
|
"dist", "atan2", "pow", "lerp", "add",
|
|
"sub", "mul", "div", "fmod", "remainder",
|
|
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
|
|
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
|
|
"map", "map2", "copy"
|
|
}
|
|
# functions with three tensor arguments
|
|
fns_3_args = {"addcdiv", "addcmul", "map2"}
|
|
|
|
for fn in fns:
|
|
(dims_small, dims_large, dims_full) = self._select_broadcastable_dims()
|
|
full1d = cast(torch.randn(*dims_full).flatten().float())
|
|
small = cast(torch.randn(*dims_small).float())
|
|
large = cast(torch.randn(*dims_large).float())
|
|
small_expanded = small.expand(*dims_full)
|
|
large_expanded = large.expand(*dims_full)
|
|
small2 = None
|
|
small2_expanded = None
|
|
if fn in fns_3_args:
|
|
# create another smaller tensor
|
|
(dims_small2, _, _) = self._select_broadcastable_dims(dims_full)
|
|
small2 = cast(torch.randn(*dims_small2).float())
|
|
small2_expanded = small2.expand(*dims_full)
|
|
|
|
if small.is_cuda and fn in ['map', 'map2']:
|
|
# map and map2 are not implementd on CUDA tensors
|
|
continue
|
|
|
|
if hasattr(large_expanded, fn):
|
|
# run through tensor versions of functions
|
|
# and verify fully expanded inputs give same results
|
|
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
|
|
|
|
def tensorfn(myfn, t1, t2):
|
|
if fn == "lerp":
|
|
return myfn(t1, 0.5)
|
|
elif fn == "masked_select":
|
|
return myfn(t1 < 0)
|
|
elif fn == "masked_scatter":
|
|
return myfn(t1 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return myfn(t1 < 0.5, 1.0)
|
|
elif fn in fns_3_args:
|
|
return myfn(1, t1, t2)
|
|
else:
|
|
return myfn(t1)
|
|
|
|
# test various orders
|
|
for first, second, third in [(large, small, small2), (small, large, small2),
|
|
(small2, small, large), (small2, large, small)]:
|
|
if first is None:
|
|
break # ignore last iter when small2 is None
|
|
method_expanded = getattr(expanded[first], fn)
|
|
method = getattr(first, fn)
|
|
r1 = tensorfn(method_expanded, expanded[second], expanded[third])
|
|
r2 = tensorfn(method, second, third)
|
|
self.assertEqual(r1, r2)
|
|
|
|
# now for torch. versions of functions
|
|
if hasattr(torch, fn):
|
|
fntorch = getattr(torch, fn)
|
|
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
|
|
|
|
def torchfn(t1, t2, t3):
|
|
if fn == "lerp":
|
|
return fntorch(t1, t2, 0.5)
|
|
elif fn == "masked_select":
|
|
return fntorch(t1, t2 < 0)
|
|
elif fn == "masked_scatter":
|
|
return fntorch(t1, t2 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return fntorch(t1, t2 < 0.5, 1.0)
|
|
elif fn in fns_3_args:
|
|
return fntorch(t1, 1.0, t2, t3)
|
|
else:
|
|
return fntorch(t1, t2)
|
|
|
|
# test various orders
|
|
for first, second, third in [(large, small, small2), (small, large, small2),
|
|
(small2, small, large), (small2, large, small)]:
|
|
if first is None:
|
|
break # ignore last iter when small2 is None
|
|
r1 = torchfn(expanded[first], expanded[second], expanded[third])
|
|
r2 = torchfn(first, second, third)
|
|
self.assertEqual(r1, r2)
|
|
|
|
# now for in place functions
|
|
# in-place tensor is not broadcastable; test only guaranteed
|
|
# to work by broadcasting other argument(s)
|
|
if not hasattr(large_expanded, fn + "_"):
|
|
continue
|
|
|
|
# need to clone largeExpanded so we can reuse, since functions are in-place
|
|
large_expanded_clone = large_expanded.clone()
|
|
|
|
def tensorfn_inplace(t0, t1, t2=None):
|
|
t0_fn = getattr(t0, fn + "_")
|
|
if fn == "lerp":
|
|
return t0_fn(t1, 0.5)
|
|
elif fn == "masked_scatter":
|
|
return t0_fn(t1 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return t0_fn(t1 < 0.5, 1.0)
|
|
elif fn == "map":
|
|
return t0_fn(t1, lambda x, y: x + y)
|
|
elif fn == "map2":
|
|
return t0_fn(t1, t2, lambda x, y, z: x + y + z)
|
|
elif fn in fns_3_args:
|
|
return t0_fn(1.0, t1, t2)
|
|
else:
|
|
return t0_fn(t1)
|
|
# in-place pointwise operations don't actually work if the in-place
|
|
# tensor is 0-strided (numpy has the same issue)
|
|
if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()):
|
|
r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded)
|
|
r2 = tensorfn_inplace(large_expanded_clone, small, small2)
|
|
self.assertEqual(r1, r2)
|
|
|
|
def broadcastable(t0, t1, t2=None):
|
|
try:
|
|
t1.expand_as(t0)
|
|
if t2 is not None:
|
|
t2.expand_as(t0)
|
|
except RuntimeError:
|
|
return False
|
|
return True
|
|
|
|
def _test_in_place_broadcastable(t0, t1, t2=None):
|
|
if not broadcastable(t0, t1, t2):
|
|
same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True)
|
|
if not same_size:
|
|
self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2))
|
|
else:
|
|
tensorfn_inplace(t0, t1, t2)
|
|
|
|
if fn not in fns_3_args:
|
|
_test_in_place_broadcastable(small, large_expanded)
|
|
_test_in_place_broadcastable(small, large)
|
|
else:
|
|
_test_in_place_broadcastable(small2, small_expanded, large_expanded)
|
|
_test_in_place_broadcastable(small2, small, large)
|
|
|
|
def test_broadcast(self):
|
|
self._test_broadcast(self, lambda t: t)
|
|
|
|
def test_broadcast_empty(self):
|
|
# empty + empty
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(5, 0) + torch.randn(0, 5))
|
|
self.assertEqual(torch.randn(5, 0), torch.randn(0) + torch.randn(5, 0))
|
|
self.assertEqual(torch.randn(5, 0, 0), torch.randn(0) + torch.randn(5, 0, 1))
|
|
|
|
# scalar + empty
|
|
self.assertEqual(torch.randn(5, 0, 6), torch.randn(()) + torch.randn(5, 0, 6))
|
|
|
|
# non-empty, empty
|
|
self.assertEqual(torch.randn(0), torch.randn(0) + torch.randn(1))
|
|
self.assertEqual(torch.randn(0, 7, 0, 6, 5, 0, 7),
|
|
torch.randn(0, 7, 0, 6, 5, 0, 1) + torch.randn(1, 1, 5, 1, 7))
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(7, 0) + torch.randn(2, 1))
|
|
|
|
def test_broadcast_tensors(self):
|
|
x0 = torch.randn(2, 1, 3)
|
|
x1 = torch.randn(3)
|
|
x2 = torch.randn(3, 1)
|
|
expected_size = (2, 3, 3)
|
|
|
|
y0, y1, y2 = torch.broadcast_tensors(x0, x1, x2)
|
|
self.assertTrue(y0.size() == expected_size)
|
|
self.assertTrue(y1.size() == expected_size)
|
|
self.assertTrue(y2.size() == expected_size)
|
|
|
|
@staticmethod
|
|
def _test_contiguous(self, cast):
|
|
x = cast(torch.randn(1, 16, 5, 5))
|
|
self.assertTrue(x.is_contiguous())
|
|
stride = list(x.stride())
|
|
stride[0] = 20
|
|
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
|
|
x.set_(x.storage(), 0, x.size(), stride)
|
|
self.assertTrue(x.is_contiguous())
|
|
|
|
def test_contiguous(self):
|
|
return self._test_contiguous(self, lambda t: t)
|
|
|
|
def test_empty_tensor_props(self):
|
|
sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)]
|
|
for size in sizes:
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.empty(tuple(size), device=device)
|
|
self.assertEqual(size, x.shape)
|
|
self.assertTrue(x.is_contiguous())
|
|
size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size)
|
|
y = torch.empty(tuple(size_ones_instead_of_zeros), device=device)
|
|
self.assertEqual(x.stride(), y.stride())
|
|
|
|
def test_scalars_as_floats(self):
|
|
"zero-dim variables that don't require grad should bind to scalar arguments"
|
|
x = torch.tensor(2.)
|
|
y = torch.tensor(3.)
|
|
# 3 + (3 * 3) * 2
|
|
self.assertEqual(y.addcmul(y, y, value=x), 21)
|
|
|
|
x = torch.tensor(2., requires_grad=True)
|
|
self.assertRaises(Exception, lambda: y.addcmul(y, y, value=x))
|
|
|
|
@staticmethod
|
|
def _test_broadcast_fused_matmul(self, cast):
|
|
fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"]
|
|
|
|
for fn in fns:
|
|
batch_dim = random.randint(1, 8)
|
|
n_dim = random.randint(1, 8)
|
|
m_dim = random.randint(1, 8)
|
|
p_dim = random.randint(1, 8)
|
|
|
|
def dims_full_for_fn():
|
|
if fn == "baddbmm":
|
|
return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
|
|
elif fn == "addbmm":
|
|
return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
|
|
elif fn == "addmm":
|
|
return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim])
|
|
elif fn == "addmv":
|
|
return ([n_dim], [n_dim, m_dim], [m_dim])
|
|
elif fn == "addr":
|
|
return ([n_dim, m_dim], [n_dim], [m_dim])
|
|
else:
|
|
raise AssertionError("unknown function")
|
|
|
|
(t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn()
|
|
(t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full)
|
|
|
|
t0_small = cast(torch.randn(*t0_dims_small).float())
|
|
t1 = cast(torch.randn(*t1_dims).float())
|
|
t2 = cast(torch.randn(*t2_dims).float())
|
|
|
|
t0_full = cast(t0_small.expand(*t0_dims_full))
|
|
|
|
fntorch = getattr(torch, fn)
|
|
r0 = fntorch(t0_small, t1, t2)
|
|
r1 = fntorch(t0_full, t1, t2)
|
|
self.assertEqual(r0, r1)
|
|
|
|
def test_broadcast_fused_matmul(self):
|
|
self._test_broadcast_fused_matmul(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_broadcast_batched_matmul(self, cast):
|
|
n_dim = random.randint(1, 8)
|
|
m_dim = random.randint(1, 8)
|
|
p_dim = random.randint(1, 8)
|
|
full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))]
|
|
(batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims)
|
|
|
|
def verify_batched_matmul(full_lhs, one_dimensional):
|
|
if not one_dimensional:
|
|
lhs_dims = [n_dim, m_dim]
|
|
rhs_dims = [m_dim, p_dim]
|
|
result_dims = [n_dim, p_dim]
|
|
else:
|
|
lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim]
|
|
rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim]
|
|
result_dims = [n_dim] if full_lhs else [p_dim]
|
|
|
|
lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim]
|
|
rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1]
|
|
full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims
|
|
dim0_dims = rhs_dims if full_lhs else lhs_dims
|
|
small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims)
|
|
|
|
small = cast(torch.randn(*(small_dims)).float())
|
|
dim0 = cast(torch.randn(*(dim0_dims)).float())
|
|
full = cast(torch.randn(*(full_batch_dims + full_mat_dims)).float())
|
|
if not one_dimensional:
|
|
(lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,))
|
|
else:
|
|
(lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,))
|
|
|
|
def maybe_squeeze_result(l, r, result):
|
|
if len(lhs_dims) == 1 and l.dim() != 1:
|
|
return result.squeeze(-2)
|
|
elif len(rhs_dims) == 1 and r.dim() != 1:
|
|
return result.squeeze(-1)
|
|
else:
|
|
return result
|
|
|
|
for lhs in lhsTensors:
|
|
lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims)))
|
|
lhs_expanded_matmul_fn = lhs_expanded.matmul
|
|
for rhs in rhsTensors:
|
|
rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)).
|
|
expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims))))
|
|
truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded))
|
|
for l in (lhs, lhs_expanded):
|
|
for r in (rhs, rhs_expanded):
|
|
l_matmul_fn = l.matmul
|
|
result = maybe_squeeze_result(l, r, l_matmul_fn(r))
|
|
self.assertEqual(truth, result)
|
|
# test torch.matmul function as well
|
|
torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r))
|
|
self.assertEqual(truth, torch_result)
|
|
# test torch.matmul with out
|
|
out = torch.zeros_like(torch_result)
|
|
torch.matmul(l, r, out=out)
|
|
self.assertEqual(truth, maybe_squeeze_result(l, r, out))
|
|
|
|
# compare to bmm
|
|
bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims),
|
|
rhs_expanded.contiguous().view(-1, *rhs_mat_dims)))
|
|
self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims))
|
|
|
|
for indices in product((True, False), repeat=2):
|
|
verify_batched_matmul(*indices)
|
|
|
|
def test_broadcast_batched_matmul(self):
|
|
self._test_broadcast_batched_matmul(self, lambda t: t)
|
|
|
|
def test_copy_broadcast(self):
|
|
torch.zeros(5, 6).copy_(torch.zeros(6))
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30)))
|
|
|
|
def test_randperm(self):
|
|
_RNGState = torch.get_rng_state()
|
|
res1 = torch.randperm(100)
|
|
res2 = torch.LongTensor()
|
|
torch.set_rng_state(_RNGState)
|
|
torch.randperm(100, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# randperm of 0 elements is an empty tensor
|
|
res1 = torch.randperm(0)
|
|
res2 = torch.LongTensor(5)
|
|
torch.randperm(0, out=res2)
|
|
self.assertEqual(res1.numel(), 0)
|
|
self.assertEqual(res2.numel(), 0)
|
|
|
|
def test_random(self):
|
|
# This test is flaky with p<=(2/(ub-lb))^200=6e-36
|
|
t = torch.FloatTensor(200)
|
|
lb = 1
|
|
ub = 4
|
|
|
|
t.fill_(-1)
|
|
t.random_(lb, ub)
|
|
self.assertEqual(t.min(), lb)
|
|
self.assertEqual(t.max(), ub - 1)
|
|
|
|
t.fill_(-1)
|
|
t.random_(ub)
|
|
self.assertEqual(t.min(), 0)
|
|
self.assertEqual(t.max(), ub - 1)
|
|
|
|
@staticmethod
|
|
def _test_random_neg_values(self, use_cuda=False):
|
|
signed_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor',
|
|
'torch.IntTensor', 'torch.ShortTensor']
|
|
for tname in signed_types:
|
|
res = torch.rand(SIZE, SIZE).type(tname)
|
|
if use_cuda:
|
|
res = res.cuda()
|
|
res.random_(-10, -1)
|
|
self.assertLessEqual(res.max().item(), 9)
|
|
self.assertGreaterEqual(res.min().item(), -10)
|
|
|
|
def test_random_neg_values(self):
|
|
self._test_random_neg_values(self)
|
|
|
|
def assertIsOrdered(self, order, x, mxx, ixx, task):
|
|
SIZE = 4
|
|
if order == 'descending':
|
|
def check_order(a, b):
|
|
# `a != a` because we put NaNs
|
|
# at the end of ascending sorted lists,
|
|
# and the beginning of descending ones.
|
|
return a != a or a >= b
|
|
elif order == 'ascending':
|
|
def check_order(a, b):
|
|
# see above
|
|
return b != b or a <= b
|
|
else:
|
|
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
|
|
|
|
are_ordered = True
|
|
for j, k in product(range(SIZE), range(1, SIZE)):
|
|
self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]),
|
|
'torch.sort ({}) values unordered for {}'.format(order, task))
|
|
|
|
seen = set()
|
|
indicesCorrect = True
|
|
size = x.size(x.dim() - 1)
|
|
for k in range(size):
|
|
seen.clear()
|
|
for j in range(size):
|
|
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
|
|
'torch.sort ({}) indices wrong for {}'.format(order, task))
|
|
seen.add(ixx[k][j])
|
|
self.assertEqual(len(seen), size)
|
|
|
|
def test_sort(self):
|
|
SIZE = 4
|
|
x = torch.rand(SIZE, SIZE)
|
|
res1val, res1ind = torch.sort(x)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
self.assertEqual(torch.argsort(x), res1ind)
|
|
self.assertEqual(x.argsort(), res1ind)
|
|
|
|
# Test sorting of random numbers
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
|
|
|
|
# Test simple sort
|
|
self.assertEqual(
|
|
torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0],
|
|
torch.Tensor((10, 20, 30, 40, 50)),
|
|
0
|
|
)
|
|
|
|
# Test that we still have proper sorting with duplicate keys
|
|
x = torch.floor(torch.rand(SIZE, SIZE) * 10)
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
|
|
|
|
# DESCENDING SORT
|
|
x = torch.rand(SIZE, SIZE)
|
|
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
|
|
self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)
|
|
|
|
# Test sorting of random numbers
|
|
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
|
|
|
|
# Test simple sort task
|
|
self.assertEqual(
|
|
torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0],
|
|
torch.Tensor((50, 40, 30, 20, 10)),
|
|
0
|
|
)
|
|
|
|
# Test that we still have proper sorting with duplicate keys
|
|
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
|
|
|
|
# Test sorting with NaNs
|
|
x = torch.rand(SIZE, SIZE)
|
|
x[1][2] = float('NaN')
|
|
x[3][0] = float('NaN')
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind,
|
|
'random with NaNs')
|
|
torch.sort(x, out=(res2val, res2ind), descending=True)
|
|
self.assertIsOrdered('descending', x, res2val, res2ind,
|
|
'random with NaNs')
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_tensordot(self):
|
|
for d in torch.testing.get_all_device_types():
|
|
a = torch.arange(60., device=d).reshape(3, 4, 5)
|
|
b = torch.arange(24., device=d).reshape(4, 3, 2)
|
|
c = torch.tensordot(a, b, dims=([1, 0], [0, 1])).cpu()
|
|
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(),
|
|
axes=([1, 0], [0, 1])))
|
|
self.assertEqual(c, cn)
|
|
a = torch.randn(2, 3, 4, 5, device=d)
|
|
b = torch.randn(4, 5, 6, 7, device=d)
|
|
c = torch.tensordot(a, b, dims=2).cpu()
|
|
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(),
|
|
axes=2))
|
|
self.assertEqual(c, cn)
|
|
c = torch.tensordot(a, b).cpu()
|
|
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy()))
|
|
self.assertEqual(c, cn)
|
|
|
|
def test_topk(self):
|
|
def topKViaSort(t, k, dim, dir):
|
|
sorted, indices = t.sort(dim, dir)
|
|
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
|
|
|
|
def compareTensors(t, res1, ind1, res2, ind2, dim):
|
|
# Values should be exactly equivalent
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Indices might differ based on the implementation, since there is
|
|
# no guarantee of the relative order of selection
|
|
if not ind1.eq(ind2).all():
|
|
# To verify that the indices represent equivalent elements,
|
|
# gather from the input using the topk indices and compare against
|
|
# the sort indices
|
|
vals = t.gather(dim, ind2)
|
|
self.assertEqual(res1, vals, 0)
|
|
|
|
def compare(t, k, dim, dir):
|
|
topKVal, topKInd = t.topk(k, dim, dir, True)
|
|
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
|
|
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
|
|
|
|
t = torch.rand(random.randint(1, SIZE),
|
|
random.randint(1, SIZE),
|
|
random.randint(1, SIZE))
|
|
|
|
for _kTries in range(3):
|
|
for _dimTries in range(3):
|
|
for transpose in (True, False):
|
|
for dir in (True, False):
|
|
testTensor = t
|
|
if transpose:
|
|
dim1 = random.randrange(t.ndimension())
|
|
dim2 = dim1
|
|
while dim1 == dim2:
|
|
dim2 = random.randrange(t.ndimension())
|
|
|
|
testTensor = t.transpose(dim1, dim2)
|
|
|
|
dim = random.randrange(testTensor.ndimension())
|
|
k = random.randint(1, testTensor.size(dim))
|
|
compare(testTensor, k, dim, dir)
|
|
|
|
def test_topk_arguments(self):
|
|
q = torch.randn(10, 2, 10)
|
|
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
|
|
self.assertRaises(TypeError, lambda: q.topk(4, True))
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_topk_noncontiguous_gpu(self):
|
|
t = torch.randn(20, device="cuda")[::2]
|
|
top1, idx1 = t.topk(5)
|
|
top2, idx2 = t.contiguous().topk(5)
|
|
self.assertEqual(top1, top2)
|
|
self.assertEqual(idx1, idx2)
|
|
|
|
@staticmethod
|
|
def _test_kthvalue(self, device='cpu'):
|
|
SIZE = 50
|
|
x = torch.rand(SIZE, SIZE, SIZE, device=device)
|
|
x0 = x.clone()
|
|
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
|
|
res2val, res2ind = torch.sort(x)
|
|
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
|
|
# test use of result tensors
|
|
k = random.randint(1, SIZE)
|
|
res1val = torch.tensor([], device=device)
|
|
res1ind = torch.tensor([], dtype=torch.long, device=device)
|
|
torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
|
|
res2val, res2ind = torch.sort(x)
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
|
|
|
|
# test non-default dim
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
|
|
res2val, res2ind = torch.sort(x, 0)
|
|
self.assertEqual(res1val, res2val[k - 1], 0)
|
|
self.assertEqual(res1ind, res2ind[k - 1], 0)
|
|
|
|
# non-contiguous
|
|
y = x.narrow(1, 0, 1)
|
|
y0 = y.contiguous()
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(y, k)
|
|
res2val, res2ind = torch.kthvalue(y0, k)
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# check that the input wasn't modified
|
|
self.assertEqual(x, x0, 0)
|
|
|
|
# simple test case (with repetitions)
|
|
y = torch.tensor((3., 5, 4, 1, 1, 5), device=device)
|
|
self.assertEqual(torch.kthvalue(y, 3)[0], 3, 0)
|
|
self.assertEqual(torch.kthvalue(y, 2)[0], 1, 0)
|
|
|
|
# simple test case (with NaN)
|
|
SIZE = 50
|
|
x = torch.rand(SIZE, SIZE, SIZE, device=device)
|
|
x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
|
|
ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
|
|
res2val, res2ind = torch.sort(x)
|
|
for k in ks:
|
|
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
|
|
|
|
def test_kthvalue(self):
|
|
self._test_kthvalue(self)
|
|
|
|
def test_median(self):
|
|
for size in (155, 156):
|
|
x = torch.rand(size, size)
|
|
x0 = x.clone()
|
|
|
|
nelem = x.nelement()
|
|
res1val = torch.median(x)
|
|
res2val, _ = torch.sort(x.view(nelem))
|
|
ind = int(math.floor((nelem + 1) / 2) - 1)
|
|
|
|
self.assertEqual(res2val[ind], res1val, 0)
|
|
|
|
res1val, res1ind = torch.median(x, dim=1, keepdim=False)
|
|
res2val, res2ind = torch.sort(x)
|
|
ind = int(math.floor((size + 1) / 2) - 1)
|
|
|
|
self.assertEqual(res2val.select(1, ind), res1val, 0)
|
|
self.assertEqual(res2val.select(1, ind), res1val, 0)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.median(x, dim=-1, keepdim=False, out=(res2val, res2ind))
|
|
self.assertEqual(res2val, res1val, 0)
|
|
self.assertEqual(res2ind, res1ind, 0)
|
|
|
|
# Test non-default dim
|
|
res1val, res1ind = torch.median(x, 0, keepdim=False)
|
|
res2val, res2ind = torch.sort(x, 0)
|
|
self.assertEqual(res1val, res2val[ind], 0)
|
|
self.assertEqual(res1ind, res2ind[ind], 0)
|
|
|
|
# input unchanged
|
|
self.assertEqual(x, x0, 0)
|
|
|
|
def test_mode(self):
|
|
x = torch.arange(1., SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
|
|
x[:2] = 1
|
|
x[:, :2] = 1
|
|
x0 = x.clone()
|
|
|
|
# Pre-calculated results.
|
|
res1val = torch.Tensor(SIZE).fill_(1)
|
|
# The indices are the position of the last appearance of the mode element.
|
|
res1ind = torch.LongTensor(SIZE).fill_(1)
|
|
res1ind[0] = SIZE - 1
|
|
res1ind[1] = SIZE - 1
|
|
|
|
res2val, res2ind = torch.mode(x, keepdim=False)
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.mode(x, keepdim=False, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# Test non-default dim
|
|
res2val, res2ind = torch.mode(x, 0, False)
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# input unchanged
|
|
self.assertEqual(x, x0, 0)
|
|
|
|
def test_trilu_indices(self):
|
|
for test_args in tri_tests_args:
|
|
_compare_trilu_indices(self, *test_args)
|
|
run_additional_tri_tests(self, 'cpu')
|
|
|
|
# test default options
|
|
x = torch.ones(
|
|
3, 3, dtype=torch.long, device='cpu', layout=torch.strided)
|
|
self.assertEqual(
|
|
x.tril(0).nonzero().transpose(0, 1), torch.tril_indices(3, 3))
|
|
self.assertEqual(
|
|
x.triu(0).nonzero().transpose(0, 1), torch.triu_indices(3, 3))
|
|
|
|
@staticmethod
|
|
def _test_triu_tril(self, cast):
|
|
def gen_mask(shape, diagonal, cast, upper):
|
|
mask = torch.zeros(*shape[-2:]).byte()
|
|
for i in range(shape[-2]):
|
|
for j in range(shape[-1]):
|
|
cond = j - i < diagonal if upper else j - i > diagonal
|
|
if cond:
|
|
mask[i, j] = 1
|
|
return cast(mask.expand(*shape))
|
|
|
|
torch_functions = {True: torch.triu, False: torch.tril}
|
|
if TEST_NUMPY:
|
|
numpy_functions = {True: np.triu, False: np.tril}
|
|
|
|
def run_test(shape, cast, diagonal):
|
|
x_cpu = torch.randn(*shape)
|
|
x = cast(x_cpu)
|
|
|
|
for upper in [True, False]:
|
|
# normal test with mask
|
|
torch_tri_func = torch_functions[upper]
|
|
res1 = torch_tri_func(x, diagonal=diagonal)
|
|
res2 = cast(torch.Tensor())
|
|
torch_tri_func(x, diagonal=diagonal, out=res2)
|
|
exp_mask = gen_mask(shape, diagonal, cast, upper)
|
|
expected = torch.where(exp_mask, torch.tensor(0).type_as(x), x)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertEqual(expected, res1, 0)
|
|
|
|
# non-contiguous and expanded tensors test
|
|
if not (0 in shape or 1 in shape):
|
|
for s in range(-len(shape), -1):
|
|
# non-contiguous tensors
|
|
x_nc = x.clone().transpose(s, s + 1)
|
|
exp_mask = gen_mask(x_nc.size(), diagonal, cast, upper)
|
|
assert not x_nc.is_contiguous(), "x is intentionally non-contiguous"
|
|
exp_nc = torch.where(exp_mask, torch.tensor(0).type_as(x), x_nc)
|
|
self.assertEqual(torch_tri_func(x_nc, diagonal), exp_nc, 0)
|
|
x_nc_is_contiguous = x_nc.is_contiguous()
|
|
if upper:
|
|
self.assertEqual(x_nc.triu_(diagonal), exp_nc, 0)
|
|
else:
|
|
self.assertEqual(x_nc.tril_(diagonal), exp_nc, 0)
|
|
|
|
self.assertTrue(x_nc.is_contiguous() == x_nc_is_contiguous,
|
|
"contiguity of x_nc should not be changed")
|
|
|
|
# expanded tensors
|
|
expanded_size = (x.size(0),) + x.size()
|
|
x_expanded = x.clone().expand(*expanded_size)
|
|
assert 0 in x_expanded.stride(), "x intentionally has 0 in its stride"
|
|
output = torch_tri_func(x_expanded, diagonal)
|
|
self.assertEqual(output, expected.expand(expanded_size), 0)
|
|
self.assertTrue(0 in x_expanded.stride(),
|
|
"geometry of x_expanded should be the same")
|
|
if upper:
|
|
self.assertEqual(output, x_expanded.triu_(diagonal), 0)
|
|
else:
|
|
self.assertEqual(output, x_expanded.tril_(diagonal), 0)
|
|
|
|
if not TEST_NUMPY:
|
|
continue
|
|
|
|
# numpy test
|
|
numpy_tri_func = numpy_functions[upper]
|
|
self.assertEqual(numpy_tri_func(x_cpu.numpy(), diagonal), res1.cpu().numpy())
|
|
|
|
diagonals = [-2, -1, 0, 1, 2]
|
|
shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices
|
|
(7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices
|
|
(3, 7), (5, 3, 7), (7, 5, 3, 7), # thin matrices
|
|
(3, 0), (0, 3, 3), (3, 3, 0, 0), # no numel matrices
|
|
(3, 1), (5, 3, 1), (7, 5, 3, 1), # very fat matrices
|
|
(1, 3), (5, 1, 3), (7, 5, 1, 3)] # very thin matrices
|
|
for s, d in product(shapes, diagonals):
|
|
run_test(s, cast, d)
|
|
|
|
def test_triu_tril(self):
|
|
self._test_triu_tril(self, lambda t: t)
|
|
|
|
def test_cat(self):
|
|
SIZE = 10
|
|
for dtype in (torch.half, torch.double, torch.int):
|
|
for dim in range(-3, 3):
|
|
pos_dim = dim if dim >= 0 else 3 + dim
|
|
x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE)).to(dtype).transpose(0, pos_dim)
|
|
y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE)).to(dtype).transpose(0, pos_dim)
|
|
z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE)).to(dtype).transpose(0, pos_dim)
|
|
|
|
res1 = torch.cat((x, y, z), dim)
|
|
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0)
|
|
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0)
|
|
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0)
|
|
|
|
x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE)).to(dtype)
|
|
self.assertEqual(torch.cat(torch.split(x, 7)), x)
|
|
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
|
|
|
|
y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE)).to(dtype)
|
|
z = torch.cat([x, y])
|
|
self.assertEqual(z.size(), (21, SIZE, SIZE))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([]))
|
|
self.assertRaisesRegex(TypeError, 'got None', lambda: torch.cat([x, None]))
|
|
|
|
def test_cat_bad_input_sizes(self):
|
|
x = torch.randn(2, 1)
|
|
y = torch.randn(2, 1, 1)
|
|
z = torch.randn(2, 1, 1)
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z]))
|
|
|
|
x = torch.randn(2, 1, 2)
|
|
y = torch.randn(2, 1, 1)
|
|
z = torch.randn(2, 2, 1)
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1))
|
|
|
|
def test_cat_scalars(self):
|
|
x = torch.tensor(0)
|
|
y = torch.tensor(1)
|
|
with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'):
|
|
torch.cat([x, y])
|
|
|
|
@staticmethod
|
|
def _test_cat_empty_legacy(self, use_cuda=False):
|
|
# FIXME: this is legacy behavior and should be removed
|
|
# when we support empty tensors with arbitrary sizes
|
|
dtype = torch.float32
|
|
device = 'cuda' if use_cuda else 'cpu'
|
|
|
|
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
|
|
empty = torch.randn((0,), dtype=dtype, device=device)
|
|
|
|
res1 = torch.cat([x, empty], dim=1)
|
|
res2 = torch.cat([empty, x], dim=1)
|
|
self.assertEqual(res1, res2)
|
|
|
|
conv = torch.nn.Conv2d(3, 3, kernel_size=1).float()
|
|
if use_cuda:
|
|
conv = conv.cuda()
|
|
res1 = torch.cat([conv(x), empty], dim=1)
|
|
res2 = torch.cat([empty, conv(x)], dim=1)
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.cat([empty, empty], dim=1)
|
|
self.assertEqual(res1, empty)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
'expected a non-empty list of Tensors'):
|
|
torch.cat([], dim=1)
|
|
|
|
def test_cat_empty_legacy(self):
|
|
self._test_cat_empty_legacy(self)
|
|
|
|
@staticmethod
|
|
def _test_cat_empty(self, use_cuda=False):
|
|
dtype = torch.float32
|
|
device = 'cuda' if use_cuda else 'cpu'
|
|
|
|
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
|
|
empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device)
|
|
|
|
res1 = torch.cat([x, empty], dim=1)
|
|
res2 = torch.cat([empty, x], dim=1)
|
|
self.assertEqual(res1, res2)
|
|
|
|
conv = torch.nn.Conv2d(3, 3, kernel_size=1).float()
|
|
if use_cuda:
|
|
conv = conv.cuda()
|
|
res1 = torch.cat([conv(x), empty], dim=1)
|
|
res2 = torch.cat([empty, conv(x)], dim=1)
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.cat([empty, empty], dim=1)
|
|
self.assertEqual(res1, empty)
|
|
|
|
# check non-legacy-behavior (sizes don't match)
|
|
empty = torch.randn((4, 0, 31, 32), dtype=dtype, device=device)
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1))
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1))
|
|
|
|
# check non-legacy-behavior (dimensions don't match)
|
|
empty = torch.randn((4, 0), dtype=dtype, device=device)
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1))
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1))
|
|
|
|
def test_cat_empty(self):
|
|
self._test_cat_empty(self)
|
|
|
|
def test_narrow(self):
|
|
x = torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
|
|
self.assertEqual(x.narrow(0, 0, 1), torch.Tensor([[0, 1, 2]]))
|
|
self.assertEqual(x.narrow(0, 0, 2), torch.Tensor([[0, 1, 2], [3, 4, 5]]))
|
|
self.assertEqual(x.narrow(0, 1, 1), torch.Tensor([[3, 4, 5]]))
|
|
self.assertEqual(x.narrow(0, -1, 1), torch.Tensor([[6, 7, 8]]))
|
|
self.assertEqual(x.narrow(0, -2, 2), torch.Tensor([[3, 4, 5], [6, 7, 8]]))
|
|
self.assertEqual(x.narrow(0, -3, 3), torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]))
|
|
self.assertEqual(x.narrow(-1, -1, 1), torch.Tensor([[2], [5], [8]]))
|
|
self.assertEqual(x.narrow(-2, -1, 1), torch.Tensor([[6, 7, 8]]))
|
|
|
|
def test_narrow_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.randn(2, 3, 4, device=device)
|
|
for d in range(x.dim()):
|
|
y = x.narrow(d, x.size(d), 0)
|
|
sz = list(x.size())
|
|
sz[d] = 0
|
|
self.assertEqual(sz, y.size())
|
|
|
|
def test_stack(self):
|
|
for dtype in (torch.half, torch.double, torch.int):
|
|
x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
for dim in range(4):
|
|
res = torch.stack((x, y, z), dim)
|
|
res_neg = torch.stack((x, y, z), dim - 4)
|
|
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
|
|
self.assertEqual(res, res_neg)
|
|
self.assertEqual(res.size(), expected_size)
|
|
self.assertEqual(res.select(dim, 0), x, 0)
|
|
self.assertEqual(res.select(dim, 1), y, 0)
|
|
self.assertEqual(res.select(dim, 2), z, 0)
|
|
|
|
def test_stack_out(self):
|
|
for dtype in (torch.half, torch.double, torch.int):
|
|
x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
for dim in range(4):
|
|
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
|
|
res_out = x.new(expected_size)
|
|
res_neg_out = x.new(expected_size)
|
|
res_out_dp = res_out.data_ptr()
|
|
res_out_neg_dp = res_neg_out.data_ptr()
|
|
torch.stack((x, y, z), dim, out=res_out)
|
|
torch.stack((x, y, z), dim - 4, out=res_neg_out)
|
|
self.assertEqual(res_out, res_neg_out)
|
|
self.assertEqual(res_out.size(), expected_size)
|
|
self.assertEqual(res_out_dp, res_out.data_ptr())
|
|
self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr())
|
|
self.assertEqual(res_out.select(dim, 0), x, 0)
|
|
self.assertEqual(res_out.select(dim, 1), y, 0)
|
|
self.assertEqual(res_out.select(dim, 2), z, 0)
|
|
|
|
def test_unbind(self):
|
|
x = torch.rand(2, 3, 4, 5)
|
|
for dim in range(4):
|
|
res = torch.unbind(x, dim)
|
|
res2 = x.unbind(dim)
|
|
self.assertEqual(x.size(dim), len(res))
|
|
self.assertEqual(x.size(dim), len(res2))
|
|
for i in range(dim):
|
|
self.assertEqual(x.select(dim, i), res[i])
|
|
self.assertEqual(x.select(dim, i), res2[i])
|
|
|
|
def test_linspace(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
_from = random.random()
|
|
to = _from + random.random()
|
|
res1 = torch.linspace(_from, to, 137, device=device)
|
|
res2 = torch.tensor((), device=device)
|
|
torch.linspace(_from, to, 137, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device))
|
|
self.assertEqual(torch.linspace(0, 1, 1, device=device), torch.zeros(1, device=device), 0)
|
|
|
|
# Check linspace for generating with start > end.
|
|
self.assertEqual(torch.linspace(2, 0, 3, device=device), torch.tensor((2, 1, 0), device=device), 0)
|
|
|
|
# Check linspace for non-contiguous tensors.
|
|
x = torch.zeros(2, 3, device=device)
|
|
y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2))
|
|
self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device), 0)
|
|
|
|
def test_logspace(self):
|
|
_from = random.random()
|
|
to = _from + random.random()
|
|
res1 = torch.logspace(_from, to, 137)
|
|
res2 = torch.Tensor()
|
|
torch.logspace(_from, to, 137, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1))
|
|
self.assertEqual(torch.logspace(0, 1, 1), torch.ones(1), 0)
|
|
|
|
# Check non-default base=2
|
|
self.assertEqual(torch.logspace(1, 1, 1, 2), torch.ones(1) * 2)
|
|
self.assertEqual(torch.logspace(0, 2, 3, 2), torch.Tensor((1, 2, 4)))
|
|
|
|
# Check logspace_ for generating with start > end.
|
|
self.assertEqual(torch.logspace(1, 0, 2), torch.Tensor((10, 1)), 0)
|
|
|
|
# Check logspace_ for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
y = torch.logspace(0, 3, 4, out=x.narrow(1, 1, 2))
|
|
self.assertEqual(x, torch.Tensor(((0, 1, 10), (0, 100, 1000))), 0)
|
|
|
|
def test_rand(self):
|
|
torch.manual_seed(123456)
|
|
res1 = torch.rand(SIZE, SIZE)
|
|
res2 = torch.Tensor()
|
|
torch.manual_seed(123456)
|
|
torch.rand(SIZE, SIZE, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_randint(self):
|
|
torch.manual_seed(123456)
|
|
res1 = torch.randint(0, 6, (SIZE, SIZE))
|
|
res2 = torch.Tensor()
|
|
torch.manual_seed(123456)
|
|
torch.randint(0, 6, (SIZE, SIZE), out=res2)
|
|
torch.manual_seed(123456)
|
|
res3 = torch.randint(6, (SIZE, SIZE))
|
|
res4 = torch.Tensor()
|
|
torch.manual_seed(123456)
|
|
torch.randint(6, (SIZE, SIZE), out=res4)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res1, res3)
|
|
self.assertEqual(res1, res4)
|
|
self.assertEqual(res2, res3)
|
|
self.assertEqual(res2, res4)
|
|
self.assertEqual(res3, res4)
|
|
res1 = res1.view(-1)
|
|
high = (res1 < 6).type(torch.LongTensor)
|
|
low = (res1 >= 0).type(torch.LongTensor)
|
|
tensorSize = res1.size()[0]
|
|
assert(tensorSize == high.sum())
|
|
assert(tensorSize == low.sum())
|
|
|
|
def test_randn(self):
|
|
torch.manual_seed(123456)
|
|
res1 = torch.randn(SIZE, SIZE)
|
|
res2 = torch.Tensor()
|
|
torch.manual_seed(123456)
|
|
torch.randn(SIZE, SIZE, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_slice(self):
|
|
empty = torch.empty(0, 4)
|
|
x = torch.arange(0., 16).view(4, 4)
|
|
self.assertEqual(x[:], x)
|
|
self.assertEqual(x[:4], x)
|
|
# start and stop are clamped to the size of dim
|
|
self.assertEqual(x[:5], x)
|
|
# if start >= stop then the result is empty
|
|
self.assertEqual(x[2:1], empty)
|
|
self.assertEqual(x[2:2], empty)
|
|
# out of bounds is also empty
|
|
self.assertEqual(x[10:12], empty)
|
|
# additional correctness checks
|
|
self.assertEqual(x[:1].data.tolist(), [[0, 1, 2, 3]])
|
|
self.assertEqual(x[:-3].data.tolist(), [[0, 1, 2, 3]])
|
|
self.assertEqual(x[:, -2:3].data.tolist(), [[2], [6], [10], [14]])
|
|
self.assertEqual(x[0:-1:2].data.tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]])
|
|
|
|
def test_is_signed(self):
|
|
self.assertEqual(torch.IntTensor(5).is_signed(), True)
|
|
self.assertEqual(torch.ByteTensor(5).is_signed(), False)
|
|
self.assertEqual(torch.CharTensor(5).is_signed(), True)
|
|
self.assertEqual(torch.FloatTensor(5).is_signed(), True)
|
|
self.assertEqual(torch.HalfTensor(10).is_signed(), True)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_is_signed_cuda(self):
|
|
self.assertEqual(torch.cuda.IntTensor(5).is_signed(), True)
|
|
self.assertEqual(torch.cuda.ByteTensor(5).is_signed(), False)
|
|
self.assertEqual(torch.cuda.CharTensor(5).is_signed(), True)
|
|
self.assertEqual(torch.cuda.FloatTensor(5).is_signed(), True)
|
|
self.assertEqual(torch.cuda.HalfTensor(10).is_signed(), True)
|
|
|
|
@staticmethod
|
|
def _test_solve(self, cast):
|
|
a = cast(torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
|
|
(-6.05, -3.30, 5.36, -4.44, 1.08),
|
|
(-0.45, 2.58, -2.70, 0.27, 9.04),
|
|
(8.32, 2.71, 4.35, -7.17, 2.14),
|
|
(-9.67, -5.14, -7.26, 6.08, -6.87)))).t()
|
|
b = cast(torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
|
|
(-1.56, 4.00, -8.67, 1.75, 2.86),
|
|
(9.81, -4.09, -4.57, -8.61, 8.99)))).t()
|
|
|
|
res1 = torch.solve(b, a)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(a, res1)), 1e-12)
|
|
|
|
ta = cast(torch.Tensor())
|
|
tb = cast(torch.Tensor())
|
|
res2 = torch.solve(b, a, out=(tb, ta))[0]
|
|
res3 = torch.solve(b, a, out=(b, a))[0]
|
|
self.assertEqual(res1, tb)
|
|
self.assertEqual(res1, b)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res1, res3)
|
|
|
|
# test reuse
|
|
res1 = torch.solve(b, a)[0]
|
|
ta = cast(torch.Tensor())
|
|
tb = cast(torch.Tensor())
|
|
torch.solve(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(res1, tb)
|
|
torch.solve(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(res1, tb)
|
|
|
|
@skipIfNoLapack
|
|
def test_solve(self):
|
|
self._test_solve(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_solve_batched(self, cast):
|
|
from common_utils import random_fullrank_matrix_distinct_singular_value
|
|
# test against solve: one batch
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(5, 1))
|
|
b = cast(torch.randn(1, 5, 10))
|
|
x_exp, LU_exp = torch.solve(b.squeeze(0), A.squeeze(0))
|
|
x, LU = torch.solve(b, A)
|
|
self.assertEqual(x, x_exp.unsqueeze(0))
|
|
self.assertEqual(LU, LU_exp.unsqueeze(0))
|
|
|
|
# test against solve in a loop: four batches
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(5, 4))
|
|
b = cast(torch.randn(4, 5, 10))
|
|
|
|
x_exp_list = []
|
|
LU_exp_list = []
|
|
for i in range(4):
|
|
x_exp, LU_exp = torch.solve(b[i], A[i])
|
|
x_exp_list.append(x_exp)
|
|
LU_exp_list.append(LU_exp)
|
|
x_exp = torch.stack(x_exp_list)
|
|
LU_exp = torch.stack(LU_exp_list)
|
|
|
|
x, LU = torch.solve(b, A)
|
|
self.assertEqual(x, x_exp)
|
|
self.assertEqual(LU, LU_exp)
|
|
|
|
# basic correctness test
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(5, 3))
|
|
b = cast(torch.randn(3, 5, 10))
|
|
x, LU = torch.solve(b, A)
|
|
self.assertEqual(torch.matmul(A, x), b)
|
|
|
|
# Test non-contiguous inputs.
|
|
if not TEST_NUMPY:
|
|
return
|
|
from numpy.linalg import solve
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(2, 2)).permute(1, 0, 2)
|
|
b = cast(torch.randn(2, 2, 2)).permute(2, 1, 0)
|
|
x, _ = torch.solve(b, A)
|
|
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy()))
|
|
self.assertEqual(x.data, cast(x_exp))
|
|
|
|
@skipIfNoLapack
|
|
def test_solve_batched(self):
|
|
self._test_solve_batched(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_solve_batched_dims(self, cast):
|
|
if not TEST_NUMPY:
|
|
return
|
|
|
|
from numpy.linalg import solve
|
|
from common_utils import random_fullrank_matrix_distinct_singular_value
|
|
# test against numpy.linalg.solve
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(4, 2, 1, 3))
|
|
b = cast(torch.randn(2, 1, 3, 4, 6))
|
|
x, _ = torch.solve(b, A)
|
|
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy()))
|
|
self.assertEqual(x.data, cast(x_exp))
|
|
|
|
# test column major format
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(4, 2, 1, 3)).transpose(-2, -1)
|
|
b = cast(torch.randn(2, 1, 3, 6, 4)).transpose(-2, -1)
|
|
assert not A.is_contiguous()
|
|
assert not b.is_contiguous()
|
|
x, _ = torch.solve(b, A)
|
|
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy()))
|
|
self.assertEqual(x.data, cast(x_exp))
|
|
|
|
# broadcasting b
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(4, 2, 1, 3))
|
|
b = cast(torch.randn(4, 6))
|
|
x, _ = torch.solve(b, A)
|
|
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy()))
|
|
self.assertEqual(x.data, cast(x_exp))
|
|
|
|
# broadcasting A
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(4))
|
|
b = cast(torch.randn(2, 1, 3, 4, 2))
|
|
x, _ = torch.solve(b, A)
|
|
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy()))
|
|
self.assertEqual(x.data, cast(x_exp))
|
|
|
|
# broadcasting both A & b
|
|
A = cast(random_fullrank_matrix_distinct_singular_value(4, 1, 3, 1))
|
|
b = cast(torch.randn(2, 1, 3, 4, 5))
|
|
x, _ = torch.solve(b, A)
|
|
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy()))
|
|
self.assertEqual(x.data, cast(x_exp))
|
|
|
|
@skipIfNoLapack
|
|
def test_solve_batched_dims(self):
|
|
self._test_solve_batched_dims(self, lambda t: t)
|
|
|
|
def test_solve_methods_arg_device(self):
|
|
if not torch.cuda.is_available():
|
|
return
|
|
|
|
for b_device, A_device in product(['cpu', 'cuda'], repeat=2):
|
|
if b_device == A_device:
|
|
continue
|
|
|
|
b = torch.randn(3, 1, device=b_device)
|
|
A = torch.randn(3, 3, device=A_device)
|
|
err_str = "Expected b and A to be on the same device"
|
|
with self.assertRaisesRegex(RuntimeError, err_str):
|
|
torch.solve(b, A)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, err_str):
|
|
torch.cholesky_solve(b, A)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, err_str):
|
|
torch.triangular_solve(b, A)
|
|
|
|
@skipIfNoLapack
|
|
def test_qr(self):
|
|
|
|
# Since the QR decomposition is unique only up to the signs of the rows of
|
|
# R, we must ensure these are positive before doing the comparison.
|
|
def canonicalize(q, r):
|
|
d = r.diag().sign().diag()
|
|
return torch.mm(q, d), torch.mm(d, r)
|
|
|
|
def canon_and_check(q, r, expected_q, expected_r):
|
|
q_canon, r_canon = canonicalize(q, r)
|
|
expected_q_canon, expected_r_canon = canonicalize(expected_q, expected_r)
|
|
self.assertEqual(q_canon, expected_q_canon)
|
|
self.assertEqual(r_canon, expected_r_canon)
|
|
|
|
def check_qr(a, expected_q, expected_r):
|
|
# standard invocation
|
|
q, r = torch.qr(a)
|
|
canon_and_check(q, r, expected_q, expected_r)
|
|
|
|
# in-place
|
|
q, r = torch.Tensor(), torch.Tensor()
|
|
torch.qr(a, out=(q, r))
|
|
canon_and_check(q, r, expected_q, expected_r)
|
|
|
|
# manually calculate qr using geqrf and orgqr
|
|
m = a.size(0)
|
|
n = a.size(1)
|
|
k = min(m, n)
|
|
result, tau = torch.geqrf(a)
|
|
self.assertEqual(result.size(0), m)
|
|
self.assertEqual(result.size(1), n)
|
|
self.assertEqual(tau.size(0), k)
|
|
r = torch.triu(result.narrow(0, 0, k))
|
|
q = torch.orgqr(result, tau)
|
|
q, r = q.narrow(1, 0, k), r
|
|
canon_and_check(q, r, expected_q, expected_r)
|
|
|
|
# check square case
|
|
a = torch.Tensor(((1, 2, 3), (4, 5, 6), (7, 8, 10)))
|
|
|
|
expected_q = torch.Tensor((
|
|
(-1.230914909793328e-01, 9.045340337332914e-01, 4.082482904638621e-01),
|
|
(-4.923659639173310e-01, 3.015113445777629e-01, -8.164965809277264e-01),
|
|
(-8.616404368553292e-01, -3.015113445777631e-01, 4.082482904638634e-01)))
|
|
expected_r = torch.Tensor((
|
|
(-8.124038404635959e+00, -9.601136296387955e+00, -1.193987e+01),
|
|
(0.000000000000000e+00, 9.045340337332926e-01, 1.507557e+00),
|
|
(0.000000000000000e+00, 0.000000000000000e+00, 4.082483e-01)))
|
|
|
|
check_qr(a, expected_q, expected_r)
|
|
|
|
# check rectangular thin
|
|
a = torch.Tensor((
|
|
(1, 2, 3),
|
|
(4, 5, 6),
|
|
(7, 8, 9),
|
|
(10, 11, 13),
|
|
))
|
|
expected_q = torch.Tensor((
|
|
(-0.0776150525706334, -0.833052161400748, 0.3651483716701106),
|
|
(-0.3104602102825332, -0.4512365874254053, -0.1825741858350556),
|
|
(-0.5433053679944331, -0.0694210134500621, -0.7302967433402217),
|
|
(-0.7761505257063329, 0.3123945605252804, 0.5477225575051663)
|
|
))
|
|
expected_r = torch.Tensor((
|
|
(-12.8840987267251261, -14.5916298832790581, -17.0753115655393231),
|
|
(0, -1.0413152017509357, -1.770235842976589),
|
|
(0, 0, 0.5477225575051664)
|
|
))
|
|
|
|
check_qr(a, expected_q, expected_r)
|
|
|
|
# check rectangular fat
|
|
a = torch.Tensor((
|
|
(1, 2, 3, 4),
|
|
(5, 6, 7, 8),
|
|
(9, 10, 11, 13)
|
|
))
|
|
expected_q = torch.Tensor((
|
|
(-0.0966736489045663, 0.907737593658436, 0.4082482904638653),
|
|
(-0.4833682445228317, 0.3157348151855452, -0.8164965809277254),
|
|
(-0.870062840141097, -0.2762679632873518, 0.4082482904638621)
|
|
))
|
|
expected_r = torch.Tensor((
|
|
(-1.0344080432788603e+01, -1.1794185166357092e+01,
|
|
-1.3244289899925587e+01, -1.5564457473635180e+01),
|
|
(0.0000000000000000e+00, 9.4720444555662542e-01,
|
|
1.8944088911132546e+00, 2.5653453733825331e+00),
|
|
(0.0000000000000000e+00, 0.0000000000000000e+00,
|
|
1.5543122344752192e-15, 4.0824829046386757e-01)
|
|
))
|
|
check_qr(a, expected_q, expected_r)
|
|
|
|
# check big matrix
|
|
a = torch.randn(1000, 1000)
|
|
q, r = torch.qr(a)
|
|
a_qr = torch.mm(q, r)
|
|
self.assertEqual(a, a_qr, prec=1e-3)
|
|
|
|
@skipIfNoLapack
|
|
def test_ormqr(self):
|
|
mat1 = torch.randn(7, 7)
|
|
mat2 = torch.randn(7, 7)
|
|
q, r = torch.qr(mat1)
|
|
m, tau = torch.geqrf(mat1)
|
|
out_holder = torch.empty_like(mat1)
|
|
|
|
res1 = torch.mm(q, mat2)
|
|
res2 = torch.ormqr(m, tau, mat2, left=True, transpose=False)
|
|
torch.ormqr(m, tau, mat2, out=out_holder)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res2, out_holder)
|
|
|
|
res1 = torch.mm(mat2, q)
|
|
res2 = torch.ormqr(m, tau, mat2, left=False, transpose=False)
|
|
torch.ormqr(m, tau, mat2, left=False, transpose=False, out=out_holder)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res2, out_holder)
|
|
|
|
res1 = torch.mm(q.t(), mat2)
|
|
res2 = torch.ormqr(m, tau, mat2, left=True, transpose=True)
|
|
torch.ormqr(m, tau, mat2, left=True, transpose=True, out=out_holder)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res2, out_holder)
|
|
|
|
res1 = torch.mm(mat2, q.t())
|
|
res2 = torch.ormqr(m, tau, mat2, left=False, transpose=True)
|
|
torch.ormqr(m, tau, mat2, left=False, transpose=True, out=out_holder)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res2, out_holder)
|
|
|
|
@staticmethod
|
|
def _test_geqrf(self, cast):
|
|
a = cast(torch.randn(5, 5))
|
|
b, c = torch.geqrf(a)
|
|
b_placeholder, c_placeholder = torch.empty_like(b), torch.empty_like(c)
|
|
torch.geqrf(a, out=(b_placeholder, c_placeholder))
|
|
self.assertEqual(b, b_placeholder)
|
|
self.assertEqual(c, c_placeholder)
|
|
|
|
@skipIfNoLapack
|
|
def test_geqrf(self):
|
|
self._test_geqrf(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_triangular_solve(self, cast):
|
|
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
|
|
(-6.05, -3.30, 5.36, -4.44, 1.08),
|
|
(-0.45, 2.58, -2.70, 0.27, 9.04),
|
|
(8.32, 2.71, 4.35, -7.17, 2.14),
|
|
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
|
|
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
|
|
(-1.56, 4.00, -8.67, 1.75, 2.86),
|
|
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
|
|
|
|
a = cast(a)
|
|
b = cast(b)
|
|
|
|
U = torch.triu(a)
|
|
L = torch.tril(a)
|
|
|
|
# solve Ux = b
|
|
x = torch.triangular_solve(b, U)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12)
|
|
x = torch.triangular_solve(b, U, True, False, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12)
|
|
|
|
# solve Lx = b
|
|
x = torch.triangular_solve(b, L, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12)
|
|
x = torch.triangular_solve(b, L, False, False, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12)
|
|
|
|
# solve U'x = b
|
|
x = torch.triangular_solve(b, U, True, True)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12)
|
|
x = torch.triangular_solve(b, U, True, True, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12)
|
|
|
|
# solve U'x = b by manual transposition
|
|
y = torch.triangular_solve(b, U.t(), False, False)[0]
|
|
self.assertLessEqual(x.dist(y), 1e-12)
|
|
|
|
# solve L'x = b
|
|
x = torch.triangular_solve(b, L, False, True)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12)
|
|
x = torch.triangular_solve(b, L, False, True, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12)
|
|
|
|
# solve L'x = b by manual transposition
|
|
y = torch.triangular_solve(b, L.t(), True, False)[0]
|
|
self.assertLessEqual(x.dist(y), 1e-12)
|
|
|
|
# test reuse
|
|
res1 = torch.triangular_solve(b, a)[0]
|
|
ta = cast(torch.Tensor())
|
|
tb = cast(torch.Tensor())
|
|
torch.triangular_solve(b, a, out=(tb, ta))
|
|
self.assertEqual(res1, tb, 0)
|
|
tb.zero_()
|
|
torch.triangular_solve(b, a, out=(tb, ta))
|
|
self.assertEqual(res1, tb, 0)
|
|
|
|
@skipIfNoLapack
|
|
def test_triangular_solve(self):
|
|
self._test_triangular_solve(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_triangular_solve_batched(self, cast):
|
|
def triangular_solve_test_helper(A_dims, b_dims, cast, upper, unitriangular):
|
|
A = cast(torch.randn(*A_dims))
|
|
A = A.triu() if upper else A.tril()
|
|
if unitriangular:
|
|
A.diagonal(dim1=-2, dim2=-1).fill_(1.)
|
|
b = cast(torch.randn(*b_dims))
|
|
return A, b
|
|
|
|
for upper, transpose, unitriangular in product([True, False], repeat=3):
|
|
# test against triangular_solve: one batch with all possible arguments
|
|
A, b = triangular_solve_test_helper((1, 5, 5), (1, 5, 10), cast, upper, unitriangular)
|
|
x_exp = torch.triangular_solve(b.squeeze(0), A.squeeze(0),
|
|
upper=upper, transpose=transpose, unitriangular=unitriangular)[0]
|
|
x = torch.triangular_solve(b, A,
|
|
upper=upper, transpose=transpose, unitriangular=unitriangular)[0]
|
|
self.assertEqual(x, x_exp.unsqueeze(0))
|
|
|
|
# test against triangular_solve in a loop: four batches with all possible arguments
|
|
A, b = triangular_solve_test_helper((4, 5, 5), (4, 5, 10), cast, upper, unitriangular)
|
|
x_exp_list = []
|
|
for i in range(4):
|
|
x_exp = torch.triangular_solve(b[i], A[i],
|
|
upper=upper, transpose=transpose, unitriangular=unitriangular)[0]
|
|
x_exp_list.append(x_exp)
|
|
x_exp = torch.stack(x_exp_list)
|
|
|
|
x = torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular)[0]
|
|
self.assertEqual(x, x_exp)
|
|
|
|
# basic correctness test
|
|
A, b = triangular_solve_test_helper((3, 5, 5), (3, 5, 10), cast, upper, unitriangular)
|
|
x = torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular)[0]
|
|
if transpose:
|
|
self.assertLessEqual(b.dist(torch.matmul(A.transpose(-1, -2), x)), 2e-12)
|
|
else:
|
|
self.assertLessEqual(b.dist(torch.matmul(A, x)), 2e-12)
|
|
|
|
@skipIfNoLapack
|
|
def test_triangular_solve_batched(self):
|
|
_TestTorchMixin._test_triangular_solve_batched(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_triangular_solve_batched_dims(self, cast):
|
|
if not TEST_SCIPY:
|
|
return
|
|
|
|
from scipy.linalg import solve_triangular as tri_solve
|
|
|
|
def scipy_tri_solve_batched(A, B, upper, trans, diag):
|
|
batch_dims_A, batch_dims_B = A.shape[:-2], B.shape[:-2]
|
|
single_dim_A, single_dim_B = A.shape[-2:], B.shape[-2:]
|
|
expand_dims = tuple(torch._C._infer_size(torch.Size(batch_dims_A),
|
|
torch.Size(batch_dims_B)))
|
|
expand_A = np.broadcast_to(A, expand_dims + single_dim_A)
|
|
expand_B = np.broadcast_to(B, expand_dims + single_dim_B)
|
|
flat_A = expand_A.reshape((-1,) + single_dim_A)
|
|
flat_B = expand_B.reshape((-1,) + single_dim_B)
|
|
flat_X = np.vstack([tri_solve(a, b, lower=(not upper), trans=int(trans), unit_diagonal=diag)
|
|
for a, b in zip(flat_A, flat_B)])
|
|
return flat_X.reshape(expand_B.shape)
|
|
|
|
def run_test(A_dims, b_dims, cast, upper, transpose, unitriangular):
|
|
A = torch.randn(*A_dims)
|
|
A = A.triu() if upper else A.tril()
|
|
if unitriangular:
|
|
A.diagonal(dim1=-2, dim2=-1).fill_(1.)
|
|
b = torch.randn(*b_dims)
|
|
x_exp = torch.Tensor(scipy_tri_solve_batched(A.numpy(), b.numpy(),
|
|
upper, transpose, unitriangular))
|
|
A, b = cast(A), cast(b)
|
|
x = torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular)[0]
|
|
|
|
self.assertEqual(x, cast(x_exp))
|
|
|
|
for upper, transpose, unitriangular in product([True, False], repeat=3):
|
|
# test against scipy.linalg.solve_triangular
|
|
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6), cast, upper, transpose, unitriangular) # no broadcasting
|
|
run_test((2, 1, 3, 4, 4), (4, 6), cast, upper, transpose, unitriangular) # broadcasting b
|
|
run_test((4, 4), (2, 1, 3, 4, 2), cast, upper, transpose, unitriangular) # broadcasting A
|
|
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5), cast, upper, transpose, unitriangular) # broadcasting A & b
|
|
|
|
@skipIfNoLapack
|
|
def test_triangular_solve_batched_dims(self):
|
|
self._test_triangular_solve_batched_dims(self, lambda t: t)
|
|
|
|
@skipIfNoLapack
|
|
def test_gels(self):
|
|
def _test_underdetermined(a, b, expectedNorm):
|
|
m = a.size()[0]
|
|
n = a.size()[1]
|
|
assert(m <= n)
|
|
|
|
a_copy = a.clone()
|
|
b_copy = b.clone()
|
|
res1 = torch.gels(b, a)[0]
|
|
self.assertEqual(a, a_copy, 0)
|
|
self.assertEqual(b, b_copy, 0)
|
|
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
|
|
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
res2 = torch.gels(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(a, a_copy, 0)
|
|
self.assertEqual(b, b_copy, 0)
|
|
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
|
|
|
|
res3 = torch.gels(b, a, out=(b, a))[0]
|
|
self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, 1e-8)
|
|
self.assertEqual(res1, tb, 0)
|
|
self.assertEqual(res1, b, 0)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertEqual(res1, res3, 0)
|
|
|
|
def _test_overdetermined(a, b, expectedNorm):
|
|
m = a.size()[0]
|
|
n = a.size()[1]
|
|
assert(m > n)
|
|
|
|
def check_norm(a, b, expected_norm, gels_result):
|
|
# Checks |ax - b| and the residual info from the result
|
|
n = a.size()[1]
|
|
|
|
# The first n rows is the least square solution.
|
|
# Rows n to m-1 contain residual information.
|
|
x = gels_result[:n]
|
|
resid_info = gels_result[n:]
|
|
|
|
resid_norm = (torch.mm(a, x) - b).norm()
|
|
self.assertEqual(resid_norm, expectedNorm, 1e-8)
|
|
self.assertEqual(resid_info.norm(), resid_norm, 1e-8)
|
|
|
|
a_copy = a.clone()
|
|
b_copy = b.clone()
|
|
res1 = torch.gels(b, a)[0]
|
|
self.assertEqual(a, a_copy, 0)
|
|
self.assertEqual(b, b_copy, 0)
|
|
check_norm(a, b, expectedNorm, res1)
|
|
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
res2 = torch.gels(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(a, a_copy, 0)
|
|
self.assertEqual(b, b_copy, 0)
|
|
check_norm(a, b, expectedNorm, res2)
|
|
|
|
res3 = torch.gels(b, a, out=(b, a))[0]
|
|
check_norm(a_copy, b_copy, expectedNorm, res3)
|
|
|
|
self.assertEqual(res1, tb, 0)
|
|
self.assertEqual(res1, b, 0)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertEqual(res1, res3, 0)
|
|
|
|
# basic test
|
|
expectedNorm = 0
|
|
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34),
|
|
(-7.84, -0.28, 3.24, 8.09),
|
|
(-4.39, -3.24, 6.27, 5.28),
|
|
(4.53, 3.83, -6.64, 2.06))).t()
|
|
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28),
|
|
(9.35, -4.43, -0.70, -0.26))).t()
|
|
_test_underdetermined(a, b, expectedNorm)
|
|
|
|
# test overderemined
|
|
expectedNorm = 17.390200628863
|
|
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45),
|
|
(-7.84, -0.28, 3.24, 8.09, 2.52, -5.70),
|
|
(-4.39, -3.24, 6.27, 5.28, 0.74, -1.19),
|
|
(4.53, 3.83, -6.64, 2.06, -2.47, 4.70))).t()
|
|
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93),
|
|
(9.35, -4.43, -0.70, -0.26, -7.36, -2.52))).t()
|
|
_test_overdetermined(a, b, expectedNorm)
|
|
|
|
# test underdetermined
|
|
expectedNorm = 0
|
|
a = torch.Tensor(((1.44, -9.96, -7.55),
|
|
(-7.84, -0.28, 3.24),
|
|
(-4.39, -3.24, 6.27),
|
|
(4.53, 3.83, -6.64))).t()
|
|
b = torch.Tensor(((8.58, 8.26, 8.48),
|
|
(9.35, -4.43, -0.70))).t()
|
|
_test_underdetermined(a, b, expectedNorm)
|
|
|
|
# test reuse
|
|
expectedNorm = 0
|
|
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34),
|
|
(-7.84, -0.28, 3.24, 8.09),
|
|
(-4.39, -3.24, 6.27, 5.28),
|
|
(4.53, 3.83, -6.64, 2.06))).t()
|
|
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28),
|
|
(9.35, -4.43, -0.70, -0.26))).t()
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
torch.gels(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
|
|
torch.gels(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
|
|
torch.gels(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
|
|
|
|
@skipIfNoLapack
|
|
def test_eig(self):
|
|
a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00),
|
|
(-6.49, 3.80, 0.00, 0.00, 0.00),
|
|
(-0.47, -6.39, 4.17, 0.00, 0.00),
|
|
(-7.20, 1.50, -1.51, 5.70, 0.00),
|
|
(-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous()
|
|
e = torch.eig(a)[0]
|
|
ee, vv = torch.eig(a, True)
|
|
te = torch.Tensor()
|
|
tv = torch.Tensor()
|
|
eee, vvv = torch.eig(a, True, out=(te, tv))
|
|
self.assertEqual(e, ee, 1e-12)
|
|
self.assertEqual(ee, eee, 1e-12)
|
|
self.assertEqual(ee, te, 1e-12)
|
|
self.assertEqual(vv, vvv, 1e-12)
|
|
self.assertEqual(vv, tv, 1e-12)
|
|
|
|
# test reuse
|
|
X = torch.randn(4, 4)
|
|
X = torch.mm(X.t(), X)
|
|
e, v = torch.zeros(4, 2), torch.zeros(4, 4)
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
|
|
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t()))
|
|
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
|
|
# test non-contiguous
|
|
X = torch.randn(4, 4)
|
|
X = torch.mm(X.t(), X)
|
|
e = torch.zeros(4, 2, 2)[:, 1]
|
|
v = torch.zeros(4, 2, 4)[:, 1]
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
self.assertFalse(e.is_contiguous(), 'E is contiguous')
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
|
|
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
|
|
|
|
@staticmethod
|
|
def _test_symeig(self, conv_fn):
|
|
xval = conv_fn(torch.rand(100, 3))
|
|
cov = torch.mm(xval.t(), xval)
|
|
rese = conv_fn(torch.zeros(3))
|
|
resv = conv_fn(torch.zeros(3, 3))
|
|
|
|
# First call to symeig
|
|
self.assertTrue(resv.is_contiguous(), 'resv is not contiguous')
|
|
torch.symeig(cov.clone(), True, out=(rese, resv))
|
|
ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t())
|
|
self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong')
|
|
|
|
# Second call to symeig
|
|
self.assertFalse(resv.is_contiguous(), 'resv is contiguous')
|
|
torch.symeig(cov.clone(), True, out=(rese, resv))
|
|
ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t())
|
|
self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong')
|
|
|
|
# test eigenvectors=False
|
|
rese2 = conv_fn(torch.zeros(3))
|
|
resv2 = conv_fn(torch.randn(3, 3))
|
|
expected_resv2 = conv_fn(torch.zeros(3, 3))
|
|
torch.symeig(cov.clone(), False, out=(rese2, resv2))
|
|
self.assertEqual(rese, rese2)
|
|
self.assertEqual(resv2, expected_resv2)
|
|
|
|
# test non-contiguous
|
|
X = conv_fn(torch.rand(5, 5))
|
|
X = X.t() * X
|
|
e = conv_fn(torch.zeros(4, 2)).select(1, 1)
|
|
v = conv_fn(torch.zeros(4, 2, 4))[:, 1]
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
self.assertFalse(e.is_contiguous(), 'E is contiguous')
|
|
torch.symeig(X, True, out=(e, v))
|
|
Xhat = torch.mm(torch.mm(v, torch.diag(e)), v.t())
|
|
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
|
|
|
|
@skipIfNoLapack
|
|
def test_symeig(self):
|
|
self._test_symeig(self, lambda x: x)
|
|
|
|
@skipIfNoLapack
|
|
def test_svd(self):
|
|
a = torch.Tensor(((8.79, 6.11, -9.15, 9.57, -3.49, 9.84),
|
|
(9.93, 6.91, -7.93, 1.64, 4.02, 0.15),
|
|
(9.83, 5.04, 4.86, 8.83, 9.80, -8.99),
|
|
(5.45, -0.27, 4.85, 0.74, 10.00, -6.02),
|
|
(3.16, 7.98, 3.01, 5.80, 4.27, -5.31))).t().clone()
|
|
u, s, v = torch.svd(a)
|
|
uu = torch.Tensor()
|
|
ss = torch.Tensor()
|
|
vv = torch.Tensor()
|
|
uuu, sss, vvv = torch.svd(a, out=(uu, ss, vv))
|
|
self.assertEqual(u, uu, 0, 'torch.svd')
|
|
self.assertEqual(u, uuu, 0, 'torch.svd')
|
|
self.assertEqual(s, ss, 0, 'torch.svd')
|
|
self.assertEqual(s, sss, 0, 'torch.svd')
|
|
self.assertEqual(v, vv, 0, 'torch.svd')
|
|
self.assertEqual(v, vvv, 0, 'torch.svd')
|
|
|
|
# test reuse
|
|
X = torch.randn(4, 4)
|
|
U, S, V = torch.svd(X)
|
|
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
|
|
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
|
|
|
|
self.assertFalse(U.is_contiguous(), 'U is contiguous')
|
|
torch.svd(X, out=(U, S, V))
|
|
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
|
|
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
|
|
|
|
# test non-contiguous
|
|
X = torch.randn(5, 5)
|
|
U = torch.zeros(5, 2, 5)[:, 1]
|
|
S = torch.zeros(5, 2)[:, 1]
|
|
V = torch.zeros(5, 2, 5)[:, 1]
|
|
|
|
self.assertFalse(U.is_contiguous(), 'U is contiguous')
|
|
self.assertFalse(S.is_contiguous(), 'S is contiguous')
|
|
self.assertFalse(V.is_contiguous(), 'V is contiguous')
|
|
torch.svd(X, out=(U, S, V))
|
|
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
|
|
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
|
|
|
|
@staticmethod
|
|
def _test_svd_no_singularvectors(self, cast):
|
|
for size in [(5, 5), (5, 20), (20, 5)]:
|
|
a = cast(torch.randn(*size))
|
|
u, s_expect, v = torch.svd(a)
|
|
u, s_actual, v = torch.svd(a, compute_uv=False)
|
|
self.assertEqual(s_expect, s_actual, "Singular values don't match")
|
|
|
|
@skipIfNoLapack
|
|
def test_svd_no_singularvectors(self):
|
|
self._test_svd_no_singularvectors(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_matrix_rank(self, conv_fn):
|
|
a = conv_fn(torch.eye(10))
|
|
self.assertEqual(torch.matrix_rank(a).item(), 10)
|
|
self.assertEqual(torch.matrix_rank(a, True).item(), 10)
|
|
|
|
a[5, 5] = 0
|
|
self.assertEqual(torch.matrix_rank(a).item(), 9)
|
|
self.assertEqual(torch.matrix_rank(a, True).item(), 9)
|
|
|
|
a = conv_fn(torch.randn(24, 42))
|
|
self.assertEqual(torch.matrix_rank(a), torch.matrix_rank(a.t()))
|
|
aaT = torch.mm(a, a.t())
|
|
self.assertEqual(torch.matrix_rank(aaT), torch.matrix_rank(aaT, True))
|
|
aTa = torch.mm(a.t(), a)
|
|
self.assertEqual(torch.matrix_rank(aTa), torch.matrix_rank(aTa, True))
|
|
|
|
if TEST_NUMPY:
|
|
from numpy.linalg import matrix_rank
|
|
a = conv_fn(torch.randn(35, 75))
|
|
self.assertEqual(torch.matrix_rank(a).item(), matrix_rank(a.cpu().numpy()))
|
|
self.assertEqual(torch.matrix_rank(a, 0.01).item(), matrix_rank(a.cpu().numpy(), 0.01))
|
|
|
|
aaT = torch.mm(a, a.t())
|
|
self.assertEqual(torch.matrix_rank(aaT).item(), matrix_rank(aaT.cpu().numpy()))
|
|
self.assertEqual(torch.matrix_rank(aaT, 0.01).item(), matrix_rank(aaT.cpu().numpy(), 0.01))
|
|
|
|
if np.lib.NumpyVersion(np.__version__) >= '1.14.0':
|
|
self.assertEqual(torch.matrix_rank(aaT, True).item(), matrix_rank(aaT.cpu().numpy(), True))
|
|
self.assertEqual(torch.matrix_rank(aaT, 0.01, True).item(),
|
|
matrix_rank(aaT.cpu().numpy(), 0.01, True))
|
|
|
|
@skipIfNoLapack
|
|
def test_matrix_rank(self):
|
|
self._test_matrix_rank(self, lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_signal_window_functions(self, device='cpu'):
|
|
if not TEST_SCIPY:
|
|
raise unittest.SkipTest('Scipy not found')
|
|
|
|
def test(name):
|
|
torch_method = getattr(torch, name + '_window')
|
|
for size in [1, 2, 5, 10, 50, 100, 1024, 2048]:
|
|
for periodic in [True, False]:
|
|
res = torch_method(size, periodic=periodic, device=device)
|
|
ref = torch.from_numpy(signal.get_window(name, size, fftbins=periodic))
|
|
self.assertEqual(res, ref)
|
|
with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'):
|
|
torch_method(3, layout=torch.sparse_coo)
|
|
with self.assertRaisesRegex(RuntimeError, r'floating point'):
|
|
torch_method(3, dtype=torch.long)
|
|
self.assertTrue(torch_method(3, requires_grad=True).requires_grad)
|
|
self.assertFalse(torch_method(3).requires_grad)
|
|
|
|
for window in ['hann', 'hamming', 'bartlett', 'blackman']:
|
|
test(window)
|
|
|
|
def test_signal_window_functions(self):
|
|
self._test_signal_window_functions(self)
|
|
|
|
@staticmethod
|
|
def _test_inverse(self, conv_fn):
|
|
from common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
# no batches: 2-D tensors
|
|
matrix = conv_fn(random_fullrank_matrix_distinct_singular_value(5))
|
|
matrix_inverse = torch.inverse(matrix)
|
|
identity = conv_fn(torch.eye(5))
|
|
self.assertEqual(identity, torch.mm(matrix, matrix_inverse), 1e-8, 'inverse value')
|
|
self.assertEqual(identity, torch.mm(matrix_inverse, matrix), 1e-8, 'inverse value')
|
|
|
|
matrix_inverse_out = conv_fn(torch.empty(5, 5))
|
|
torch.inverse(matrix, out=matrix_inverse_out)
|
|
self.assertEqual(matrix_inverse_out, matrix_inverse, 0, 'inverse value in-place')
|
|
# second call, now that matrix_inverse_out is transposed
|
|
torch.inverse(matrix, out=matrix_inverse_out)
|
|
self.assertEqual(matrix_inverse_out, matrix_inverse, 0, 'inverse value in-place')
|
|
|
|
# one batch
|
|
matrix = conv_fn(random_fullrank_matrix_distinct_singular_value(5, 1))
|
|
matrix_inverse = torch.inverse(matrix)
|
|
expected_inv = matrix.squeeze(0).inverse()
|
|
self.assertEqual(matrix_inverse, expected_inv.unsqueeze(0))
|
|
|
|
# four batches
|
|
matrices = conv_fn(random_fullrank_matrix_distinct_singular_value(5, 4))
|
|
expected_inv_list = []
|
|
for i in range(0, 4):
|
|
expected_inv_list.append(torch.inverse(matrices[i]))
|
|
expected_inv = torch.stack(expected_inv_list)
|
|
matrices_inverse = torch.inverse(matrices)
|
|
self.assertEqual(matrices_inverse, expected_inv)
|
|
|
|
# six batches (2 x 3)
|
|
matrices = conv_fn(random_fullrank_matrix_distinct_singular_value(5, 2, 3))
|
|
expected_inv_list = []
|
|
for mat in matrices.view(-1, 5, 5):
|
|
expected_inv_list.append(torch.inverse(mat))
|
|
expected_inv = torch.stack(expected_inv_list).view(2, 3, 5, 5)
|
|
matrices_inverse = torch.inverse(matrices)
|
|
self.assertEqual(matrices_inverse, expected_inv)
|
|
|
|
# incorrect input test
|
|
with self.assertRaisesRegex(RuntimeError, "must be batches of square matrices"):
|
|
torch.inverse(torch.randn(2, 3, 4, 3))
|
|
|
|
# correctness test
|
|
matrices = conv_fn(random_fullrank_matrix_distinct_singular_value(5, 3))
|
|
matrices_inverse = torch.inverse(matrices)
|
|
self.assertEqual(torch.matmul(matrices, matrices_inverse), identity.expand_as(matrices))
|
|
self.assertEqual(torch.matmul(matrices_inverse, matrices), identity.expand_as(matrices))
|
|
|
|
# torch.inverse with out and batches
|
|
matrices = conv_fn(random_fullrank_matrix_distinct_singular_value(5, 3))
|
|
matrices_inverse = conv_fn(torch.empty(3, 5, 5))
|
|
torch.inverse(matrices, out=matrices_inverse)
|
|
self.assertEqual(torch.inverse(matrices), matrices_inverse)
|
|
|
|
# non-contiguous inputs
|
|
if not TEST_NUMPY:
|
|
return
|
|
|
|
from numpy.linalg import inv
|
|
matrices = conv_fn(random_fullrank_matrix_distinct_singular_value(3, 2)).permute(0, 2, 1)
|
|
assert not matrices.is_contiguous()
|
|
matrices_inverse = torch.inverse(matrices)
|
|
expected_inv = torch.as_tensor(inv(matrices.cpu().numpy()))
|
|
self.assertEqual(matrices_inverse, conv_fn(expected_inv))
|
|
|
|
@skipIfNoLapack
|
|
def test_inverse(self):
|
|
self._test_inverse(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_pinverse(self, conv_fn):
|
|
def run_test(M):
|
|
# Testing against definition for pseudo-inverses
|
|
MPI = torch.pinverse(M)
|
|
self.assertEqual(M, M.mm(MPI).mm(M), 1e-8, 'pseudo-inverse condition 1')
|
|
self.assertEqual(MPI, MPI.mm(M).mm(MPI), 1e-8, 'pseudo-inverse condition 2')
|
|
self.assertEqual(M.mm(MPI), (M.mm(MPI)).t(), 1e-8, 'pseudo-inverse condition 3')
|
|
self.assertEqual(MPI.mm(M), (MPI.mm(M)).t(), 1e-8, 'pseudo-inverse condition 4')
|
|
|
|
# Square matrix
|
|
M = conv_fn(torch.randn(5, 5))
|
|
run_test(M)
|
|
|
|
# Rectangular matrix
|
|
M = conv_fn(torch.randn(3, 4))
|
|
run_test(M)
|
|
|
|
# Test inverse and pseudo-inverse for invertible matrix
|
|
M = torch.randn(5, 5)
|
|
M = conv_fn(M.mm(M.t()))
|
|
self.assertEqual(conv_fn(torch.eye(5)), M.pinverse().mm(M), 1e-7, 'pseudo-inverse for invertible matrix')
|
|
|
|
@skipIfNoLapack
|
|
def test_pinverse(self):
|
|
self._test_pinverse(self, conv_fn=lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_matrix_power(self, conv_fn):
|
|
def run_test(M, sign=1):
|
|
if sign == -1:
|
|
M = M.inverse()
|
|
MP2 = torch.matrix_power(M, 2)
|
|
self.assertEqual(MP2, torch.matmul(M, M))
|
|
|
|
MP3 = torch.matrix_power(M, 3)
|
|
self.assertEqual(MP3, torch.matmul(MP2, M))
|
|
|
|
MP4 = torch.matrix_power(M, 4)
|
|
self.assertEqual(MP4, torch.matmul(MP2, MP2))
|
|
|
|
MP6 = torch.matrix_power(M, 6)
|
|
self.assertEqual(MP6, torch.matmul(MP3, MP3))
|
|
|
|
MP0 = torch.matrix_power(M, 0)
|
|
self.assertEqual(MP0, torch.eye(M.size(-2)).expand_as(M))
|
|
|
|
# Single matrix
|
|
M = conv_fn(torch.randn(5, 5))
|
|
run_test(M)
|
|
|
|
# Batch matrices
|
|
M = conv_fn(torch.randn(3, 3, 3))
|
|
run_test(M)
|
|
|
|
# Many batch matrices
|
|
M = conv_fn(torch.randn(2, 3, 3, 3))
|
|
run_test(M)
|
|
|
|
# This is for negative powers
|
|
from common_utils import random_fullrank_matrix_distinct_singular_value
|
|
M = conv_fn(random_fullrank_matrix_distinct_singular_value(5))
|
|
run_test(M, sign=-1)
|
|
|
|
M = conv_fn(random_fullrank_matrix_distinct_singular_value(3, 3))
|
|
run_test(M, sign=-1)
|
|
|
|
M = conv_fn(random_fullrank_matrix_distinct_singular_value(3, 2, 3))
|
|
run_test(M, sign=-1)
|
|
|
|
@skipIfNoLapack
|
|
def test_matrix_power(self):
|
|
self._test_matrix_power(self, conv_fn=lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_chain_matmul(self, cast):
|
|
def product(matrices):
|
|
for mat in matrices[1:]:
|
|
matrices[0] = matrices[0].mm(mat)
|
|
return matrices[0]
|
|
|
|
def run_test(p, cast):
|
|
matrices = []
|
|
for (pi, pi_1) in zip(p[:-1], p[1:]):
|
|
matrices.append(cast(torch.randn(pi, pi_1)))
|
|
self.assertEqual(torch.chain_matmul(*matrices), product(matrices))
|
|
|
|
run_test([10, 20, 30, 5], cast)
|
|
run_test([15, 5, 10, 20, 25], cast)
|
|
|
|
def test_chain_matmul(self):
|
|
self._test_chain_matmul(self, cast=lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_det_logdet_slogdet(self, device):
|
|
def reference_slogdet(M):
|
|
if TEST_NUMPY:
|
|
sdet, logabsdet = np.linalg.slogdet(M.detach().cpu().numpy())
|
|
return M.new_tensor(sdet), M.new_tensor(logabsdet)
|
|
else:
|
|
# naive row reduction
|
|
M = M.clone()
|
|
l = M.size(0)
|
|
multiplier = 1
|
|
for i in range(l):
|
|
if M[i, 0].item() != 0:
|
|
if i != 0:
|
|
M[0], M[i] = M[i], M[0]
|
|
multiplier = -1
|
|
break
|
|
else:
|
|
return 0
|
|
for i in range(1, l):
|
|
row = M[i]
|
|
for j in range(i):
|
|
row -= row[j] / M[j, j] * M[j]
|
|
M[i] = row
|
|
sdet = M.diag().sign().prod()
|
|
logabsdet = M.diag().abs_().log_().sum().add_(math.log(multiplier))
|
|
return sdet, logabsdet
|
|
|
|
def test_single_det(M, target, desc):
|
|
target_sdet, target_logabsdet = target
|
|
|
|
det = M.det()
|
|
logdet = M.logdet()
|
|
sdet, logabsdet = M.slogdet()
|
|
|
|
# Test det
|
|
self.assertEqual(det, target_sdet * target_logabsdet.exp(), 1e-7, '{} (det)'.format(desc))
|
|
|
|
# Test slogdet
|
|
# Compare the overall value rather than individual parts because of
|
|
# precision issues when det is near zero.
|
|
self.assertEqual(sdet * logabsdet.exp(), target_sdet * target_logabsdet.exp(), 1e-7, '{} (slogdet)'.format(desc))
|
|
|
|
# Test logdet
|
|
# Compare logdet against our own pytorch slogdet because they should
|
|
# be consistent, while it may behave slightly differently with other
|
|
# slogdet implementations when det is near zero due to precision
|
|
# issues.
|
|
if sdet.item() < 0:
|
|
self.assertTrue(logdet.item() != logdet.item(), '{} (logdet negative case)'.format(desc))
|
|
else:
|
|
self.assertEqual(logdet.exp(), target_logabsdet.exp(), 1e-7, '{} (logdet non-negative case)'.format(desc))
|
|
|
|
eye = torch.eye(5, device=device)
|
|
test_single_det(eye, (torch.ones((), device=device), torch.zeros((), device=device)), 'identity')
|
|
|
|
def test(M):
|
|
assert M.size(0) >= 5, 'this helper fn assumes M to be at least 5x5'
|
|
M = M.to(device)
|
|
|
|
ref_M_sdet, ref_M_logabsdet = reference_slogdet(M)
|
|
|
|
test_single_det(M, (ref_M_sdet, ref_M_logabsdet), 'basic')
|
|
if ref_M_logabsdet.exp().item() >= 1e-6: # skip singular
|
|
M_inv = M.inverse()
|
|
test_single_det(M_inv, reference_slogdet(M_inv), 'inverse')
|
|
|
|
test_single_det(M, (ref_M_sdet, ref_M_logabsdet), 'transpose')
|
|
|
|
for x in [0, 2, 4]:
|
|
for scale in [-2, -0.1, 0, 10]:
|
|
if scale > 0:
|
|
target = ref_M_sdet, ref_M_logabsdet + math.log(scale)
|
|
elif scale == 0:
|
|
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
|
|
else:
|
|
target = ref_M_sdet.neg(), ref_M_logabsdet + math.log(-scale)
|
|
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
M_clone[:, x] *= scale
|
|
test_single_det(M_clone, target, 'scale a row')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
M_clone[x, :] *= scale
|
|
test_single_det(M_clone, target, 'scale a column')
|
|
|
|
for x1, x2 in [(0, 3), (4, 1), (3, 2)]:
|
|
assert x1 != x2, 'x1 and x2 needs to be different for this test'
|
|
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
M_clone[:, x2] = M_clone[:, x1]
|
|
test_single_det(M_clone, target, 'two rows are same')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
M_clone[x2, :] = M_clone[x1, :]
|
|
test_single_det(M_clone, target, 'two columns are same')
|
|
|
|
for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]:
|
|
det_scale = scale1 * scale2 * -1
|
|
if det_scale > 0:
|
|
target = ref_M_sdet, ref_M_logabsdet + math.log(det_scale)
|
|
elif det_scale == 0:
|
|
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
|
|
else:
|
|
target = ref_M_sdet.neg(), ref_M_logabsdet + math.log(-det_scale)
|
|
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
t = M_clone[:, x1] * scale1
|
|
M_clone[:, x1] += M_clone[:, x2] * scale2
|
|
M_clone[:, x2] = t
|
|
test_single_det(M_clone, target, 'exchanging rows')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
t = M_clone[x1, :] * scale1
|
|
M_clone[x1, :] += M_clone[x2, :] * scale2
|
|
M_clone[x2, :] = t
|
|
test_single_det(M_clone, target, 'exchanging columns')
|
|
|
|
def get_random_mat_scale(n):
|
|
# For matrices with values i.i.d. with 0 mean, unit variance, and
|
|
# subexponential tail, we have:
|
|
# E[log det(A^2)] \approx log((n-1)!)
|
|
#
|
|
# Notice:
|
|
# log Var[det(A)] = log E[det(A^2)] >= E[log det(A^2)]
|
|
#
|
|
# So:
|
|
# stddev[det(A)] >= sqrt( (n-1)! )
|
|
#
|
|
# We use this as an intuitive guideline to scale random generated
|
|
# matrices so our closeness tests can work more robustly:
|
|
# scale by sqrt( (n-1)! )^(-1/n) = ( (n-1)! )^(-1/(2n))
|
|
#
|
|
# source: https://arxiv.org/pdf/1112.0752.pdf
|
|
|
|
# TODO: technically we need subexponential distn for this to hold,
|
|
# but we mostly use gaussian entries below. Consider switching
|
|
# to Chi-sq if this turns out not stable enough, since Chi-sq
|
|
# is easy enough to sample from.
|
|
return math.factorial(n - 1) ** (-1.0 / (2 * n))
|
|
|
|
for n in [5, 10, 25]:
|
|
scale = get_random_mat_scale(n)
|
|
test(torch.randn(n, n, device=device) * scale)
|
|
r = torch.randn(n, n, device=device) * scale
|
|
# symmetric psd
|
|
test(r.mm(r.t()))
|
|
# symmetric pd
|
|
r = torch.randn(n, n, device=device) * scale
|
|
test(r.mm(r.t()) + torch.eye(n, device=device) * 1e-6)
|
|
# symmetric
|
|
r = torch.randn(n, n, device=device) * scale
|
|
for i in range(n):
|
|
for j in range(i):
|
|
r[i, j] = r[j, i]
|
|
test(r)
|
|
# non-contiguous
|
|
test((torch.randn(n, n, n + 1, device=device) * scale)[:, 2, 1:])
|
|
# det = 0
|
|
r = torch.randn(n, n, device=device) * scale
|
|
u, s, v = r.svd()
|
|
if reference_slogdet(u)[0] < 0:
|
|
u = -u
|
|
if reference_slogdet(v)[0] < 0:
|
|
v = -v
|
|
s[0] *= -1
|
|
s[-1] = 0
|
|
test(u.mm(s.diag()).mm(v))
|
|
|
|
# Small values to test numerical stability. Note that we don't scale
|
|
# this matrix.
|
|
r = torch.randn(512, 512, device=device)
|
|
u, s, v = r.svd()
|
|
s.fill_(1. / (100 * s.numel()))
|
|
test(u.mm(s.diag()).mm(v))
|
|
|
|
@skipIfNoLapack
|
|
def test_det_logdet_slogdet(self):
|
|
self._test_det_logdet_slogdet(self, 'cpu')
|
|
|
|
@staticmethod
|
|
def _test_fft_ifft_rfft_irfft(self, device='cpu'):
|
|
def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x):
|
|
x = prepro_fn(torch.randn(*sizes, device=device))
|
|
for normalized in (True, False):
|
|
res = x.fft(signal_ndim, normalized=normalized)
|
|
rec = res.ifft(signal_ndim, normalized=normalized)
|
|
self.assertEqual(x, rec, 1e-8, 'fft and ifft')
|
|
res = x.ifft(signal_ndim, normalized=normalized)
|
|
rec = res.fft(signal_ndim, normalized=normalized)
|
|
self.assertEqual(x, rec, 1e-8, 'ifft and fft')
|
|
|
|
def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x):
|
|
x = prepro_fn(torch.randn(*sizes, device=device))
|
|
signal_numel = 1
|
|
signal_sizes = x.size()[-signal_ndim:]
|
|
for normalized, onesided in product((True, False), repeat=2):
|
|
res = x.rfft(signal_ndim, normalized=normalized, onesided=onesided)
|
|
if not onesided: # check Hermitian symmetry
|
|
def test_one_sample(res, test_num=10):
|
|
idxs_per_dim = [torch.LongTensor(test_num).random_(s).tolist() for s in signal_sizes]
|
|
for idx in zip(*idxs_per_dim):
|
|
reflected_idx = tuple((s - i) % s for i, s in zip(idx, res.size()))
|
|
idx_val = res.__getitem__(idx)
|
|
reflected_val = res.__getitem__(reflected_idx)
|
|
self.assertEqual(idx_val[0], reflected_val[0], 'rfft hermitian symmetry on real part')
|
|
self.assertEqual(idx_val[1], -reflected_val[1], 'rfft hermitian symmetry on imaginary part')
|
|
if len(sizes) == signal_ndim:
|
|
test_one_sample(res)
|
|
else:
|
|
output_non_batch_shape = res.size()[-(signal_ndim + 1):]
|
|
flatten_batch_res = res.view(-1, *output_non_batch_shape)
|
|
nb = flatten_batch_res.size(0)
|
|
test_idxs = torch.LongTensor(min(nb, 4)).random_(nb)
|
|
for test_idx in test_idxs.tolist():
|
|
test_one_sample(flatten_batch_res[test_idx])
|
|
# compare with C2C
|
|
xc = torch.stack([x, torch.zeros_like(x)], -1)
|
|
xc_res = xc.fft(signal_ndim, normalized=normalized)
|
|
self.assertEqual(res, xc_res)
|
|
test_input_signal_sizes = [signal_sizes]
|
|
rec = res.irfft(signal_ndim, normalized=normalized,
|
|
onesided=onesided, signal_sizes=signal_sizes)
|
|
self.assertEqual(x, rec, 1e-8, 'rfft and irfft')
|
|
if not onesided: # check that we can use C2C ifft
|
|
rec = res.ifft(signal_ndim, normalized=normalized)
|
|
self.assertEqual(x, rec.select(-1, 0), 1e-8, 'twosided rfft and ifft real')
|
|
self.assertEqual(rec.select(-1, 1).data.abs().mean(), 0, 1e-8, 'twosided rfft and ifft imaginary')
|
|
|
|
# contiguous case
|
|
_test_real((100,), 1)
|
|
_test_real((10, 1, 10, 100), 1)
|
|
_test_real((100, 100), 2)
|
|
_test_real((2, 2, 5, 80, 60), 2)
|
|
_test_real((50, 40, 70), 3)
|
|
_test_real((30, 1, 50, 25, 20), 3)
|
|
|
|
_test_complex((100, 2), 1)
|
|
_test_complex((100, 100, 2), 1)
|
|
_test_complex((100, 100, 2), 2)
|
|
_test_complex((1, 20, 80, 60, 2), 2)
|
|
_test_complex((50, 40, 70, 2), 3)
|
|
_test_complex((6, 5, 50, 25, 20, 2), 3)
|
|
|
|
# non-contiguous case
|
|
_test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type
|
|
_test_real((100, 100, 3), 1, lambda x: x[:, :, 0])
|
|
_test_real((100, 100), 2, lambda x: x.t())
|
|
_test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60])
|
|
_test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80])
|
|
_test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3))
|
|
|
|
_test_complex((2, 100), 1, lambda x: x.t())
|
|
_test_complex((100, 2), 1, lambda x: x.expand(100, 100, 2))
|
|
_test_complex((300, 200, 3), 2, lambda x: x[:100, :100, 1:]) # input is not aligned to complex type
|
|
_test_complex((20, 90, 110, 2), 2, lambda x: x[:, 5:85].narrow(2, 5, 100))
|
|
_test_complex((40, 60, 3, 80, 2), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:])
|
|
_test_complex((30, 55, 50, 22, 2), 3, lambda x: x[:, 3:53, 15:40, 1:21])
|
|
|
|
# non-contiguous with strides not representable as aligned with complex type
|
|
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [3, 2, 1]))
|
|
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 2, 2]))
|
|
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 3, 1]))
|
|
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [3, 3, 1]))
|
|
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 2, 2]))
|
|
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 3, 1]))
|
|
|
|
@unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
|
|
def test_fft_ifft_rfft_irfft(self):
|
|
self._test_fft_ifft_rfft_irfft(self)
|
|
|
|
@staticmethod
|
|
def _test_stft(self, device='cpu'):
|
|
if not TEST_LIBROSA:
|
|
raise unittest.SkipTest('librosa not found')
|
|
|
|
def librosa_stft(x, n_fft, hop_length, win_length, window, center):
|
|
if window is None:
|
|
window = np.ones(n_fft if win_length is None else win_length)
|
|
else:
|
|
window = window.cpu().numpy()
|
|
input_1d = x.dim() == 1
|
|
if input_1d:
|
|
x = x.view(1, -1)
|
|
result = []
|
|
for xi in x:
|
|
ri = librosa.stft(xi.cpu().numpy(), n_fft, hop_length, win_length, window, center=center)
|
|
result.append(torch.from_numpy(np.stack([ri.real, ri.imag], -1)))
|
|
result = torch.stack(result, 0)
|
|
if input_1d:
|
|
result = result[0]
|
|
return result
|
|
|
|
def _test(sizes, n_fft, hop_length=None, win_length=None, win_sizes=None,
|
|
center=True, expected_error=None):
|
|
x = torch.randn(*sizes, device=device)
|
|
if win_sizes is not None:
|
|
window = torch.randn(*win_sizes, device=device)
|
|
else:
|
|
window = None
|
|
if expected_error is None:
|
|
result = x.stft(n_fft, hop_length, win_length, window, center=center)
|
|
ref_result = librosa_stft(x, n_fft, hop_length, win_length, window, center)
|
|
self.assertEqual(result, ref_result, 7e-6, 'stft comparison against librosa')
|
|
else:
|
|
self.assertRaises(expected_error,
|
|
lambda: x.stft(n_fft, hop_length, win_length, window, center=center))
|
|
|
|
for center in [True, False]:
|
|
_test((10,), 7, center=center)
|
|
_test((10, 4000), 1024, center=center)
|
|
|
|
_test((10,), 7, 2, center=center)
|
|
_test((10, 4000), 1024, 512, center=center)
|
|
|
|
_test((10,), 7, 2, win_sizes=(7,), center=center)
|
|
_test((10, 4000), 1024, 512, win_sizes=(1024,), center=center)
|
|
|
|
# spectral oversample
|
|
_test((10,), 7, 2, win_length=5, center=center)
|
|
_test((10, 4000), 1024, 512, win_length=100, center=center)
|
|
|
|
_test((10, 4, 2), 1, 1, expected_error=RuntimeError)
|
|
_test((10,), 11, 1, center=False, expected_error=RuntimeError)
|
|
_test((10,), -1, 1, expected_error=RuntimeError)
|
|
_test((10,), 3, win_length=5, expected_error=RuntimeError)
|
|
_test((10,), 5, 4, win_sizes=(11,), expected_error=RuntimeError)
|
|
_test((10,), 5, 4, win_sizes=(1, 1), expected_error=RuntimeError)
|
|
|
|
def test_stft(self):
|
|
self._test_stft(self)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv2(self):
|
|
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
|
|
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
|
|
imvc = torch.conv2(x, k)
|
|
imvc2 = torch.conv2(x, k, 'V')
|
|
imfc = torch.conv2(x, k, 'F')
|
|
|
|
ki = k.clone()
|
|
ks = k.storage()
|
|
kis = ki.storage()
|
|
for i in range(ks.size() - 1, 0, -1):
|
|
kis[ks.size() - i + 1] = ks[i]
|
|
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
|
|
imvx = torch.xcorr2(x, ki)
|
|
imvx2 = torch.xcorr2(x, ki, 'V')
|
|
imfx = torch.xcorr2(x, ki, 'F')
|
|
|
|
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
|
|
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
|
|
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
|
|
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
|
|
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
|
|
|
|
xx = torch.Tensor(2, x.size(1), x.size(2))
|
|
xx[1].copy_(x)
|
|
xx[2].copy_(x)
|
|
kk = torch.Tensor(2, k.size(1), k.size(2))
|
|
kk[1].copy_(k)
|
|
kk[2].copy_(k)
|
|
|
|
immvc = torch.conv2(xx, kk)
|
|
immvc2 = torch.conv2(xx, kk, 'V')
|
|
immfc = torch.conv2(xx, kk, 'F')
|
|
|
|
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
|
|
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
|
|
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
|
|
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
|
|
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv3(self):
|
|
x = torch.rand(math.floor(torch.uniform(20, 40)),
|
|
math.floor(torch.uniform(20, 40)),
|
|
math.floor(torch.uniform(20, 40)))
|
|
k = torch.rand(math.floor(torch.uniform(5, 10)),
|
|
math.floor(torch.uniform(5, 10)),
|
|
math.floor(torch.uniform(5, 10)))
|
|
imvc = torch.conv3(x, k)
|
|
imvc2 = torch.conv3(x, k, 'V')
|
|
imfc = torch.conv3(x, k, 'F')
|
|
|
|
ki = k.clone()
|
|
ks = k.storage()
|
|
kis = ki.storage()
|
|
for i in range(ks.size() - 1, 0, -1):
|
|
kis[ks.size() - i + 1] = ks[i]
|
|
imvx = torch.xcorr3(x, ki)
|
|
imvx2 = torch.xcorr3(x, ki, 'V')
|
|
imfx = torch.xcorr3(x, ki, 'F')
|
|
|
|
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
|
|
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
|
|
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
|
|
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
|
|
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
|
|
|
|
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
|
|
xx[1].copy_(x)
|
|
xx[2].copy_(x)
|
|
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
|
|
kk[1].copy_(k)
|
|
kk[2].copy_(k)
|
|
|
|
immvc = torch.conv3(xx, kk)
|
|
immvc2 = torch.conv3(xx, kk, 'V')
|
|
immfc = torch.conv3(xx, kk, 'F')
|
|
|
|
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
|
|
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
|
|
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
|
|
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
|
|
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def _test_conv_corr_eq(self, fn, fn_2_to_3):
|
|
ix = math.floor(random.randint(20, 40))
|
|
iy = math.floor(random.randint(20, 40))
|
|
iz = math.floor(random.randint(20, 40))
|
|
kx = math.floor(random.randint(5, 10))
|
|
ky = math.floor(random.randint(5, 10))
|
|
kz = math.floor(random.randint(5, 10))
|
|
|
|
x = torch.rand(ix, iy, iz)
|
|
k = torch.rand(kx, ky, kz)
|
|
|
|
o3 = fn(x, k)
|
|
o32 = torch.zeros(o3.size())
|
|
fn_2_to_3(x, k, o3, o32)
|
|
self.assertEqual(o3, o32)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_xcorr3_xcorr2_eq(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.xcorr2(x[i + j - 1], k[j]))
|
|
self._test_conv_corr_eq(torch.xcorr3, reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_xcorr3_xcorr2_eq_full(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(x.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F'))
|
|
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv3_conv2_eq_valid(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1]))
|
|
self._test_conv_corr_eq(torch.conv3, reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_fconv3_fconv2_eq(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F'))
|
|
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference)
|
|
|
|
def test_logical(self):
|
|
x = torch.rand(100, 100) * 2 - 1
|
|
|
|
xgt = torch.gt(x, 1)
|
|
xlt = torch.lt(x, 1)
|
|
|
|
xeq = torch.eq(x, 1)
|
|
xne = torch.ne(x, 1)
|
|
|
|
neqs = xgt + xlt
|
|
all = neqs + xeq
|
|
self.assertEqual(neqs.long().sum(), xne.long().sum(), 0)
|
|
self.assertEqual(x.nelement(), all.long().sum())
|
|
|
|
def test_isfinite(self):
|
|
x = torch.Tensor([1, inf, 2, -inf, nan, -10])
|
|
self.assertEqual(torch.isfinite(x), torch.ByteTensor([1, 0, 1, 0, 0, 1]))
|
|
|
|
def test_isfinite_int(self):
|
|
x = torch.tensor([1, 2, 3])
|
|
self.assertEqual(torch.isfinite(x), torch.ByteTensor([1, 1, 1]))
|
|
|
|
@staticmethod
|
|
def _test_isinf(self, cast):
|
|
t1 = cast(torch.Tensor([1, inf, 2, -inf, nan]))
|
|
t2 = cast(torch.ByteTensor([1, 2, 3]))
|
|
t3 = cast(torch.CharTensor([1, 2, 3]))
|
|
t4 = cast(torch.ShortTensor([1, 2, 3]))
|
|
t5 = cast(torch.IntTensor([1, 2, 3]))
|
|
t6 = cast(torch.LongTensor([1, 2, 3]))
|
|
self.assertEqual(torch.isinf(t1), cast(torch.ByteTensor([0, 1, 0, 1, 0])))
|
|
self.assertEqual(torch.isinf(t2), cast(torch.ByteTensor([0, 0, 0])))
|
|
self.assertEqual(torch.isinf(t3), cast(torch.ByteTensor([0, 0, 0])))
|
|
self.assertEqual(torch.isinf(t4), cast(torch.ByteTensor([0, 0, 0])))
|
|
self.assertEqual(torch.isinf(t5), cast(torch.ByteTensor([0, 0, 0])))
|
|
self.assertEqual(torch.isinf(t6), cast(torch.ByteTensor([0, 0, 0])))
|
|
|
|
def test_isinf(self):
|
|
self._test_isinf(self, lambda t: t)
|
|
|
|
def test_isnan(self):
|
|
x = torch.Tensor([1, nan, 2])
|
|
self.assertEqual(torch.isnan(x), torch.ByteTensor([0, 1, 0]))
|
|
|
|
def test_RNGState(self):
|
|
state = torch.get_rng_state()
|
|
stateCloned = state.clone()
|
|
before = torch.rand(1000)
|
|
|
|
self.assertEqual(state.ne(stateCloned).long().sum(), 0, 0)
|
|
|
|
torch.set_rng_state(state)
|
|
after = torch.rand(1000)
|
|
self.assertEqual(before, after, 0)
|
|
|
|
def test_RNGStateAliasing(self):
|
|
# Fork the random number stream at this point
|
|
gen = torch.Generator()
|
|
gen.set_state(torch.get_rng_state())
|
|
self.assertEqual(gen.get_state(), torch.get_rng_state())
|
|
|
|
target_value = torch.rand(1000)
|
|
# Dramatically alter the internal state of the main generator
|
|
_ = torch.rand(100000)
|
|
forked_value = torch.rand(1000, generator=gen)
|
|
self.assertEqual(target_value, forked_value, 0, "RNG has not forked correctly.")
|
|
|
|
def test_RNG_after_pickle(self):
|
|
torch.random.manual_seed(100)
|
|
before = torch.rand(10)
|
|
|
|
torch.random.manual_seed(100)
|
|
buf = io.BytesIO()
|
|
tensor = torch.Tensor([1, 2, 3])
|
|
ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(tensor)
|
|
after = torch.rand(10)
|
|
|
|
self.assertEqual(before, after, 0)
|
|
|
|
def test_boxMullerState(self):
|
|
torch.manual_seed(123)
|
|
odd_number = 101
|
|
seeded = torch.randn(odd_number)
|
|
state = torch.get_rng_state()
|
|
midstream = torch.randn(odd_number)
|
|
torch.set_rng_state(state)
|
|
repeat_midstream = torch.randn(odd_number)
|
|
torch.manual_seed(123)
|
|
reseeded = torch.randn(odd_number)
|
|
self.assertEqual(midstream, repeat_midstream, 0,
|
|
'get_rng_state/set_rng_state not generating same sequence of normally distributed numbers')
|
|
self.assertEqual(seeded, reseeded, 0,
|
|
'repeated calls to manual_seed not generating same sequence of normally distributed numbers')
|
|
|
|
def test_manual_seed(self):
|
|
rng_state = torch.get_rng_state()
|
|
torch.manual_seed(2)
|
|
x = torch.randn(100)
|
|
self.assertEqual(torch.initial_seed(), 2)
|
|
torch.manual_seed(2)
|
|
y = torch.randn(100)
|
|
self.assertEqual(x, y)
|
|
torch.set_rng_state(rng_state)
|
|
|
|
@staticmethod
|
|
def _test_cholesky(self, cast):
|
|
x = cast(torch.rand(10, 10) + 1e-1)
|
|
A = torch.mm(x, x.t())
|
|
|
|
# default Case
|
|
C = torch.cholesky(A)
|
|
B = torch.mm(C, C.t())
|
|
self.assertEqual(A, B, 1e-14)
|
|
|
|
# test Upper Triangular
|
|
U = torch.cholesky(A, True)
|
|
B = torch.mm(U.t(), U)
|
|
self.assertEqual(A, B, 1e-14, 'cholesky (upper) did not allow rebuilding the original matrix')
|
|
|
|
# test Lower Triangular
|
|
L = torch.cholesky(A, False)
|
|
B = torch.mm(L, L.t())
|
|
self.assertEqual(A, B, 1e-14, 'cholesky (lower) did not allow rebuilding the original matrix')
|
|
|
|
@skipIfNoLapack
|
|
def test_cholesky(self):
|
|
self._test_cholesky(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_cholesky_batched(self, cast):
|
|
from common_utils import random_symmetric_pd_matrix
|
|
|
|
def cholesky_test_helper(n, batch_dims, cast, upper):
|
|
A = cast(random_symmetric_pd_matrix(n, *batch_dims))
|
|
cholesky_exp = torch.stack([m.cholesky(upper=upper) for m in A.reshape(-1, n, n)])
|
|
cholesky_exp = cholesky_exp.reshape_as(A)
|
|
self.assertEqual(cholesky_exp, torch.cholesky(A, upper=upper))
|
|
|
|
for upper, batchsize in product([True, False], [(3,), (3, 4), (2, 3, 4)]):
|
|
cholesky_test_helper(3, batchsize, cast, upper)
|
|
|
|
@skipIfNoLapack
|
|
def test_cholesky_batched(self):
|
|
self._test_cholesky_batched(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_cholesky_solve(self, cast):
|
|
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
|
|
(-6.05, -3.30, 5.36, -4.44, 1.08),
|
|
(-0.45, 2.58, -2.70, 0.27, 9.04),
|
|
(8.32, 2.71, 4.35, -7.17, 2.14),
|
|
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
|
|
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
|
|
(-1.56, 4.00, -8.67, 1.75, 2.86),
|
|
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
|
|
|
|
# make sure 'a' is symmetric PSD
|
|
a = torch.mm(a, a.t())
|
|
a, b = cast(a), cast(b)
|
|
|
|
# upper Triangular Test
|
|
U = torch.cholesky(a, True)
|
|
x = torch.cholesky_solve(b, U, True)
|
|
self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12)
|
|
|
|
# lower Triangular Test
|
|
L = torch.cholesky(a, False)
|
|
x = torch.cholesky_solve(b, L, False)
|
|
self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12)
|
|
|
|
# default arg Test
|
|
L_def = torch.cholesky(a)
|
|
x_def = torch.cholesky_solve(b, L_def)
|
|
self.assertLessEqual(b.dist(torch.mm(a, x_def)), 1e-12)
|
|
|
|
@skipIfNoLapack
|
|
def test_cholesky_solve(self):
|
|
self._test_cholesky_solve(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_cholesky_solve_batched(self, cast):
|
|
from common_utils import random_symmetric_pd_matrix
|
|
|
|
def cholesky_solve_test_helper(A_dims, b_dims, cast, upper):
|
|
A = cast(random_symmetric_pd_matrix(*A_dims))
|
|
L = torch.cholesky(A, upper)
|
|
b = cast(torch.randn(*b_dims))
|
|
return A, L, b
|
|
|
|
for upper in [True, False]:
|
|
# test against cholesky_solve: one batch with both choices of upper
|
|
A, L, b = cholesky_solve_test_helper((5, 1), (1, 5, 10), cast, upper)
|
|
x_exp = torch.cholesky_solve(b.squeeze(0), L.squeeze(0), upper=upper)
|
|
x = torch.cholesky_solve(b, L, upper=upper)
|
|
self.assertEqual(x, x_exp.unsqueeze(0))
|
|
|
|
# test against cholesky_solve in a loop: four batches with both choices of upper
|
|
A, L, b = cholesky_solve_test_helper((5, 4), (4, 5, 10), cast, upper)
|
|
x_exp_list = []
|
|
for i in range(4):
|
|
x_exp = torch.cholesky_solve(b[i], L[i], upper=upper)
|
|
x_exp_list.append(x_exp)
|
|
x_exp = torch.stack(x_exp_list)
|
|
|
|
x = torch.cholesky_solve(b, L, upper=upper)
|
|
self.assertEqual(x, x_exp)
|
|
|
|
# basic correctness test
|
|
A, L, b = cholesky_solve_test_helper((5, 3), (3, 5, 10), cast, upper)
|
|
x = torch.cholesky_solve(b, L, upper)
|
|
self.assertLessEqual(b.dist(torch.matmul(A, x)), 1e-12)
|
|
|
|
# Test non-contiguous inputs.
|
|
if not TEST_NUMPY:
|
|
return
|
|
from numpy.linalg import solve
|
|
A = random_symmetric_pd_matrix(2, 2)
|
|
b = torch.randn(2, 2, 2)
|
|
x_exp = torch.Tensor(solve(A.permute(0, 2, 1).numpy(), b.permute(2, 1, 0).numpy()))
|
|
A = cast(A).permute(0, 2, 1)
|
|
b = cast(b).permute(2, 1, 0)
|
|
assert not A.is_contiguous() and not b.is_contiguous(), "contiguous inputs"
|
|
L = torch.cholesky(A, upper)
|
|
x = torch.cholesky_solve(b, L, upper=upper)
|
|
self.assertEqual(x, cast(x_exp))
|
|
|
|
@skipIfNoLapack
|
|
def test_cholesky_solve_batched(self):
|
|
self._test_cholesky_solve_batched(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_cholesky_solve_batched_dims(self, cast):
|
|
if not TEST_NUMPY:
|
|
return
|
|
|
|
from numpy.linalg import solve
|
|
from common_utils import random_symmetric_pd_matrix
|
|
|
|
def run_test(A_dims, b_dims, cast, upper):
|
|
A = random_symmetric_pd_matrix(*A_dims)
|
|
b = torch.randn(*b_dims)
|
|
x_exp = torch.Tensor(solve(A.numpy(), b.numpy()))
|
|
A, b = cast(A), cast(b)
|
|
L = torch.cholesky(A, upper)
|
|
x = torch.cholesky_solve(b, L, upper=upper)
|
|
self.assertEqual(x, cast(x_exp))
|
|
|
|
for upper in [True, False]:
|
|
# test against numpy.linalg.solve
|
|
run_test((4, 2, 1, 3), (2, 1, 3, 4, 6), cast, upper) # no broadcasting
|
|
run_test((4, 2, 1, 3), (4, 6), cast, upper) # broadcasting b
|
|
run_test((4,), (2, 1, 3, 4, 2), cast, upper) # broadcasting A
|
|
run_test((4, 1, 3, 1), (2, 1, 3, 4, 5), cast, upper) # broadcasting A & b
|
|
|
|
@skipIfNoLapack
|
|
def test_cholesky_solve_batched_dims(self):
|
|
self._test_cholesky_solve_batched_dims(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_cholesky_inverse(self, cast):
|
|
from common_utils import random_symmetric_pd_matrix
|
|
a = cast(random_symmetric_pd_matrix(5))
|
|
|
|
# compute inverse directly
|
|
inv0 = torch.inverse(a)
|
|
|
|
# default case
|
|
chol = torch.cholesky(a)
|
|
inv1 = torch.cholesky_inverse(chol, False)
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
# upper Triangular Test
|
|
chol = torch.cholesky(a, True)
|
|
inv1 = torch.cholesky_inverse(chol, True)
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
# lower Triangular Test
|
|
chol = torch.cholesky(a, False)
|
|
inv1 = torch.cholesky_inverse(chol, False)
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
@skipIfNoLapack
|
|
def test_cholesky_inverse(self):
|
|
self._test_cholesky_inverse(self, lambda t: t)
|
|
|
|
@skipIfNoLapack
|
|
def test_pstrf(self):
|
|
def checkPsdCholesky(a, uplo, inplace):
|
|
if inplace:
|
|
u = torch.empty_like(a)
|
|
piv = a.new(a.size(0)).int()
|
|
kwargs = {'out': (u, piv)}
|
|
else:
|
|
kwargs = {}
|
|
args = [a]
|
|
|
|
if uplo is not None:
|
|
args += [uplo]
|
|
|
|
u, piv = torch.pstrf(*args, **kwargs)
|
|
|
|
if uplo is False:
|
|
a_reconstructed = torch.mm(u, u.t())
|
|
else:
|
|
a_reconstructed = torch.mm(u.t(), u)
|
|
|
|
piv = piv.long()
|
|
a_permuted = a.index_select(0, piv).index_select(1, piv)
|
|
self.assertEqual(a_permuted, a_reconstructed, 1e-14)
|
|
|
|
dimensions = ((5, 1), (5, 3), (5, 5), (10, 10))
|
|
for dim in dimensions:
|
|
m = torch.Tensor(*dim).uniform_()
|
|
a = torch.mm(m, m.t())
|
|
# add a small number to the diagonal to make the matrix numerically positive semidefinite
|
|
for i in range(m.size(0)):
|
|
a[i][i] = a[i][i] + 1e-7
|
|
for inplace in (True, False):
|
|
for uplo in (None, True, False):
|
|
checkPsdCholesky(a, uplo, inplace)
|
|
|
|
def test_numel(self):
|
|
b = torch.ByteTensor(3, 100, 100)
|
|
self.assertEqual(b.nelement(), 3 * 100 * 100)
|
|
self.assertEqual(b.numel(), 3 * 100 * 100)
|
|
|
|
def _consecutive(self, size, start=1):
|
|
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.resize_(*size)
|
|
|
|
@staticmethod
|
|
def _test_index(self, conv_fn):
|
|
|
|
def consec(size, start=1):
|
|
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.view(*size)
|
|
|
|
reference = conv_fn(consec((3, 3, 3)))
|
|
|
|
# empty tensor indexing
|
|
self.assertEqual(reference[conv_fn(torch.LongTensor())], reference.new(0, 3, 3))
|
|
|
|
self.assertEqual(reference[0], consec((3, 3)), 0)
|
|
self.assertEqual(reference[1], consec((3, 3), 10), 0)
|
|
self.assertEqual(reference[2], consec((3, 3), 19), 0)
|
|
self.assertEqual(reference[0, 1], consec((3,), 4), 0)
|
|
self.assertEqual(reference[0:2], consec((2, 3, 3)), 0)
|
|
self.assertEqual(reference[2, 2, 2], 27, 0)
|
|
self.assertEqual(reference[:], consec((3, 3, 3)), 0)
|
|
|
|
# indexing with Ellipsis
|
|
self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9],
|
|
[12, 15, 18],
|
|
[21, 24, 27]]), 0)
|
|
self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), 0)
|
|
self.assertEqual(reference[..., 2], reference[:, :, 2], 0)
|
|
self.assertEqual(reference[0, ..., 2], reference[0, :, 2], 0)
|
|
self.assertEqual(reference[0, 2, ...], reference[0, 2], 0)
|
|
self.assertEqual(reference[..., 2, 2, 2], 27, 0)
|
|
self.assertEqual(reference[2, ..., 2, 2], 27, 0)
|
|
self.assertEqual(reference[2, 2, ..., 2], 27, 0)
|
|
self.assertEqual(reference[2, 2, 2, ...], 27, 0)
|
|
self.assertEqual(reference[...], reference, 0)
|
|
|
|
reference_5d = conv_fn(consec((3, 3, 3, 3, 3)))
|
|
self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], 0)
|
|
self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], 0)
|
|
self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], 0)
|
|
self.assertEqual(reference_5d[...], reference_5d, 0)
|
|
|
|
# LongTensor indexing
|
|
reference = conv_fn(consec((5, 5, 5)))
|
|
idx = conv_fn(torch.LongTensor([2, 4]))
|
|
self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]]))
|
|
# TODO: enable one indexing is implemented like in numpy
|
|
# self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]]))
|
|
# self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1])
|
|
|
|
# None indexing
|
|
self.assertEqual(reference[2, None], reference[2].unsqueeze(0))
|
|
self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0))
|
|
self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1))
|
|
self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0))
|
|
self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2))
|
|
|
|
# indexing 0-length slice
|
|
self.assertEqual(torch.empty(0, 5, 5), reference[slice(0)])
|
|
self.assertEqual(torch.empty(0, 5), reference[slice(0), 2])
|
|
self.assertEqual(torch.empty(0, 5), reference[2, slice(0)])
|
|
self.assertEqual(torch.tensor([]), reference[2, 1:1, 2])
|
|
|
|
# indexing with step
|
|
reference = consec((10, 10, 10))
|
|
self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0))
|
|
self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0))
|
|
self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0))
|
|
self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1))
|
|
self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0))
|
|
self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0))
|
|
self.assertEqual(reference[:, 2, 1:6:2],
|
|
torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1))
|
|
|
|
lst = [list(range(i, i + 10)) for i in range(0, 100, 10)]
|
|
tensor = conv_fn(torch.DoubleTensor(lst))
|
|
for _i in range(100):
|
|
idx1_start = random.randrange(10)
|
|
idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1)
|
|
idx1_step = random.randrange(1, 8)
|
|
idx1 = slice(idx1_start, idx1_end, idx1_step)
|
|
if random.randrange(2) == 0:
|
|
idx2_start = random.randrange(10)
|
|
idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1)
|
|
idx2_step = random.randrange(1, 8)
|
|
idx2 = slice(idx2_start, idx2_end, idx2_step)
|
|
lst_indexed = list(map(lambda l: l[idx2], lst[idx1]))
|
|
tensor_indexed = tensor[idx1, idx2]
|
|
else:
|
|
lst_indexed = lst[idx1]
|
|
tensor_indexed = tensor[idx1]
|
|
self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed)
|
|
|
|
self.assertRaises(ValueError, lambda: reference[1:9:0])
|
|
self.assertRaises(ValueError, lambda: reference[1:9:-1])
|
|
|
|
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1])
|
|
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1])
|
|
self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3])
|
|
|
|
self.assertRaises(IndexError, lambda: reference[0.0])
|
|
self.assertRaises(TypeError, lambda: reference[0.0:2.0])
|
|
self.assertRaises(IndexError, lambda: reference[0.0, 0.0:2.0])
|
|
self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0:2.0])
|
|
self.assertRaises(IndexError, lambda: reference[0.0, ..., 0.0:2.0])
|
|
self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0])
|
|
|
|
def delitem():
|
|
del reference[0]
|
|
|
|
self.assertRaises(TypeError, delitem)
|
|
|
|
def test_index(self):
|
|
self._test_index(self, lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_advancedindex(self, conv_fn):
|
|
# Tests for Integer Array Indexing, Part I - Purely integer array
|
|
# indexing
|
|
|
|
def consec(size, start=1):
|
|
numel = reduce(lambda x, y: x * y, size, 1)
|
|
sequence = torch.ones(numel).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.view(*size)
|
|
|
|
# pick a random valid indexer type
|
|
def ri(indices):
|
|
choice = random.randint(0, 2)
|
|
if choice == 0:
|
|
return conv_fn(torch.LongTensor(indices))
|
|
elif choice == 1:
|
|
return list(indices)
|
|
else:
|
|
return tuple(indices)
|
|
|
|
def validate_indexing(x):
|
|
self.assertEqual(x[[0]], consec((1,)))
|
|
self.assertEqual(x[ri([0]), ], consec((1,)))
|
|
self.assertEqual(x[ri([3]), ], consec((1,), 4))
|
|
self.assertEqual(x[[2, 3, 4]], consec((3,), 3))
|
|
self.assertEqual(x[ri([2, 3, 4]), ], consec((3,), 3))
|
|
self.assertEqual(x[ri([0, 2, 4]), ], torch.Tensor([1, 3, 5]))
|
|
|
|
def validate_setting(x):
|
|
dtype = x.type()
|
|
x[[0]] = -2
|
|
self.assertEqual(x[[0]], torch.Tensor([-2]).type(dtype))
|
|
x[[0]] = -1
|
|
self.assertEqual(x[ri([0]), ], torch.Tensor([-1]).type(dtype))
|
|
x[[2, 3, 4]] = 4
|
|
self.assertEqual(x[[2, 3, 4]], torch.Tensor([4, 4, 4]).type(dtype))
|
|
x[ri([2, 3, 4]), ] = 3
|
|
self.assertEqual(x[ri([2, 3, 4]), ], torch.Tensor([3, 3, 3]).type(dtype))
|
|
x[ri([0, 2, 4]), ] = conv_fn(torch.Tensor([5, 4, 3])).type(dtype)
|
|
self.assertEqual(x[ri([0, 2, 4]), ], torch.Tensor([5, 4, 3]).type(dtype))
|
|
|
|
# First, we will test indexing to generate return values
|
|
|
|
# Case 1: Purely Integer Array Indexing
|
|
reference = conv_fn(consec((10,)))
|
|
validate_indexing(reference)
|
|
validate_indexing(reference.type(torch.half))
|
|
|
|
# setting values
|
|
validate_setting(reference)
|
|
validate_setting(reference.type(torch.half))
|
|
|
|
# Tensor with stride != 1
|
|
|
|
# strided is [1, 3, 5, 7]
|
|
reference = conv_fn(consec((10,)))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), storage_offset=0,
|
|
size=torch.Size([4]), stride=[2])
|
|
|
|
self.assertEqual(strided[[0]], torch.Tensor([1]))
|
|
self.assertEqual(strided[ri([0]), ], torch.Tensor([1]))
|
|
self.assertEqual(strided[ri([3]), ], torch.Tensor([7]))
|
|
self.assertEqual(strided[[1, 2]], torch.Tensor([3, 5]))
|
|
self.assertEqual(strided[ri([1, 2]), ], torch.Tensor([3, 5]))
|
|
self.assertEqual(strided[ri([[2, 1], [0, 3]]), ],
|
|
torch.Tensor([[5, 3], [1, 7]]))
|
|
|
|
# stride is [4, 8]
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), storage_offset=4,
|
|
size=torch.Size([2]), stride=[4])
|
|
self.assertEqual(strided[[0]], torch.Tensor([5]))
|
|
self.assertEqual(strided[ri([0]), ], torch.Tensor([5]))
|
|
self.assertEqual(strided[ri([1]), ], torch.Tensor([9]))
|
|
self.assertEqual(strided[[0, 1]], torch.Tensor([5, 9]))
|
|
self.assertEqual(strided[ri([0, 1]), ], torch.Tensor([5, 9]))
|
|
self.assertEqual(strided[ri([[0, 1], [1, 0]]), ],
|
|
torch.Tensor([[5, 9], [9, 5]]))
|
|
|
|
# reference is 1 2
|
|
# 3 4
|
|
# 5 6
|
|
reference = conv_fn(consec((3, 2)))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([1, 3, 5]))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([2, 4, 6]))
|
|
self.assertEqual(reference[ri([0]), ri([0])], consec((1,)))
|
|
self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6))
|
|
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([1, 2]))
|
|
self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]],
|
|
torch.Tensor([2, 4, 4, 2, 6]))
|
|
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.Tensor([1, 2, 3, 3]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = [0],
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[1, 1],
|
|
[3, 5]]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([1, 0])
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[2, 1],
|
|
[4, 5]]))
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([[0, 1],
|
|
[1, 0]])
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[1, 2],
|
|
[4, 5]]))
|
|
|
|
# setting values
|
|
reference[ri([0]), ri([1])] = -1
|
|
self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1]))
|
|
reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4]))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1,
|
|
2, -4]))
|
|
reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.Tensor([[4, 6], [2, 3]]))
|
|
|
|
# Verify still works with Transposed (i.e. non-contiguous) Tensors
|
|
|
|
reference = conv_fn(torch.Tensor([[0, 1, 2, 3],
|
|
[4, 5, 6, 7],
|
|
[8, 9, 10, 11]])).t_()
|
|
|
|
# Transposed: [[0, 4, 8],
|
|
# [1, 5, 9],
|
|
# [2, 6, 10],
|
|
# [3, 7, 11]]
|
|
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([0, 1,
|
|
2]))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([4, 5,
|
|
6]))
|
|
self.assertEqual(reference[ri([0]), ri([0])], torch.Tensor([0]))
|
|
self.assertEqual(reference[ri([2]), ri([1])], torch.Tensor([6]))
|
|
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([0, 4]))
|
|
self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]],
|
|
torch.Tensor([4, 5, 5, 4, 7]))
|
|
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.Tensor([0, 4, 1, 1]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = [0],
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[0, 0],
|
|
[1, 2]]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([1, 0])
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[4, 0],
|
|
[5, 2]]))
|
|
rows = ri([[0, 0],
|
|
[1, 3]])
|
|
columns = ri([[0, 1],
|
|
[1, 2]])
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[0, 4],
|
|
[5, 11]]))
|
|
|
|
# setting values
|
|
reference[ri([0]), ri([1])] = -1
|
|
self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1]))
|
|
reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4]))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1,
|
|
2, -4]))
|
|
reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.Tensor([[4, 6], [2, 3]]))
|
|
|
|
# stride != 1
|
|
|
|
# strided is [[1 3 5 7],
|
|
# [9 11 13 15]]
|
|
|
|
reference = conv_fn(torch.arange(0., 24).view(3, 8))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), 1, size=torch.Size([2, 4]),
|
|
stride=[8, 2])
|
|
|
|
self.assertEqual(strided[ri([0, 1]), ri([0])], torch.Tensor([1, 9]))
|
|
self.assertEqual(strided[ri([0, 1]), ri([1])], torch.Tensor([3, 11]))
|
|
self.assertEqual(strided[ri([0]), ri([0])], torch.Tensor([1]))
|
|
self.assertEqual(strided[ri([1]), ri([3])], torch.Tensor([15]))
|
|
self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]], torch.Tensor([1, 7]))
|
|
self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]],
|
|
torch.Tensor([9, 11, 11, 9, 15]))
|
|
self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.Tensor([1, 3, 9, 9]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 1]])
|
|
columns = [0],
|
|
self.assertEqual(strided[rows, columns], torch.Tensor([[1, 1],
|
|
[9, 9]]))
|
|
|
|
rows = ri([[0, 1],
|
|
[1, 0]])
|
|
columns = ri([1, 2])
|
|
self.assertEqual(strided[rows, columns], torch.Tensor([[3, 13],
|
|
[11, 5]]))
|
|
rows = ri([[0, 0],
|
|
[1, 1]])
|
|
columns = ri([[0, 1],
|
|
[1, 2]])
|
|
self.assertEqual(strided[rows, columns], torch.Tensor([[1, 3],
|
|
[11, 13]]))
|
|
|
|
# setting values
|
|
|
|
# strided is [[10, 11],
|
|
# [17, 18]]
|
|
|
|
reference = conv_fn(torch.arange(0., 24).view(3, 8))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([11]))
|
|
strided[ri([0]), ri([1])] = -1
|
|
self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([-1]))
|
|
|
|
reference = conv_fn(torch.arange(0., 24).view(3, 8))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([11,
|
|
17]))
|
|
strided[ri([0, 1]), ri([1, 0])] = conv_fn(torch.Tensor([-1, 2]))
|
|
self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([-1,
|
|
2]))
|
|
|
|
reference = conv_fn(torch.arange(0., 24).view(3, 8))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
|
|
rows = ri([[0],
|
|
[1]])
|
|
columns = ri([[0, 1],
|
|
[0, 1]])
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.Tensor([[10, 11], [17, 18]]))
|
|
strided[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.Tensor([[4, 6], [2, 3]]))
|
|
|
|
# Tests using less than the number of dims, and ellipsis
|
|
|
|
# reference is 1 2
|
|
# 3 4
|
|
# 5 6
|
|
reference = conv_fn(consec((3, 2)))
|
|
self.assertEqual(reference[ri([0, 2]), ], torch.Tensor([[1, 2], [5, 6]]))
|
|
self.assertEqual(reference[ri([1]), ...], torch.Tensor([[3, 4]]))
|
|
self.assertEqual(reference[..., ri([1])], torch.Tensor([[2], [4], [6]]))
|
|
|
|
# verify too many indices fails
|
|
with self.assertRaises(IndexError):
|
|
reference[ri([1]), ri([0, 2]), ri([3])]
|
|
|
|
# test invalid index fails
|
|
reference = conv_fn(torch.empty(10))
|
|
# can't test cuda because it is a device assert
|
|
if not reference.is_cuda:
|
|
for err_idx in (10, -11):
|
|
with self.assertRaisesRegex(IndexError, r'out of'):
|
|
reference[err_idx]
|
|
with self.assertRaisesRegex(IndexError, r'out of'):
|
|
reference[conv_fn(torch.LongTensor([err_idx]))]
|
|
with self.assertRaisesRegex(IndexError, r'out of'):
|
|
reference[[err_idx]]
|
|
|
|
if TEST_NUMPY:
|
|
# we use numpy to compare against, to verify that our advanced
|
|
# indexing semantics are the same, and also for ease of test
|
|
# writing
|
|
|
|
def tensor_indices_to_np(tensor, indices):
|
|
# convert the Torch Tensor to a numpy array
|
|
if (tensor.is_cuda):
|
|
tensor = tensor.cpu()
|
|
npt = tensor.numpy()
|
|
|
|
# convert indices
|
|
idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else
|
|
i for i in indices)
|
|
|
|
return npt, idxs
|
|
|
|
def get_numpy(tensor, indices):
|
|
npt, idxs = tensor_indices_to_np(tensor, indices)
|
|
|
|
# index and return as a Torch Tensor
|
|
return torch.Tensor(npt[idxs])
|
|
|
|
def set_numpy(tensor, indices, value):
|
|
if not isinstance(value, int):
|
|
if value.is_cuda:
|
|
value = value.cpu()
|
|
value = value.numpy()
|
|
|
|
npt, idxs = tensor_indices_to_np(tensor, indices)
|
|
npt[idxs] = value
|
|
return npt
|
|
|
|
def assert_get_eq(tensor, indexer):
|
|
self.assertEqual(tensor[indexer],
|
|
conv_fn(get_numpy(tensor, indexer)))
|
|
|
|
def assert_set_eq(tensor, indexer, val):
|
|
pyt = tensor.clone()
|
|
numt = tensor.clone()
|
|
pyt[indexer] = val
|
|
numt = conv_fn(torch.Tensor(set_numpy(numt, indexer, val)))
|
|
self.assertEqual(pyt, numt)
|
|
|
|
def get_set_tensor(indexed, indexer):
|
|
set_size = indexed[indexer].size()
|
|
set_count = indexed[indexer].numel()
|
|
set_tensor = conv_fn(torch.randperm(set_count).view(set_size).double())
|
|
return set_tensor
|
|
|
|
# Tensor is 0 1 2 3 4
|
|
# 5 6 7 8 9
|
|
# 10 11 12 13 14
|
|
# 15 16 17 18 19
|
|
reference = conv_fn(torch.arange(0., 20).view(4, 5))
|
|
|
|
indices_to_test = [
|
|
# grab the second, fourth columns
|
|
[slice(None), [1, 3]],
|
|
|
|
# first, third rows,
|
|
[[0, 2], slice(None)],
|
|
|
|
# weird shape
|
|
[slice(None), [[0, 1],
|
|
[2, 3]]],
|
|
# negatives
|
|
[[-1], [0]],
|
|
[[0, 2], [-1]],
|
|
[slice(None), [-1]],
|
|
]
|
|
|
|
# only test dupes on gets
|
|
get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]]
|
|
|
|
for indexer in get_indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
|
|
for indexer in indices_to_test:
|
|
assert_set_eq(reference, indexer, 44)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
|
|
reference = conv_fn(torch.arange(0., 160).view(4, 8, 5))
|
|
|
|
indices_to_test = [
|
|
[slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), [2, 4, 5, 7], slice(None)],
|
|
[[2, 3], slice(None), slice(None)],
|
|
[slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [0], [1, 2, 4]],
|
|
[slice(None), [0, 1, 3], [4]],
|
|
[slice(None), [[0, 1], [1, 0]], [[2, 3]]],
|
|
[slice(None), [[0, 1], [2, 3]], [[0]]],
|
|
[slice(None), [[5, 6]], [[0, 3], [4, 4]]],
|
|
[[0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0], [1, 2, 4], slice(None)],
|
|
[[0, 1, 3], [4], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 3]], slice(None)],
|
|
[[[0, 1], [2, 3]], [[0]], slice(None)],
|
|
[[[2, 1]], [[0, 3], [4, 4]], slice(None)],
|
|
[[[2]], [[0, 3], [4, 1]], slice(None)],
|
|
|
|
# less dim, ellipsis
|
|
[[0, 2], ],
|
|
[[0, 2], slice(None)],
|
|
[[0, 2], Ellipsis],
|
|
[[0, 2], slice(None), Ellipsis],
|
|
[[0, 2], Ellipsis, slice(None)],
|
|
[[0, 2], [1, 3]],
|
|
[[0, 2], [1, 3], Ellipsis],
|
|
[Ellipsis, [1, 3], [2, 3]],
|
|
[Ellipsis, [2, 3, 4]],
|
|
[Ellipsis, slice(None), [2, 3, 4]],
|
|
[slice(None), Ellipsis, [2, 3, 4]],
|
|
|
|
# ellipsis counts for nothing
|
|
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), Ellipsis, slice(None), [0, 3, 4]],
|
|
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), slice(None), [0, 3, 4], Ellipsis],
|
|
[Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis],
|
|
]
|
|
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 212)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
|
|
reference = conv_fn(torch.arange(0., 1296).view(3, 9, 8, 6))
|
|
|
|
indices_to_test = [
|
|
[slice(None), slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), slice(None), [2, 4, 5, 7], slice(None)],
|
|
[slice(None), [2, 3], slice(None), slice(None)],
|
|
[[1, 2], slice(None), slice(None), slice(None)],
|
|
[slice(None), slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), slice(None), [0], [1, 2, 4]],
|
|
[slice(None), slice(None), [0, 1, 3], [4]],
|
|
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]],
|
|
[slice(None), slice(None), [[0, 1], [2, 3]], [[0]]],
|
|
[slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[slice(None), [0], [1, 2, 4], slice(None)],
|
|
[slice(None), [0, 1, 3], [4], slice(None)],
|
|
[slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)],
|
|
[slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)],
|
|
[slice(None), [[0, 1], [3, 2]], [[0]], slice(None)],
|
|
[slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)],
|
|
[slice(None), [[2]], [[0, 3], [4, 2]], slice(None)],
|
|
[[0, 1, 2], [1, 3, 4], slice(None), slice(None)],
|
|
[[0], [1, 2, 4], slice(None), slice(None)],
|
|
[[0, 1, 2], [4], slice(None), slice(None)],
|
|
[[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)],
|
|
[[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)],
|
|
[[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)],
|
|
[[[2]], [[0, 3], [4, 5]], slice(None), slice(None)],
|
|
[slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [2, 3, 4], [1, 3, 4], [4]],
|
|
[slice(None), [0, 1, 3], [4], [1, 3, 4]],
|
|
[slice(None), [6], [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [2, 3, 5], [3], [4]],
|
|
[slice(None), [0], [4], [1, 3, 4]],
|
|
[slice(None), [6], [0, 2, 3], [1]],
|
|
[slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]],
|
|
[[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[2, 0, 1], [1, 2, 3], [4], slice(None)],
|
|
[[0, 1, 2], [4], [1, 3, 4], slice(None)],
|
|
[[0], [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0, 2, 1], [3], [4], slice(None)],
|
|
[[0], [4], [1, 3, 4], slice(None)],
|
|
[[1], [0, 2, 3], [1], slice(None)],
|
|
[[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)],
|
|
|
|
# less dim, ellipsis
|
|
[Ellipsis, [0, 3, 4]],
|
|
[Ellipsis, slice(None), [0, 3, 4]],
|
|
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4], Ellipsis],
|
|
[Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0], [1, 2, 4]],
|
|
[[0], [1, 2, 4], slice(None)],
|
|
[[0], [1, 2, 4], Ellipsis],
|
|
[[0], [1, 2, 4], Ellipsis, slice(None)],
|
|
[[1], ],
|
|
[[0, 2, 1], [3], [4]],
|
|
[[0, 2, 1], [3], [4], slice(None)],
|
|
[[0, 2, 1], [3], [4], Ellipsis],
|
|
[Ellipsis, [0, 2, 1], [3], [4]],
|
|
]
|
|
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 1333)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
indices_to_test += [
|
|
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
|
|
[slice(None), slice(None), [[2]], [[0, 3], [4, 4]]],
|
|
]
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 1333)
|
|
|
|
def test_advancedindex(self):
|
|
self._test_advancedindex(self, lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_advancedindex_big(self, conv_fn):
|
|
reference = conv_fn(torch.arange(0, 123344).int())
|
|
|
|
self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ],
|
|
torch.LongTensor([0, 123, 44488, 68807, 123343]))
|
|
|
|
def test_advancedindex_big(self):
|
|
self._test_advancedindex_big(self, lambda x: x)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_newaxis_numpy_comparison(self):
|
|
def run_test(tensor, *idx):
|
|
npt = tensor.numpy()
|
|
self.assertEqual(tensor[idx], npt[idx])
|
|
|
|
# 1D Tensor Tests
|
|
x = torch.arange(0, 10)
|
|
cases = [
|
|
[None],
|
|
[None, None],
|
|
[Ellipsis, None],
|
|
[None, Ellipsis],
|
|
[2, None],
|
|
[None, 2],
|
|
[Ellipsis, None, 2],
|
|
[Ellipsis, 2, None],
|
|
[2, Ellipsis, None],
|
|
[2, None, Ellipsis],
|
|
[None, 2, Ellipsis],
|
|
[None, Ellipsis, 2],
|
|
]
|
|
|
|
for case in cases:
|
|
run_test(x, *case)
|
|
|
|
# 2D Tensor Tests
|
|
x = torch.arange(0, 12).view(3, 4)
|
|
cases = [
|
|
[None],
|
|
[None, None],
|
|
[None, None, None],
|
|
[Ellipsis, None],
|
|
[Ellipsis, None, None],
|
|
[None, Ellipsis],
|
|
[None, Ellipsis, None],
|
|
[None, None, Ellipsis],
|
|
[2, None],
|
|
[2, None, Ellipsis],
|
|
[2, Ellipsis, None],
|
|
[None, 2, Ellipsis],
|
|
[Ellipsis, 2, None],
|
|
[Ellipsis, None, 2],
|
|
[None, Ellipsis, 2],
|
|
[1, 2, None],
|
|
[1, 2, Ellipsis, None],
|
|
[1, Ellipsis, 2, None],
|
|
[Ellipsis, 1, None, 2],
|
|
[Ellipsis, 1, 2, None],
|
|
[1, None, 2, Ellipsis],
|
|
[None, 1, Ellipsis, 2],
|
|
[None, 1, 2, Ellipsis],
|
|
]
|
|
|
|
for case in cases:
|
|
run_test(x, *case)
|
|
|
|
def test_newindex(self):
|
|
reference = self._consecutive((3, 3, 3))
|
|
# This relies on __index__() being correct - but we have separate tests for that
|
|
|
|
def checkPartialAssign(index):
|
|
reference = torch.zeros(3, 3, 3)
|
|
reference[index] = self._consecutive((3, 3, 3))[index]
|
|
self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], 0)
|
|
reference[index] = 0
|
|
self.assertEqual(reference, torch.zeros(3, 3, 3), 0)
|
|
|
|
checkPartialAssign(0)
|
|
checkPartialAssign(1)
|
|
checkPartialAssign(2)
|
|
checkPartialAssign((0, 1))
|
|
checkPartialAssign((1, 2))
|
|
checkPartialAssign((0, 2))
|
|
checkPartialAssign(torch.LongTensor((0, 2)))
|
|
|
|
with self.assertRaises(IndexError):
|
|
reference[1, 1, 1, 1] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[1, 1, 1, (1, 1)] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[3, 3, 3, 3, 3, 3, 3, 3] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, :, 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, ..., 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, :, 0.0] = 1
|
|
|
|
def test_index_copy(self):
|
|
num_copy, num_dest = 3, 20
|
|
dest = torch.randn(num_dest, 4, 5)
|
|
src = torch.randn(num_copy, 4, 5)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_copy_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] = src[i]
|
|
self.assertEqual(dest, dest2, 0)
|
|
|
|
dest = torch.randn(num_dest)
|
|
src = torch.randn(num_copy)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_copy_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] = src[i]
|
|
self.assertEqual(dest, dest2, 0)
|
|
|
|
def test_index_add(self):
|
|
num_copy, num_dest = 3, 3
|
|
dest = torch.randn(num_dest, 4, 5)
|
|
src = torch.randn(num_copy, 4, 5)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_add_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] += src[i]
|
|
self.assertEqual(dest, dest2)
|
|
|
|
dest = torch.randn(num_dest)
|
|
src = torch.randn(num_copy)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_add_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] = dest2[idx[i]] + src[i]
|
|
self.assertEqual(dest, dest2)
|
|
|
|
def test_index_select(self):
|
|
src = torch.randn(3, 4, 5)
|
|
# Index can be duplicated.
|
|
idx = torch.LongTensor([2, 1, 0, 1, 2])
|
|
dest = torch.index_select(src, 0, idx)
|
|
self.assertEqual(dest.shape, (5, 4, 5))
|
|
for i in range(idx.size(0)):
|
|
self.assertEqual(dest[i], src[idx[i]])
|
|
|
|
# Check that 'out' is used correctly.
|
|
out = torch.randn(5 * 4 * 5)
|
|
dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5))
|
|
self.assertEqual(dest.shape, (5, 4, 5))
|
|
for i in range(idx.size(0)):
|
|
self.assertEqual(dest[i], src[idx[i]])
|
|
out.fill_(0.123)
|
|
self.assertEqual(out, dest.view(-1)) # Must point to the same storage.
|
|
|
|
def test_t(self):
|
|
# Test 0D tensors
|
|
x = torch.randn(())
|
|
self.assertEqual(x, x.t())
|
|
x = x.to_sparse()
|
|
self.assertEqual(x, x.t())
|
|
|
|
# Test 1D tensors
|
|
x = torch.arange(4)
|
|
self.assertEqual(x, x.t())
|
|
x = x.to_sparse()
|
|
self.assertEqual(x, x.t())
|
|
|
|
# Test 2D tensors
|
|
x = torch.rand((2, 2))
|
|
self.assertEqual(x.t(), x.transpose(0, 1))
|
|
x = x.to_sparse()
|
|
self.assertEqual(x.t(), x.transpose(0, 1))
|
|
|
|
# Test 3D tensor
|
|
x = torch.rand((2, 2, 2))
|
|
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 dimensions, but self is 3D'):
|
|
x.t()
|
|
x = x.to_sparse()
|
|
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 sparse and 0 dense dimensions'):
|
|
x.t()
|
|
|
|
def test_take(self):
|
|
def check(src, idx):
|
|
expected = src.contiguous().view(-1).index_select(
|
|
0, idx.contiguous().view(-1)).view_as(idx)
|
|
actual = src.take(idx)
|
|
self.assertEqual(actual.size(), idx.size())
|
|
self.assertEqual(expected, actual)
|
|
|
|
src = torch.randn(2, 3, 5)
|
|
idx = torch.LongTensor([[0, 2], [3, 4]])
|
|
check(src, idx)
|
|
check(src.transpose(1, 2), idx)
|
|
|
|
def test_take_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for input_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
|
|
for indices_shape in [(0,), (0, 1, 2, 0)]:
|
|
input = torch.empty(input_shape, device=device)
|
|
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
|
|
self.assertEqual(indices, torch.take(input, indices))
|
|
|
|
def test_put_(self):
|
|
def check(dst, idx, value):
|
|
expected = dst.clone().view(-1).index_copy_(
|
|
0, idx.contiguous().view(-1), value.contiguous().view(-1))
|
|
expected = expected.view_as(dst)
|
|
dst.put_(idx, value)
|
|
self.assertEqual(expected, dst)
|
|
|
|
dst = torch.randn(2, 3, 5)
|
|
idx = torch.LongTensor([[0, 2], [3, 4]])
|
|
values = torch.randn(2, 2)
|
|
check(dst, idx, values)
|
|
check(dst.transpose(1, 2), idx, values)
|
|
|
|
def test_put_accumulate(self):
|
|
dst = torch.ones(2, 2)
|
|
idx = torch.LongTensor([[0, 1], [0, 1]])
|
|
src = torch.Tensor([1, 2, 3, 4])
|
|
dst.put_(idx, src, accumulate=True)
|
|
self.assertEqual(dst.tolist(), [[5, 7], [1, 1]])
|
|
|
|
def test_put_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for dst_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
|
|
for indices_shape in [(0,), (0, 1, 2, 0)]:
|
|
for accumulate in [False, True]:
|
|
dst = torch.randn(dst_shape, device=device)
|
|
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
|
|
src = torch.randn(indices_shape, device=device)
|
|
self.assertEqual(dst, dst.put_(indices, src, accumulate=accumulate))
|
|
|
|
# Fill idx with valid indices.
|
|
@staticmethod
|
|
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o):
|
|
for i in range(1 if dim == 0 else m):
|
|
for j in range(1 if dim == 1 else n):
|
|
for k in range(1 if dim == 2 else o):
|
|
ii = [i, j, k]
|
|
ii[dim] = slice(0, idx.size(dim) + 1)
|
|
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
|
|
|
|
def test_flatten(self):
|
|
src = torch.randn(5, 5, 5, 5)
|
|
flat = src.flatten(0, -1)
|
|
self.assertEqual(flat.shape, torch.Size([625]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(0, 2)
|
|
self.assertEqual(flat.shape, torch.Size([125, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(0, 1)
|
|
self.assertEqual(flat.shape, torch.Size([25, 5, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(1, 2)
|
|
self.assertEqual(flat.shape, torch.Size([5, 25, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(2, 3)
|
|
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(-2, -1)
|
|
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(2, 2)
|
|
self.assertEqual(flat, src)
|
|
|
|
# out of bounds index
|
|
with self.assertRaisesRegex(IndexError, 'Dimension out of range'):
|
|
src.flatten(5, 10)
|
|
|
|
# invalid start and end
|
|
with self.assertRaisesRegex(RuntimeError, 'start_dim cannot come after end_dim'):
|
|
src.flatten(2, 0)
|
|
|
|
@staticmethod
|
|
def _test_gather(self, cast, test_bounds=True):
|
|
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
|
|
elems_per_row = random.randint(1, 10)
|
|
dim = random.randrange(3)
|
|
|
|
src = torch.randn(m, n, o)
|
|
idx_size = [m, n, o]
|
|
idx_size[dim] = elems_per_row
|
|
idx = torch.LongTensor().resize_(*idx_size)
|
|
_TestTorchMixin._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o)
|
|
|
|
src = cast(src)
|
|
idx = cast(idx)
|
|
|
|
actual = torch.gather(src, dim, idx)
|
|
expected = cast(torch.Tensor().resize_(*idx_size))
|
|
for i in range(idx_size[0]):
|
|
for j in range(idx_size[1]):
|
|
for k in range(idx_size[2]):
|
|
ii = [i, j, k]
|
|
ii[dim] = idx[i, j, k]
|
|
expected[i, j, k] = src[tuple(ii)]
|
|
self.assertEqual(actual, expected, 0)
|
|
|
|
if test_bounds:
|
|
idx[0][0][0] = 23
|
|
self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx))
|
|
|
|
src = cast(torch.randn(3, 4, 5))
|
|
expected, idx = src.max(2, True)
|
|
expected = cast(expected)
|
|
idx = cast(idx)
|
|
actual = torch.gather(src, 2, idx)
|
|
self.assertEqual(actual, expected, 0)
|
|
|
|
def test_gather(self):
|
|
self._test_gather(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True):
|
|
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
|
|
elems_per_row = random.randint(1, 10)
|
|
dim = random.randrange(3)
|
|
|
|
idx_size = [m, n, o]
|
|
idx_size[dim] = elems_per_row
|
|
idx = cast(torch.LongTensor().resize_(*idx_size))
|
|
_TestTorchMixin._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o)
|
|
|
|
if is_scalar:
|
|
src = random.random()
|
|
else:
|
|
src = cast(torch.Tensor(*idx_size).normal_())
|
|
|
|
base = cast(torch.randn(m, n, o))
|
|
actual = getattr(base.clone(), method)(dim, idx, src)
|
|
expected = base.clone()
|
|
for i in range(idx_size[0]):
|
|
for j in range(idx_size[1]):
|
|
for k in range(idx_size[2]):
|
|
ii = [i, j, k]
|
|
ii[dim] = idx[i, j, k]
|
|
if method == 'scatter_' and not is_scalar:
|
|
expected[tuple(ii)] = src[i, j, k]
|
|
elif method == 'scatter_add_':
|
|
expected[tuple(ii)] += src[i, j, k]
|
|
else:
|
|
expected[tuple(ii)] = src
|
|
self.assertEqual(actual, expected, 0)
|
|
|
|
if test_bounds:
|
|
idx[0][0][0] = 34
|
|
with self.assertRaises(RuntimeError):
|
|
getattr(base.clone(), method)(dim, idx, src)
|
|
|
|
# test for empty index, should be a no-op
|
|
idx = cast(torch.LongTensor())
|
|
actual = getattr(base.clone(), method)(dim, idx, src)
|
|
self.assertEqual(actual, base, 0)
|
|
|
|
def test_scatter(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_')
|
|
|
|
def test_scatterAdd(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_add_')
|
|
|
|
def test_scatterFill(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_', True)
|
|
|
|
def test_masked_scatter(self):
|
|
for dtype in [torch.uint8, torch.bool]:
|
|
num_copy, num_dest = 3, 10
|
|
dest = torch.randn(num_dest)
|
|
src = torch.randn(num_copy)
|
|
mask = torch.tensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0), dtype=dtype)
|
|
dest2 = dest.clone()
|
|
dest.masked_scatter_(mask, src)
|
|
j = 0
|
|
for i in range(num_dest):
|
|
if mask[i]:
|
|
dest2[i] = src[j]
|
|
j += 1
|
|
self.assertEqual(dest, dest2, 0)
|
|
|
|
# make source bigger than number of 1s in mask
|
|
src = torch.randn(num_dest)
|
|
dest.masked_scatter_(mask, src)
|
|
|
|
# make src smaller. this should fail
|
|
src = torch.randn(num_copy - 1)
|
|
with self.assertRaises(RuntimeError):
|
|
dest.masked_scatter_(mask, src)
|
|
|
|
def test_masked_select(self):
|
|
for dtype in [torch.uint8, torch.bool]:
|
|
num_src = 10
|
|
src = torch.randn(num_src)
|
|
mask = torch.rand(num_src).clamp(0, 1).mul(2).floor().to(dtype)
|
|
dst = src.masked_select(mask)
|
|
dst2 = []
|
|
for i in range(num_src):
|
|
if mask[i]:
|
|
dst2 += [src[i]]
|
|
self.assertEqual(dst, torch.Tensor(dst2), 0)
|
|
|
|
def test_masked_fill(self):
|
|
for dtype in [torch.uint8, torch.bool]:
|
|
num_dest = 10
|
|
dst = torch.randn(num_dest)
|
|
mask = torch.rand(num_dest).mul(2).floor().to(dtype)
|
|
val = random.random()
|
|
dst2 = dst.clone()
|
|
dst.masked_fill_(mask, val)
|
|
for i in range(num_dest):
|
|
if mask[i]:
|
|
dst2[i] = val
|
|
self.assertEqual(dst, dst2, 0)
|
|
|
|
# test non-contiguous case
|
|
dst = torch.randn(num_dest, num_dest, num_dest).permute((2, 0, 1))
|
|
dst2 = dst.clone()
|
|
dst.masked_fill_((dst > 0).to(dtype), val)
|
|
dst2.masked_fill_((dst2 > 0).to(dtype), val)
|
|
self.assertEqual(dst, dst2, 0)
|
|
|
|
def test_abs(self):
|
|
def _test_abs(tensors_dict):
|
|
for _category, tensors in tensors_dict.items():
|
|
for data in tensors:
|
|
_test_abs_single(data)
|
|
|
|
def _test_abs_single(data):
|
|
switch = torch.rand(data.size()).mul(2).floor().mul(2).add(-1).type(data.dtype)
|
|
res = torch.mul(data, switch)
|
|
self.assertTensorsSlowEqual(res.abs(), data, 1e-16)
|
|
|
|
shapes = [(3, 4), (3, 5, 7), (2, 2, 5, 8, 2, 3), (1000,), (10, 10, 10)]
|
|
|
|
for shape in shapes:
|
|
# Test all except char/byte
|
|
_test_abs(self._make_tensors(shape, val_range=(0, 1000)))
|
|
|
|
# Test char
|
|
_test_abs_single(torch.CharTensor(*shape).random_(0, 100))
|
|
|
|
# Test byte
|
|
byte_tensor = torch.ByteTensor(*shape).random_(0, 100)
|
|
self.assertTensorsSlowEqual(byte_tensor, byte_tensor.abs(), 1e-16)
|
|
|
|
# Checking that the right abs function is called for LongTensor
|
|
bignumber = 2 ^ 31 + 1
|
|
res = torch.LongTensor((-bignumber,))
|
|
self.assertGreater(res.abs()[0], 0)
|
|
|
|
# One of
|
|
rec = torch.randn(2, 2, 3, 7, 6, 2).type(torch.float64).clamp(0, 1)
|
|
val1 = rec.select(-1, -1).data[0][0][0].sum()
|
|
val2 = rec.select(-1, -1).data.abs()[0][0][0].sum()
|
|
self.assertEqual(val1, val2, 1e-8, 'absolute value')
|
|
|
|
def test_hardshrink(self):
|
|
data_original = torch.tensor([1, 0.5, 0.3, 0.6]).view(2, 2)
|
|
float_types = [
|
|
'torch.DoubleTensor',
|
|
'torch.FloatTensor'
|
|
]
|
|
for t in float_types:
|
|
data = data_original.type(t)
|
|
self.assertEqual(torch.tensor([1, 0.5, 0, 0.6]).view(2, 2), data.hardshrink(0.3))
|
|
self.assertEqual(torch.tensor([1, 0, 0, 0.6]).view(2, 2), data.hardshrink(0.5))
|
|
|
|
# test default lambd=0.5
|
|
self.assertEqual(data.hardshrink(), data.hardshrink(0.5))
|
|
|
|
# test non-contiguous case
|
|
self.assertEqual(torch.tensor([1, 0, 0.5, 0.6]).view(2, 2), data.t().hardshrink(0.3))
|
|
|
|
def test_unbiased(self):
|
|
tensor = torch.randn(100)
|
|
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
|
|
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
|
|
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
|
|
|
|
tensor = torch.FloatTensor([1.0, 2.0])
|
|
self.assertEqual(tensor.var(unbiased=True), 0.5)
|
|
self.assertEqual(tensor.var(unbiased=False), 0.25)
|
|
|
|
tensor = torch.FloatTensor([1.0, 2.0, 3.0])
|
|
self.assertEqual(tensor.var(unbiased=True), 1.0)
|
|
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
|
|
|
|
tensor = torch.randn(100)
|
|
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
|
|
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
|
|
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
|
|
|
|
def test_structseq_repr(self):
|
|
a = torch.arange(250).reshape(5, 5, 10)
|
|
expected = """
|
|
torch.return_types.max(
|
|
values=tensor([[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
|
|
[ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
|
|
[140, 141, 142, 143, 144, 145, 146, 147, 148, 149],
|
|
[190, 191, 192, 193, 194, 195, 196, 197, 198, 199],
|
|
[240, 241, 242, 243, 244, 245, 246, 247, 248, 249]]),
|
|
indices=tensor([[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]]))"""
|
|
self.assertEqual(repr(a.max(1)), textwrap.dedent(expected).strip())
|
|
|
|
def test_var_stability(self):
|
|
tensor = torch.FloatTensor([2281.5, 2281.25])
|
|
self.assertEqual(tensor.var(dim=0), 0.03125)
|
|
self.assertEqual(tensor.var(), 0.03125)
|
|
|
|
@staticmethod
|
|
def _test_view(self, cast):
|
|
tensor = cast(torch.rand(15))
|
|
template = cast(torch.rand(3, 5))
|
|
empty = cast(torch.empty(0))
|
|
target = template.size()
|
|
self.assertEqual(tensor.view_as(template).size(), target)
|
|
self.assertEqual(tensor.view(3, 5).size(), target)
|
|
self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target)
|
|
self.assertEqual(tensor.view(-1, 5).size(), target)
|
|
self.assertEqual(tensor.view(3, -1).size(), target)
|
|
tensor_view = tensor.view(5, 3)
|
|
tensor_view.fill_(random.uniform(0, 1))
|
|
self.assertEqual(empty.view_as(empty), empty)
|
|
self.assertEqual(empty.view(0), empty)
|
|
self.assertEqual(empty.view(0, 3, 0, 1).size(), torch.Size([0, 3, 0, 1]))
|
|
self.assertEqual(empty.view(0, 3, 0, 1).view(0), empty)
|
|
|
|
# test size inference with empty tensors
|
|
self.assertEqual(empty.view(-1).size(), torch.Size([0]))
|
|
self.assertEqual(empty.view(10, 3, -1).size(), torch.Size([10, 3, 0]))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
|
|
empty.view(-1, 0)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
|
|
empty.view(3, 0, -1, 0)
|
|
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(15, 0))
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(7, -1))
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1))
|
|
|
|
# test view when tensor is not contiguous in every dimension, but only
|
|
# contiguous dimensions are touched.
|
|
tensor = cast(torch.rand(4, 2, 5, 1, 6, 2, 9, 3)).transpose(-1, 2).transpose(-2, 3)
|
|
# size: [ 4, 2, 3, 9, 6, 2, 1, 5]
|
|
# stride: [3840, 1620, 1, 3, 54, 27, 324, 324]
|
|
# contiguous dim chunks: [__________, ____, ____, __________, ____, ____]
|
|
# merging 1 to chunk after: [__________, ____, ____, __________, __________]
|
|
contig_tensor = tensor.clone()
|
|
# [4, 2] => [8, 1]
|
|
# [3] => [3]
|
|
# [9] => [3, 3]
|
|
# [6, 2] => [4, 1, 3]
|
|
# [1, 5] => [5]
|
|
view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
# [4, 2] => [2, 4]
|
|
# [3] => [3]
|
|
# [9] => [1, 9]
|
|
# [6, 2] => [2, 2, 3]
|
|
# [1, 5] => [5, 1]
|
|
view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
# adding size 1 dims
|
|
view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
|
|
# invalid views
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(-1))
|
|
# crossing [4, 2], [3]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5))
|
|
# crossing [6, 2], [1, 5]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10))
|
|
# crossing [9], [6, 2]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5))
|
|
|
|
# view with stride 0 dims
|
|
tensor = cast(torch.empty(1, 1)).expand(3, 4) # all dims are contiguous
|
|
contig_tensor = tensor.clone()
|
|
self.assertEqual(tensor.view(-1), contig_tensor.view(-1))
|
|
self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1))
|
|
self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1))
|
|
self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1))
|
|
self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1))
|
|
|
|
def test_view(self):
|
|
_TestTorchMixin._test_view(self, lambda x: x)
|
|
|
|
def test_view_empty(self):
|
|
x = torch.randn(0, 6)
|
|
self.assertEqual((1, 0, 6, 1, 1), x.view(1, 0, 6, 1, 1).shape)
|
|
|
|
def test_reshape(self):
|
|
x = torch.randn(3, 3)
|
|
self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr())
|
|
self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr())
|
|
self.assertEqual(torch.reshape(x, (9,)), x.reshape(9))
|
|
self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1))
|
|
|
|
y = torch.randn(4, 4, 4)[:, 0, :]
|
|
self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr())
|
|
self.assertEqual(y.contiguous().view(-1), y.reshape(-1))
|
|
self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr())
|
|
|
|
s = torch.randn(())
|
|
self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr())
|
|
self.assertEqual(s.reshape(-1).shape, (1,))
|
|
self.assertRaises(RuntimeError, lambda: s.reshape(2))
|
|
|
|
empty = torch.tensor([])
|
|
self.assertEqual(empty, empty.reshape(-1))
|
|
self.assertEqual(empty, empty.reshape([0]))
|
|
# TODO: fix these once we have multi-dimensional empty tensors
|
|
self.assertEqual(empty.reshape([0, 1]).shape, (0, 1))
|
|
self.assertEqual(empty.reshape([1, -1]).shape, (1, 0))
|
|
self.assertRaises(RuntimeError, lambda: empty.reshape(1))
|
|
|
|
x = torch.randn(3, 3)
|
|
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(9)).data_ptr())
|
|
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(1, 9, 1)).data_ptr())
|
|
self.assertRaises(RuntimeError, lambda: x.reshape_as(torch.rand(10)))
|
|
|
|
def test_empty_reshape(self):
|
|
x = torch.randn(0, 6)
|
|
self.assertEqual((1, 0, 6, 1, 1), x.reshape(1, 0, 6, 1, 1).shape)
|
|
# should be viewable -- i.e. data_ptr is the same.
|
|
self.assertEqual(x.data_ptr(), x.reshape(1, 0, 6, 1, 1).data_ptr())
|
|
|
|
# match NumPy semantics -- don't infer the size of dimension with a degree of freedom
|
|
self.assertRaises(RuntimeError, lambda: x.reshape(0, -1))
|
|
|
|
def test_tensor_shape_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.randn((0, 1, 3, 0), device=device)
|
|
# flatten
|
|
self.assertEqual((0,), torch.flatten(x, 0, 3).shape)
|
|
self.assertEqual((0, 0), torch.flatten(x, 0, 2).shape)
|
|
self.assertEqual((0, 3, 0), torch.flatten(x, 1, 2).shape)
|
|
|
|
# squeeze, unsqueeze
|
|
self.assertEqual((0, 1, 1, 3, 0), torch.unsqueeze(x, 1).shape)
|
|
self.assertEqual((0, 3, 0), torch.squeeze(x, 1).shape)
|
|
self.assertEqual((0, 3, 0), torch.squeeze(x).shape)
|
|
|
|
# transpose, t
|
|
self.assertEqual((0, 0, 3, 1), torch.transpose(x, 1, 3).shape)
|
|
y = torch.randn((5, 0), device=device)
|
|
self.assertEqual((0, 5), y.t().shape)
|
|
|
|
# select
|
|
self.assertEqual((0, 1, 0), torch.select(x, 2, 2).shape)
|
|
|
|
# repeat, permute
|
|
self.assertEqual((9, 0, 5, 6, 0), x.repeat(9, 7, 5, 2, 3).shape)
|
|
self.assertEqual((3, 0, 0, 1), x.permute(2, 3, 0, 1).shape)
|
|
|
|
# diagonal, diagflat
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device)).shape)
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device)).shape)
|
|
# off the end offsets are valid
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device), offset=1).shape)
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device), offset=1).shape)
|
|
# check non-zero sized offsets off the end
|
|
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=45252).shape)
|
|
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=-45252).shape)
|
|
|
|
self.assertEqual((0, 0), torch.diagflat(torch.tensor([], device=device)).shape)
|
|
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([], device=device), offset=1))
|
|
self.assertEqual((0, 0), torch.diagflat(torch.tensor([[]], device=device)).shape)
|
|
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([[]], device=device), offset=1))
|
|
|
|
# stack, split, chunk
|
|
self.assertEqual((4, 0, 1, 3, 0), torch.stack((x, x, x, x)).shape)
|
|
self.assertEqual([(0, 1, 3, 0)],
|
|
[z.shape for z in torch.chunk(x, 1, dim=0)])
|
|
|
|
self.assertEqual([(0, 1, 3, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=0)])
|
|
self.assertEqual([(0, 1, 1, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=2)])
|
|
|
|
# NOTE: split_with_sizes behaves differently than NumPy in that it
|
|
# takes sizes rather than offsets
|
|
self.assertEqual([(0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 0)],
|
|
[z.shape for z in torch.split(x, (0, 1, 2), dim=2)])
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.split(x, 0, dim=1))
|
|
# This is strange because the split size is larger than the dim size, but consistent with
|
|
# how split handles that case generally (when no 0s are involved).
|
|
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 1, dim=0)])
|
|
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 0, dim=0)])
|
|
|
|
# functions that operate over a dimension but don't reduce.
|
|
def test_dim_function_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
shape = (0, 1, 2, 0)
|
|
x = torch.randn(shape, device=device)
|
|
|
|
# size stride
|
|
self.assertEqual(0, x.size(3))
|
|
self.assertEqual(2, x.size(2))
|
|
self.assertEqual(2, x.stride(0))
|
|
self.assertEqual(1, x.stride(2))
|
|
|
|
self.assertEqual(x, torch.nn.functional.glu(x, 0))
|
|
self.assertEqual((0, 1, 1, 0), torch.nn.functional.glu(x, 2).shape)
|
|
|
|
# softmax, logsoftmax
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 0))
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 2))
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 3))
|
|
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 0))
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 2))
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 3))
|
|
|
|
# cumsum, cumprod
|
|
self.assertEqual(shape, torch.cumsum(x, 0).shape)
|
|
self.assertEqual(shape, torch.cumsum(x, 2).shape)
|
|
self.assertEqual(shape, torch.cumprod(x, 0).shape)
|
|
self.assertEqual(shape, torch.cumprod(x, 2).shape)
|
|
|
|
# flip
|
|
self.assertEqual(x, x.flip(0))
|
|
self.assertEqual(x, x.flip(2))
|
|
|
|
# roll
|
|
self.assertEqual(x, x.roll(0, 1).roll(0, -1))
|
|
self.assertEqual(x, x.roll(1, x.size(1)))
|
|
self.assertEqual(x, x.roll(1))
|
|
self.assertEqual(x, x.roll((1, 1), (3, 1)))
|
|
|
|
# unbind
|
|
self.assertEqual((), x.unbind(0))
|
|
self.assertEqual((torch.empty((0, 1, 0), device=device), torch.empty((0, 1, 0), device=device)),
|
|
x.unbind(2))
|
|
|
|
# cross
|
|
y = torch.randn((0, 1, 3, 0), device=device)
|
|
self.assertEqual(y.shape, torch.cross(y, y).shape)
|
|
|
|
# renorm
|
|
self.assertEqual(shape, torch.renorm(x, 1, 0, 5).shape)
|
|
self.assertEqual(shape, torch.renorm(x, 1, 2, 5).shape)
|
|
|
|
# sort
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=0)])
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=2)])
|
|
|
|
# topk
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.topk(x, 0, dim=0)])
|
|
self.assertEqual([(0, 1, 1, 0), (0, 1, 1, 0)], [z.shape for z in torch.topk(x, 1, dim=2)])
|
|
|
|
y = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual([(2, 3, 0), (2, 3, 0)], [z.shape for z in torch.topk(y, 0)])
|
|
|
|
# gather
|
|
self.assertEqual(shape, torch.gather(x, 0, torch.empty(shape, dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual(shape, torch.gather(x, 2, torch.empty(shape, dtype=torch.int64, device=device)).shape)
|
|
larger_shape = torch.empty((0, 1, 3, 0), dtype=torch.int64, device=device)
|
|
self.assertEqual(larger_shape.shape, torch.gather(x, 2, larger_shape).shape)
|
|
smaller_shape = torch.empty((0, 1, 0, 0), dtype=torch.int64, device=device)
|
|
self.assertEqual(smaller_shape.shape, torch.gather(x, 2, smaller_shape).shape)
|
|
y = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual((0, 3, 4),
|
|
torch.gather(y, 0, torch.empty((0, 3, 4), dtype=torch.int64, device=device)).shape)
|
|
|
|
# scatter, scatter_add
|
|
for dim in [0, 2]:
|
|
y = torch.randn(shape, device=device)
|
|
y_src = torch.randn(shape, device=device)
|
|
ind = torch.empty(shape, dtype=torch.int64, device=device)
|
|
self.assertEqual(shape, y.scatter_(dim, ind, y_src).shape)
|
|
self.assertEqual(shape, y.scatter_add_(dim, ind, y_src).shape)
|
|
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
z_src = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.scatter_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
|
|
self.assertEqual(z, z.scatter_add_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
|
|
|
|
# index_fill, index_copy, index_add
|
|
c = x.clone()
|
|
c_clone = c.clone()
|
|
ind_empty = torch.tensor([], dtype=torch.int64, device=device)
|
|
ind_01 = torch.tensor([0, 1], dtype=torch.int64, device=device)
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_fill_(2, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_fill_(2, torch.tensor([0, 1], dtype=torch.int64, device=device), -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_copy_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_copy_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
|
|
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
c_clone = c.clone()
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
|
|
# index fill/copy/add non-empty
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_fill_(0, ind_empty, -1))
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_copy_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_add_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
|
|
|
|
# index_select
|
|
self.assertEqual(x, x.index_select(0, ind_empty))
|
|
self.assertEqual((0, 1, 0, 0), x.index_select(2, ind_empty).shape)
|
|
self.assertEqual(x, x.index_select(2, ind_01))
|
|
z = torch.randn((2, 3, 4), device=device) # non-empty
|
|
self.assertEqual((0, 3, 4), z.index_select(0, ind_empty).shape)
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
self.assertEqual(c, c.index_select(0, ind_empty))
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
self.assertEqual(c, c.index_select(0, ind_empty))
|
|
|
|
@skipIfRocm
|
|
def test_blas_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
|
|
def fn(torchfn, *args):
|
|
return torchfn(*tuple(torch.randn(shape, device=device) if isinstance(shape, tuple) else shape
|
|
for shape in args))
|
|
|
|
# mm, addmm
|
|
self.assertEqual((0, 0), fn(torch.mm, (0, 0), (0, 0)).shape)
|
|
self.assertEqual((0, 5), fn(torch.mm, (0, 0), (0, 5)).shape)
|
|
self.assertEqual((5, 0), fn(torch.mm, (5, 0), (0, 0)).shape)
|
|
self.assertEqual((3, 0), fn(torch.mm, (3, 2), (2, 0)).shape)
|
|
self.assertEqual(torch.zeros((5, 6), device=device), fn(torch.mm, (5, 0), (0, 6)))
|
|
|
|
self.assertEqual((0, 0), fn(torch.addmm, (0, 0), (0, 0), (0, 0)).shape)
|
|
self.assertEqual((5, 6), fn(torch.addmm, (5, 6), (5, 0), (0, 6)).shape)
|
|
|
|
# mv, addmv
|
|
self.assertEqual((0,), fn(torch.mv, (0, 0), (0,)).shape)
|
|
self.assertEqual((0,), fn(torch.mv, (0, 2), (2,)).shape)
|
|
self.assertEqual(torch.zeros((3,), device=device), fn(torch.mv, (3, 0), (0,)))
|
|
|
|
self.assertEqual((0,), fn(torch.addmv, (0,), (0, 0), (0,)).shape)
|
|
self.assertEqual((3,), fn(torch.addmv, (3,), (3, 0), (0,)).shape)
|
|
|
|
# ger, addr
|
|
self.assertEqual((0, 0), fn(torch.ger, (0,), (0,)).shape)
|
|
self.assertEqual((5, 0), fn(torch.ger, (5,), (0,)).shape)
|
|
self.assertEqual((0, 4), fn(torch.ger, (0,), (4,)).shape)
|
|
|
|
self.assertEqual((0, 0), fn(torch.addr, (0, 0), (0,), (0,)).shape)
|
|
self.assertEqual((5, 0), fn(torch.addr, (5, 0), (5,), (0,)).shape)
|
|
self.assertEqual((0, 4), fn(torch.addr, (0, 4), (0,), (4,)).shape)
|
|
|
|
# bmm, baddbmm
|
|
self.assertEqual((0, 0, 0), fn(torch.bmm, (0, 0, 0), (0, 0, 0)).shape)
|
|
self.assertEqual((3, 0, 5), fn(torch.bmm, (3, 0, 0), (3, 0, 5)).shape)
|
|
self.assertEqual((0, 5, 6), fn(torch.bmm, (0, 5, 0), (0, 0, 6)).shape)
|
|
self.assertEqual(torch.zeros((3, 5, 6), device=device), fn(torch.bmm, (3, 5, 0), (3, 0, 6)))
|
|
|
|
self.assertEqual((0, 0, 0), fn(torch.baddbmm, (0, 0, 0), (0, 0, 0), (0, 0, 0)).shape)
|
|
self.assertEqual((3, 0, 5), fn(torch.baddbmm, (3, 0, 5), (3, 0, 0), (3, 0, 5)).shape)
|
|
self.assertEqual((0, 5, 6), fn(torch.baddbmm, (0, 5, 6), (0, 5, 0), (0, 0, 6)).shape)
|
|
self.assertEqual((3, 5, 6), fn(torch.baddbmm, (3, 5, 6), (3, 5, 0), (3, 0, 6)).shape)
|
|
|
|
# addbmm
|
|
self.assertEqual((0, 0), fn(torch.addbmm, (0, 0), (0, 0, 0), (0, 0, 0)).shape)
|
|
self.assertEqual((0, 5), fn(torch.addbmm, (0, 5), (3, 0, 0), (3, 0, 5)).shape)
|
|
self.assertEqual((5, 6), fn(torch.addbmm, (5, 6), (0, 5, 0), (0, 0, 6)).shape)
|
|
|
|
# matmul
|
|
self.assertEqual(torch.tensor(0., device=device), fn(torch.matmul, (0,), (0,)))
|
|
self.assertEqual((0, 0), fn(torch.matmul, (0, 0), (0, 0)).shape)
|
|
self.assertEqual((0, 0, 0), fn(torch.matmul, (0, 0, 0), (0, 0, 0)).shape)
|
|
self.assertEqual((5, 0, 0), fn(torch.matmul, (5, 0, 0), (5, 0, 0)).shape)
|
|
self.assertEqual(torch.zeros((5, 3, 4), device=device), fn(torch.matmul, (5, 3, 0), (5, 0, 4)))
|
|
|
|
# dot
|
|
self.assertEqual(torch.tensor(0., device=device), fn(torch.dot, (0,), (0,)))
|
|
|
|
if torch._C.has_lapack:
|
|
# lu
|
|
A_LU, pivots = fn(torch.lu, (0, 5, 5))
|
|
self.assertEqual([(0, 5, 5), (0, 5)], [A_LU.shape, pivots.shape])
|
|
A_LU, pivots = fn(torch.lu, (0, 0, 0))
|
|
self.assertEqual([(0, 0, 0), (0, 0)], [A_LU.shape, pivots.shape])
|
|
A_LU, pivots = fn(torch.lu, (2, 0, 0))
|
|
self.assertEqual([(2, 0, 0), (2, 0)], [A_LU.shape, pivots.shape])
|
|
|
|
def check_single_matmul(self, x, y, shape):
|
|
a = np.array(x, copy=False)
|
|
b = np.array(y, copy=False)
|
|
expected = np.matmul(a, b)
|
|
self.assertTrue(expected.flags['C_CONTIGUOUS'])
|
|
|
|
ans = torch.matmul(x, y)
|
|
self.assertTrue(ans.is_contiguous())
|
|
self.assertTrue(np.array_equal(ans, expected))
|
|
|
|
out = torch.zeros(*shape, dtype=torch.int64)
|
|
ans = torch.matmul(x, y, out=out)
|
|
self.assertIs(ans, out)
|
|
self.assertTrue(ans.is_contiguous())
|
|
self.assertTrue(np.array_equal(ans, expected))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_matmul_small_brute_force_1d_Nd(self):
|
|
# Issue #20452: range(0, 10) does not work.
|
|
n = 1
|
|
for m in range(1, 8):
|
|
for p in range(1, 8):
|
|
for o in range(1, 5):
|
|
# 1d, 3d, inner dimensions C
|
|
x = torch.arange(m)
|
|
y = torch.arange(o * m * p).reshape(o, m, p)
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
# 1d, 3d, inner dimensions Fortran
|
|
x = torch.arange(m)
|
|
y = torch.arange(o * p * m).reshape(o, p, m).transpose(-1, -2)
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
# 1d, 3d, inner dimensions non-contiguous
|
|
x = torch.arange(2 * m)[::2]
|
|
y = torch.arange(o * m * 2 * p).reshape(o, m, 2 * p)[:, :, ::2]
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
for r in range(1, 5):
|
|
# 1d, 4d, inner dimensions C
|
|
x = torch.arange(m)
|
|
y = torch.arange(r * o * m * p).reshape(r, o, m, p)
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
# 1d, 4d, inner dimensions Fortran
|
|
x = torch.arange(m)
|
|
y = torch.arange(r * o * p * m).reshape(r, o, p, m).transpose(-1, -2)
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
# 1d, 4d, inner dimensions non-contiguous
|
|
x = torch.arange(2 * m)[::2]
|
|
y = torch.arange(r * o * m * 2 * p).reshape(r, o, m, 2 * p)[:, :, :, ::2]
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_matmul_small_brute_force_2d_Nd(self):
|
|
# Issue #20452: range(0, 10) does not work.
|
|
for n in range(1, 5):
|
|
for m in range(1, 5):
|
|
for p in range(1, 5):
|
|
for o in range(1, 3):
|
|
# 2d, 3d, inner dimensions C
|
|
x = torch.arange(n * m).reshape(n, m)
|
|
y = torch.arange(o * m * p).reshape(o, m, p)
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
# 2d, 3d, inner dimensions Fortran
|
|
x = torch.arange(m * n).reshape(m, n).transpose(-1, -2)
|
|
y = torch.arange(o * p * m).reshape(o, p, m).transpose(-1, -2)
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
# 2d, 3d, inner dimensions non-contiguous
|
|
x = torch.arange(n * 2 * m).reshape(n, 2 * m)[:, ::2]
|
|
y = torch.arange(o * m * 2 * p).reshape(o, m, 2 * p)[:, :, ::2]
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
for r in range(1, 2):
|
|
# 2d, 4d, inner dimensions C
|
|
x = torch.arange(n * m).reshape(n, m)
|
|
y = torch.arange(r * o * m * p).reshape(r, o, m, p)
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
# 2d, 4d, inner dimensions Fortran
|
|
x = torch.arange(m * n).reshape(m, n).transpose(-1, -2)
|
|
y = torch.arange(r * o * p * m).reshape(r, o, p, m).transpose(-1, -2)
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
# 2d, 4d, inner dimensions non-contiguous
|
|
x = torch.arange(n * 2 * m).reshape(n, 2 * m)[:, ::2]
|
|
y = torch.arange(r * o * m * 2 * p).reshape(r, o, m, 2 * p)[:, :, :, ::2]
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
@skipIfRocm
|
|
def test_blas_alpha_beta_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
# ensure beta is respected
|
|
value = 11
|
|
input = torch.full((2,), value, device=device)
|
|
mat = torch.ones((2, 0), device=device)
|
|
vec = torch.ones((0,), device=device)
|
|
out = torch.randn((2,), device=device)
|
|
alpha = 6
|
|
beta = 3
|
|
self.assertEqual(torch.full((2,), beta * value, device=device),
|
|
torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta))
|
|
self.assertEqual(torch.full((2,), beta * value, device=device),
|
|
torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta, out=out))
|
|
|
|
# torch.addmm
|
|
input = torch.full((2, 3), value, device=device)
|
|
mat2 = torch.ones((0, 3), device=device)
|
|
out = torch.randn((2, 3), device=device)
|
|
self.assertEqual(torch.full((2, 3), beta * value, device=device),
|
|
torch.addmm(input=input, mat1=mat, mat2=mat2, alpha=alpha, beta=beta))
|
|
self.assertEqual(torch.full((2, 3), beta * value, device=device),
|
|
torch.addmm(input=input, mat1=mat, mat2=mat2, alpha=alpha, beta=beta, out=out))
|
|
|
|
@skipIfNoLapack
|
|
def test_lapack_empty(self):
|
|
# FIXME: these are just a selection of LAPACK functions -- we need a general strategy here.
|
|
# The LAPACK functions themselves generally do NOT work with zero sized dimensions, although
|
|
# numpy/sci often has a direct wrapper (e.g. lu_factor) and a wrapper that "does the right thing"
|
|
# (e.g. lu). We often name our functions identically to the lapack function, so it will take work
|
|
# to name / migrate-to better wrappers.
|
|
for device in torch.testing.get_all_device_types():
|
|
|
|
# need to init cuda to check has_magma
|
|
empty = torch.randn((0, 0), device=device)
|
|
if device == 'cuda' and not torch.cuda.has_magma:
|
|
continue
|
|
|
|
def fn(torchfn, *args):
|
|
return torchfn(*tuple(torch.randn(shape, device=device) if isinstance(shape, tuple) else shape
|
|
for shape in args))
|
|
|
|
# inverse, pinverse
|
|
self.assertEqual((0, 0), fn(torch.inverse, (0, 0)).shape)
|
|
self.assertEqual((5, 0), fn(torch.pinverse, (0, 5)).shape)
|
|
self.assertEqual((0, 5), fn(torch.pinverse, (5, 0)).shape)
|
|
self.assertEqual((0, 0), fn(torch.pinverse, (0, 0)).shape)
|
|
|
|
# svd
|
|
self.assertRaises(RuntimeError, lambda: fn(torch.svd, (0, 0)))
|
|
|
|
# det, logdet, slogdet
|
|
self.assertEqual(torch.tensor(1., device=device), fn(torch.det, (0, 0)))
|
|
self.assertEqual(torch.tensor(0., device=device), fn(torch.logdet, (0, 0)))
|
|
self.assertEqual((torch.tensor(1., device=device), torch.tensor(0., device=device)),
|
|
fn(torch.slogdet, (0, 0)))
|
|
|
|
# eig, symeig
|
|
evalues, evectors = fn(torch.eig, (0, 0), True)
|
|
self.assertEqual([(0, 2), (0, 0)], [evalues.shape, evectors.shape])
|
|
evalues, evectors = fn(torch.symeig, (0, 0), True)
|
|
self.assertEqual([(0,), (0, 0)], [evalues.shape, evectors.shape])
|
|
|
|
# qr, gels
|
|
self.assertRaises(RuntimeError, lambda: torch.qr(torch.randn(0, 0)))
|
|
self.assertRaises(RuntimeError, lambda: torch.gels(torch.randn(0, 0), torch.randn(0, 0)))
|
|
self.assertRaises(RuntimeError, lambda: torch.gels(torch.randn(0,), torch.randn(0, 0)))
|
|
|
|
def test_expand(self):
|
|
tensor = torch.rand(1, 8, 1)
|
|
tensor2 = torch.rand(5)
|
|
template = torch.rand(4, 8, 5)
|
|
target = template.size()
|
|
self.assertEqual(tensor.expand_as(template).size(), target)
|
|
self.assertEqual(tensor.expand(4, 8, 5).size(), target)
|
|
self.assertEqual(tensor.expand(target).size(), target)
|
|
self.assertEqual(tensor2.expand_as(template).size(), target)
|
|
self.assertEqual(tensor2.expand(4, 8, 5).size(), target)
|
|
self.assertEqual(tensor2.expand(target).size(), target)
|
|
|
|
# test double expand
|
|
self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1))
|
|
|
|
# test non-contiguous
|
|
noncontig = torch.randn(5, 2, 1, 3)[:, 0]
|
|
self.assertFalse(noncontig.is_contiguous())
|
|
self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1))
|
|
|
|
# make sure it's compatible with unsqueeze
|
|
expanded = tensor2.expand(1, 1, 5)
|
|
unsqueezed = tensor2.unsqueeze(0).unsqueeze(1)
|
|
self.assertEqual(expanded, unsqueezed)
|
|
self.assertEqual(expanded.stride(), unsqueezed.stride())
|
|
|
|
# test -1 as target size
|
|
self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5))
|
|
self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1))
|
|
|
|
# test expanding empty to empty
|
|
self.assertEqual(torch.zeros(0).expand((0,)), torch.zeros(0))
|
|
|
|
def test_repeat(self):
|
|
|
|
initial_shape = (8, 4)
|
|
tensor = torch.rand(*initial_shape)
|
|
|
|
size = (3, 1, 1)
|
|
torchSize = torch.Size(size)
|
|
target = [3, 8, 4]
|
|
self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat')
|
|
self.assertEqual(tensor.repeat(torchSize).size(), target,
|
|
'Error in repeat using LongStorage')
|
|
result = tensor.repeat(*size)
|
|
self.assertEqual(result.size(), target, 'Error in repeat using result')
|
|
result = tensor.repeat(torchSize)
|
|
self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage')
|
|
self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)')
|
|
|
|
def test_repeat_interleave(self):
|
|
x = torch.tensor([0, 1, 2, 3])
|
|
expected = torch.tensor([1, 2, 2, 3, 3, 3])
|
|
self.assertEqual(torch.repeat_interleave(x), expected)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(torch.arange(4).reshape(2, 2))
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(torch.arange(4.0))
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4]))
|
|
|
|
y = torch.tensor([[1, 2], [3, 4]])
|
|
|
|
y1_v1 = torch.repeat_interleave(y, 2)
|
|
y1_v2 = torch.repeat_interleave(y, torch.tensor(2))
|
|
y1_v3 = torch.repeat_interleave(y, torch.tensor([2]))
|
|
y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4])
|
|
self.assertEqual(y1_v1, y1_expect)
|
|
self.assertEqual(y1_v2, y1_expect)
|
|
self.assertEqual(y1_v3, y1_expect)
|
|
|
|
y2 = torch.repeat_interleave(y, 3, dim=1)
|
|
y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2],
|
|
[3, 3, 3, 4, 4, 4]])
|
|
self.assertEqual(y2, y2_expect)
|
|
|
|
y3 = torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0)
|
|
y3_expect = torch.tensor([[1, 2],
|
|
[3, 4],
|
|
[3, 4]])
|
|
self.assertEqual(y3, y3_expect)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(y, torch.tensor([1, 2, 3]), dim=0)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(y, torch.arange(9).reshape(3, 3), dim=0)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_repeat_tile(self):
|
|
|
|
initial_shape = (8, 4)
|
|
|
|
repeats = ((3, 1, 1),
|
|
(3, 3, 3),
|
|
(1, 2, 1),
|
|
(2, 2, 2, 2))
|
|
|
|
def _generate_noncontiguous_input():
|
|
|
|
out = np.broadcast_to(np.random.random((1, 4)),
|
|
initial_shape)
|
|
|
|
assert not (out.flags.c_contiguous or out.flags.f_contiguous)
|
|
|
|
return out
|
|
|
|
for repeat in repeats:
|
|
for tensor in (torch.from_numpy(np.random.random(initial_shape)),
|
|
torch.from_numpy(_generate_noncontiguous_input()),):
|
|
|
|
self.assertEqual(tensor.repeat(*repeat).numpy(),
|
|
np.tile(tensor.numpy(), repeat))
|
|
|
|
def test_is_same_size(self):
|
|
t1 = torch.Tensor(3, 4, 9, 10)
|
|
t2 = torch.Tensor(3, 4)
|
|
t3 = torch.Tensor(1, 9, 3, 3)
|
|
t4 = torch.Tensor(3, 4, 9, 10)
|
|
|
|
self.assertFalse(t1.is_same_size(t2))
|
|
self.assertFalse(t1.is_same_size(t3))
|
|
self.assertTrue(t1.is_same_size(t4))
|
|
|
|
def test_is_set_to(self):
|
|
t1 = torch.Tensor(3, 4, 9, 10)
|
|
t2 = torch.Tensor(3, 4, 9, 10)
|
|
t3 = torch.Tensor().set_(t1)
|
|
t4 = t3.clone().resize_(12, 90)
|
|
self.assertFalse(t1.is_set_to(t2))
|
|
self.assertTrue(t1.is_set_to(t3))
|
|
self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric")
|
|
self.assertFalse(t1.is_set_to(t4))
|
|
self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()),
|
|
"Tensors with no storages should not appear to be set "
|
|
"to each other")
|
|
|
|
t1 = torch.tensor([True, True], dtype=torch.bool)
|
|
t2 = torch.tensor([0], dtype=torch.bool).set_(t1)
|
|
self.assertTrue(t1.is_set_to(t2))
|
|
|
|
def test_tensor_set(self):
|
|
t1 = torch.Tensor()
|
|
t2 = torch.Tensor(3, 4, 9, 10).uniform_()
|
|
t1.set_(t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
size = torch.Size([9, 3, 4, 10])
|
|
t1.set_(t2.storage(), 0, size)
|
|
self.assertEqual(t1.size(), size)
|
|
t1.set_(t2.storage(), 0, tuple(size))
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), (120, 40, 10, 1))
|
|
stride = (10, 360, 90, 1)
|
|
t1.set_(t2.storage(), 0, size, stride)
|
|
self.assertEqual(t1.stride(), stride)
|
|
t1.set_(t2.storage(), 0, size=size, stride=stride)
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), stride)
|
|
|
|
# test argument names
|
|
t1 = torch.Tensor()
|
|
# 1. case when source is tensor
|
|
t1.set_(source=t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
# 2. case when source is storage
|
|
t1.set_(source=t2.storage())
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
# 3. case when source is storage, and other args also specified
|
|
t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride)
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), stride)
|
|
|
|
t1 = torch.tensor([True, True], dtype=torch.bool)
|
|
t2 = torch.tensor([False, False], dtype=torch.bool)
|
|
t1.set_(t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
|
|
def test_tensor_set_errors(self):
|
|
f_cpu = torch.randn((2, 3), dtype=torch.float32)
|
|
d_cpu = torch.randn((2, 3), dtype=torch.float64)
|
|
|
|
# change dtype
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cpu.set_(d_cpu.storage(), 0, d_cpu.size(), d_cpu.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu))
|
|
|
|
# change device
|
|
if torch.cuda.is_available():
|
|
f_cuda = torch.randn((2, 3), dtype=torch.float32, device='cuda')
|
|
|
|
# cpu -> cuda
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cpu.set_(f_cuda.storage(), 0, f_cuda.size(), f_cuda.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda))
|
|
|
|
# cuda -> cpu
|
|
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cuda.set_(f_cpu.storage(), 0, f_cpu.size(), f_cpu.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu))
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, 'less than 2 GPUs detected')
|
|
def test_tensor_set_errors_multigpu(self):
|
|
f_cuda0 = torch.randn((2, 3), dtype=torch.float32, device='cuda:0')
|
|
f_cuda1 = torch.randn((2, 3), dtype=torch.float32, device='cuda:1')
|
|
|
|
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cuda0.set_(f_cuda1.storage(), 0, f_cuda1.size(), f_cuda1.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1))
|
|
|
|
def test_equal(self):
|
|
# Contiguous, 1D
|
|
t1 = torch.Tensor((3, 4, 9, 10))
|
|
t2 = t1.contiguous()
|
|
t3 = torch.Tensor((1, 9, 3, 10))
|
|
t4 = torch.Tensor((3, 4, 9))
|
|
t5 = torch.Tensor()
|
|
self.assertTrue(t1.equal(t2))
|
|
self.assertFalse(t1.equal(t3))
|
|
self.assertFalse(t1.equal(t4))
|
|
self.assertFalse(t1.equal(t5))
|
|
self.assertTrue(torch.equal(t1, t2))
|
|
self.assertFalse(torch.equal(t1, t3))
|
|
self.assertFalse(torch.equal(t1, t4))
|
|
self.assertFalse(torch.equal(t1, t5))
|
|
|
|
# Non contiguous, 2D
|
|
s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8)))
|
|
s1 = s[:, 1:3]
|
|
s2 = s1.clone()
|
|
s3 = torch.Tensor(((2, 3), (6, 7)))
|
|
s4 = torch.Tensor(((0, 0), (0, 0)))
|
|
|
|
self.assertFalse(s1.is_contiguous())
|
|
self.assertTrue(s1.equal(s2))
|
|
self.assertTrue(s1.equal(s3))
|
|
self.assertFalse(s1.equal(s4))
|
|
self.assertTrue(torch.equal(s1, s2))
|
|
self.assertTrue(torch.equal(s1, s3))
|
|
self.assertFalse(torch.equal(s1, s4))
|
|
|
|
def test_element_size(self):
|
|
byte = torch.ByteStorage().element_size()
|
|
char = torch.CharStorage().element_size()
|
|
short = torch.ShortStorage().element_size()
|
|
int = torch.IntStorage().element_size()
|
|
long = torch.LongStorage().element_size()
|
|
float = torch.FloatStorage().element_size()
|
|
double = torch.DoubleStorage().element_size()
|
|
bool = torch.BoolStorage().element_size()
|
|
|
|
self.assertEqual(byte, torch.ByteTensor().element_size())
|
|
self.assertEqual(char, torch.CharTensor().element_size())
|
|
self.assertEqual(short, torch.ShortTensor().element_size())
|
|
self.assertEqual(int, torch.IntTensor().element_size())
|
|
self.assertEqual(long, torch.LongTensor().element_size())
|
|
self.assertEqual(float, torch.FloatTensor().element_size())
|
|
self.assertEqual(double, torch.DoubleTensor().element_size())
|
|
|
|
self.assertGreater(byte, 0)
|
|
self.assertGreater(char, 0)
|
|
self.assertGreater(short, 0)
|
|
self.assertGreater(int, 0)
|
|
self.assertGreater(long, 0)
|
|
self.assertGreater(float, 0)
|
|
self.assertGreater(double, 0)
|
|
self.assertGreater(bool, 0)
|
|
|
|
# These tests are portable, not necessarily strict for your system.
|
|
self.assertEqual(byte, 1)
|
|
self.assertEqual(char, 1)
|
|
self.assertEqual(bool, 1)
|
|
self.assertGreaterEqual(short, 2)
|
|
self.assertGreaterEqual(int, 2)
|
|
self.assertGreaterEqual(int, short)
|
|
self.assertGreaterEqual(long, 4)
|
|
self.assertGreaterEqual(long, int)
|
|
self.assertGreaterEqual(double, float)
|
|
|
|
def test_split(self):
|
|
tensor = torch.rand(7, 4)
|
|
split_size = 3
|
|
dim = 0
|
|
target_sizes = ([3, 4], [3, 4], [1, 4])
|
|
splits = tensor.split(split_size, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
|
|
start = start + target_size[dim]
|
|
|
|
# Variable sections split
|
|
tensor = torch.randn(20, 10)
|
|
dim = 0
|
|
split_sizes = [5, 5, 10]
|
|
target_sizes = ([[5, 10], [5, 10], [10, 10]])
|
|
splits = tensor.split(split_sizes, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
|
|
start = start + target_size[dim]
|
|
|
|
split_sizes = [2, 2, 6]
|
|
target_sizes = ([20, 2], [20, 2], [20, 6])
|
|
dim = 1
|
|
splits = tensor.split(split_sizes, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
|
|
start = start + target_size[dim]
|
|
|
|
def test_chunk(self):
|
|
tensor = torch.rand(4, 7)
|
|
num_chunks = 3
|
|
dim = 1
|
|
target_sizes = ([4, 3], [4, 3], [4, 1])
|
|
splits = tensor.chunk(num_chunks, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
|
|
start = start + target_size[dim]
|
|
|
|
# Invalid chunk sizes
|
|
error_regex = 'chunk expects.*greater than 0'
|
|
with self.assertRaisesRegex(RuntimeError, error_regex):
|
|
tensor.chunk(0)
|
|
with self.assertRaisesRegex(RuntimeError, error_regex):
|
|
tensor.chunk(-2)
|
|
|
|
def test_tolist(self):
|
|
list0D = []
|
|
tensor0D = torch.Tensor(list0D)
|
|
self.assertEqual(tensor0D.tolist(), list0D)
|
|
|
|
table1D = [1, 2, 3]
|
|
tensor1D = torch.Tensor(table1D)
|
|
storage = torch.Storage(table1D)
|
|
self.assertEqual(tensor1D.tolist(), table1D)
|
|
self.assertEqual(storage.tolist(), table1D)
|
|
self.assertEqual(tensor1D.tolist(), table1D)
|
|
self.assertEqual(storage.tolist(), table1D)
|
|
|
|
table2D = [[1, 2], [3, 4]]
|
|
tensor2D = torch.Tensor(table2D)
|
|
self.assertEqual(tensor2D.tolist(), table2D)
|
|
|
|
tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
|
|
tensorNonContig = tensor3D.select(1, 1)
|
|
self.assertFalse(tensorNonContig.is_contiguous())
|
|
self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]])
|
|
|
|
def test_permute(self):
|
|
orig = [1, 2, 3, 4, 5, 6, 7]
|
|
perm = torch.randperm(7).tolist()
|
|
x = torch.Tensor(*orig).fill_(0)
|
|
new = list(map(lambda x: x - 1, x.permute(*perm).size()))
|
|
self.assertEqual(perm, new)
|
|
self.assertEqual(x.size(), orig)
|
|
|
|
@staticmethod
|
|
def _test_flip(self, use_cuda=False):
|
|
device = torch.device('cuda') if use_cuda else torch.device('cpu')
|
|
data = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8], device=device).view(2, 2, 2)
|
|
|
|
self.assertEqual(torch.tensor([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2), data.flip(0))
|
|
self.assertEqual(torch.tensor([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2), data.flip(1))
|
|
self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(2))
|
|
self.assertEqual(torch.tensor([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2), data.flip(0, 1))
|
|
self.assertEqual(torch.tensor([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2), data.flip(0, 1, 2))
|
|
|
|
# check for wrap dim
|
|
self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(-1))
|
|
# check for permute
|
|
self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(0, 2))
|
|
self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(2, 0))
|
|
|
|
# not allow flip on the same dim more than once
|
|
self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1))
|
|
# not allow empty list as input
|
|
self.assertRaises(TypeError, lambda: data.flip())
|
|
|
|
# not allow size of flip dim > total dims
|
|
self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3))
|
|
# not allow dim > max dim
|
|
self.assertRaises(IndexError, lambda: data.flip(3))
|
|
|
|
# test for non-contiguous case
|
|
expanded_data = torch.arange(1, 4, device=device).view(3, 1).expand(3, 2)
|
|
tranposed_data = torch.arange(1, 9, device=device).view(2, 2, 2).transpose(0, 1)
|
|
self.assertEqual(torch.tensor([3, 3, 2, 2, 1, 1]).view(3, 2), expanded_data.flip(0))
|
|
self.assertEqual(torch.tensor([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2), tranposed_data.flip(0, 1, 2))
|
|
|
|
# test for shape
|
|
data = torch.randn(2, 3, 4, device=device)
|
|
size = [2, 3, 4]
|
|
test_dims = []
|
|
for i in range(1, 3):
|
|
test_dims += combinations(range(len(size)), i)
|
|
|
|
for ds in test_dims:
|
|
self.assertEqual(size, list(data.flip(ds).size()))
|
|
|
|
# test rectangular case
|
|
data = torch.tensor([1, 2, 3, 4, 5, 6]).view(2, 3)
|
|
flip0_result = torch.tensor([[4, 5, 6], [1, 2, 3]])
|
|
flip1_result = torch.tensor([[3, 2, 1], [6, 5, 4]])
|
|
if use_cuda:
|
|
data = data.cuda()
|
|
flip0_result = flip0_result.cuda()
|
|
flip1_result = flip1_result.cuda()
|
|
self.assertEqual(flip0_result, data.flip(0))
|
|
self.assertEqual(flip1_result, data.flip(1))
|
|
|
|
# test empty tensor, should just return an empty tensor of the same shape
|
|
data = torch.tensor([])
|
|
self.assertEqual(data, data.flip(0))
|
|
|
|
def test_flip(self):
|
|
self._test_flip(self, use_cuda=False)
|
|
|
|
def test_roll(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
numbers = torch.arange(1, 9, device=device)
|
|
|
|
single_roll = numbers.roll(1, 0)
|
|
expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device)
|
|
self.assertEqual(single_roll, expected, "{} did not equal expected result".format(single_roll))
|
|
|
|
roll_backwards = numbers.roll(-2, 0)
|
|
expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device)
|
|
self.assertEqual(roll_backwards, expected, "{} did not equal expected result".format(roll_backwards))
|
|
|
|
data = numbers.view(2, 2, 2)
|
|
rolled = data.roll(1, 0)
|
|
expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2)
|
|
self.assertEqual(expected, rolled, "{} did not equal expected result: {}".format(rolled, expected))
|
|
|
|
data = data.view(2, 4)
|
|
# roll a loop until back where started
|
|
loop_rolled = data.roll(2, 0).roll(4, 1)
|
|
self.assertEqual(data, loop_rolled, "{} did not equal the original: {}".format(loop_rolled, data))
|
|
# multiple inverse loops
|
|
self.assertEqual(data, data.roll(-20, 0).roll(-40, 1))
|
|
self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0))
|
|
|
|
# test non-contiguous
|
|
# strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4))
|
|
strided = numbers.view(2, 4).transpose(0, 1)
|
|
self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor")
|
|
expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2)
|
|
rolled = strided.roll(1, 0)
|
|
self.assertEqual(expected, rolled,
|
|
"non contiguous tensor rolled to {} instead of {} ".format(rolled, expected))
|
|
|
|
# test roll with no dimension specified
|
|
expected = numbers.roll(1, 0).view(2, 4)
|
|
self.assertEqual(expected, data.roll(1), "roll with no dims should flatten and roll.")
|
|
self.assertEqual(expected, data.roll(1, dims=None), "roll with no dims should flatten and roll.")
|
|
|
|
# test roll over multiple dimensions
|
|
expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device)
|
|
double_rolled = data.roll(shifts=(2, -1), dims=(1, 0))
|
|
self.assertEqual(double_rolled, expected,
|
|
"should be able to roll over two dimensions, got {}".format(double_rolled))
|
|
|
|
self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=()))
|
|
self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1))
|
|
# shifts/dims should align
|
|
self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,)))
|
|
self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2)))
|
|
|
|
def test_reversed(self):
|
|
val = torch.arange(0, 10)
|
|
self.assertEqual(reversed(val), torch.arange(9, -1, -1))
|
|
|
|
val = torch.arange(1, 10).view(3, 3)
|
|
self.assertEqual(reversed(val), torch.tensor([[7, 8, 9], [4, 5, 6], [1, 2, 3]]))
|
|
|
|
val = torch.tensor(42)
|
|
self.assertEqual(reversed(val), torch.tensor(42))
|
|
|
|
def test_contains(self):
|
|
x = torch.arange(0, 10)
|
|
self.assertEqual(4 in x, True)
|
|
self.assertEqual(12 in x, False)
|
|
|
|
x = torch.arange(1, 10).view(3, 3)
|
|
val = torch.arange(1, 4)
|
|
self.assertEqual(val in x, True)
|
|
val += 10
|
|
self.assertEqual(val in x, False)
|
|
|
|
@staticmethod
|
|
def _test_rot90(self, use_cuda=False):
|
|
device = torch.device("cuda" if use_cuda else "cpu")
|
|
data = torch.arange(1, 5, device=device).view(2, 2)
|
|
self.assertEqual(torch.tensor([1, 2, 3, 4]).view(2, 2), data.rot90(0, [0, 1]))
|
|
self.assertEqual(torch.tensor([2, 4, 1, 3]).view(2, 2), data.rot90(1, [0, 1]))
|
|
self.assertEqual(torch.tensor([4, 3, 2, 1]).view(2, 2), data.rot90(2, [0, 1]))
|
|
self.assertEqual(torch.tensor([3, 1, 4, 2]).view(2, 2), data.rot90(3, [0, 1]))
|
|
|
|
# test for default args k=1, dims=[0, 1]
|
|
self.assertEqual(data.rot90(), data.rot90(1, [0, 1]))
|
|
|
|
# test for reversed order of dims
|
|
self.assertEqual(data.rot90(3, [0, 1]), data.rot90(1, [1, 0]))
|
|
|
|
# test for modulo of k
|
|
self.assertEqual(data.rot90(5, [0, 1]), data.rot90(1, [0, 1]))
|
|
self.assertEqual(data.rot90(3, [0, 1]), data.rot90(-1, [0, 1]))
|
|
self.assertEqual(data.rot90(-5, [0, 1]), data.rot90(-1, [0, 1]))
|
|
|
|
# test for dims out-of-range error
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, -3]))
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 2]))
|
|
|
|
# test tensor with more than 2D
|
|
data = torch.arange(1, 9, device=device).view(2, 2, 2)
|
|
self.assertEqual(torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2]))
|
|
self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2]))
|
|
|
|
# test for errors
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 3]))
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [1, 1]))
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 1, 2]))
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0]))
|
|
|
|
def test_rot90(self):
|
|
self._test_rot90(self, use_cuda=False)
|
|
|
|
def test_storage(self):
|
|
v = torch.randn(3, 5)
|
|
self.assertEqual(v.storage()[0], v.data[0][0])
|
|
self.assertEqual(v.storage()[14], v.data[2][4])
|
|
|
|
def test_nonzero(self):
|
|
devices = torch.testing.get_all_device_types()
|
|
num_srcs = [
|
|
12, 12, 12, 12, 12, 125,
|
|
]
|
|
|
|
types = [
|
|
'torch.ByteTensor',
|
|
'torch.CharTensor',
|
|
'torch.ShortTensor',
|
|
'torch.IntTensor',
|
|
'torch.FloatTensor',
|
|
'torch.DoubleTensor',
|
|
'torch.LongTensor',
|
|
]
|
|
|
|
shapes = [
|
|
torch.Size((12,)),
|
|
torch.Size((12, 1)),
|
|
torch.Size((1, 12)),
|
|
torch.Size((6, 2)),
|
|
torch.Size((3, 2, 2)),
|
|
torch.Size((5, 5, 5)),
|
|
]
|
|
|
|
def is_lexicographically_sorted(inds):
|
|
"""Check sorted ascending with
|
|
i -> j -> k changing slowest to fastest"""
|
|
assert inds.size(1) == 3
|
|
if inds.size(0) > 1:
|
|
i0, j0, k0 = inds[:-1].t()
|
|
i1, j1, k1 = inds[+1:].t()
|
|
i_ok = (i1 >= i0)
|
|
j_ok = (j1 >= j0) | (i1 > i0)
|
|
k_ok = (k1 >= k0) | (j1 > j0) | (i1 > i0)
|
|
lex = torch.stack((i_ok, j_ok, k_ok), dim=1)
|
|
return lex
|
|
return torch.full_like(inds, 1)
|
|
|
|
def gen_nontrivial_input(num_src, dtype, device):
|
|
while True:
|
|
tensor = torch.rand(num_src).mul(2).floor().type(dtype).to(device)
|
|
if tensor.sum() > 0:
|
|
return tensor
|
|
|
|
for device in devices:
|
|
for dtype in types:
|
|
for shape, num_src in zip(shapes, num_srcs):
|
|
tensor = gen_nontrivial_input(num_src, dtype, device)
|
|
tensor = tensor.clone().resize_(shape)
|
|
dst1 = torch.nonzero(tensor)
|
|
dst2 = tensor.nonzero()
|
|
dst3 = torch.LongTensor().to(device)
|
|
torch.nonzero(tensor, out=dst3)
|
|
if len(shape) == 1:
|
|
dst = []
|
|
for i in range(num_src):
|
|
if tensor[i] != 0:
|
|
dst += [i]
|
|
dst = torch.LongTensor(dst).to(device)
|
|
self.assertEqual(dst1.select(1, 0), dst, 0)
|
|
self.assertEqual(dst2.select(1, 0), dst, 0)
|
|
self.assertEqual(dst3.select(1, 0), dst, 0)
|
|
elif len(shape) == 2:
|
|
# This test will allow through some False positives. It only checks
|
|
# that the elements flagged positive are indeed non-zero.
|
|
for i in range(dst1.size(0)):
|
|
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]].item(), 0)
|
|
elif len(shape) == 3:
|
|
# This test will allow through some False positives. It only checks
|
|
# that the elements flagged positive are indeed non-zero.
|
|
for i in range(dst1.size(0)):
|
|
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]].item(), 0)
|
|
lex = is_lexicographically_sorted(dst1)
|
|
self.assertEqual(torch.ones_like(lex), lex)
|
|
|
|
def test_nonzero_empty(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
x = torch.randn(0, 2, 0, 5, 0, device=device)
|
|
y = torch.nonzero(x)
|
|
self.assertEqual(0, y.numel())
|
|
self.assertEqual(torch.Size([0, 5]), y.shape)
|
|
|
|
x = torch.tensor(0.5, device=device)
|
|
y = torch.nonzero(x)
|
|
self.assertEqual(torch.Size([1, 0]), y.shape)
|
|
|
|
x = torch.zeros((), device=device)
|
|
y = torch.nonzero(x)
|
|
self.assertEqual(torch.Size([0, 0]), y.shape)
|
|
|
|
def test_deepcopy(self):
|
|
from copy import deepcopy
|
|
a = torch.randn(5, 5)
|
|
b = torch.randn(5, 5)
|
|
c = a.view(25)
|
|
q = [a, [a.storage(), b.storage()], b, c]
|
|
w = deepcopy(q)
|
|
self.assertEqual(w[0], q[0], 0)
|
|
self.assertEqual(w[1][0], q[1][0], 0)
|
|
self.assertEqual(w[1][1], q[1][1], 0)
|
|
self.assertEqual(w[1], q[1], 0)
|
|
self.assertEqual(w[2], q[2], 0)
|
|
|
|
# Check that deepcopy preserves sharing
|
|
w[0].add_(1)
|
|
for i in range(a.numel()):
|
|
self.assertEqual(w[1][0][i], q[1][0][i] + 1)
|
|
self.assertEqual(w[3], c + 1)
|
|
w[2].sub_(1)
|
|
for i in range(a.numel()):
|
|
self.assertEqual(w[1][1][i], q[1][1][i] - 1)
|
|
|
|
def test_deepcopy_scalar(self):
|
|
from copy import deepcopy
|
|
a = torch.tensor(5)
|
|
self.assertEqual(a.size(), deepcopy(a).size())
|
|
self.assertEqual(a, deepcopy(a))
|
|
|
|
def test_deepcopy_parameter(self):
|
|
from copy import deepcopy
|
|
l = torch.nn.Linear(10, 1)
|
|
s = l.state_dict(keep_vars=True)
|
|
self.assertEqual(torch.nn.Parameter, type(s['weight']))
|
|
self.assertEqual(torch.nn.Parameter, type(s['bias']))
|
|
|
|
s2 = deepcopy(s)
|
|
self.assertEqual(torch.nn.Parameter, type(s2['weight']))
|
|
self.assertEqual(torch.nn.Parameter, type(s2['bias']))
|
|
|
|
def test_pickle(self):
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
else:
|
|
import pickle
|
|
a = torch.randn(5, 5)
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_parameter(self):
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
else:
|
|
import pickle
|
|
a = torch.nn.Parameter(torch.randn(5, 5))
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.nn.Parameter))
|
|
self.assertEqual(a.requires_grad, b.requires_grad)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_parameter_no_requires_grad(self):
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
else:
|
|
import pickle
|
|
a = torch.nn.Parameter(torch.randn(5, 5), requires_grad=False)
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.nn.Parameter))
|
|
self.assertEqual(a.requires_grad, b.requires_grad)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_dtype(self):
|
|
t = torch.float32
|
|
serialized = pickle.dumps(t)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.dtype))
|
|
self.assertEqual(id(b), id(t))
|
|
|
|
def test_norm_fastpaths(self):
|
|
x = torch.randn(3, 5)
|
|
|
|
# slow path
|
|
result = torch.norm(x, 4.5, 1)
|
|
expected = torch.pow(x.abs().pow(4.5).sum(1), 1.0 / 4.5)
|
|
self.assertEqual(result, expected)
|
|
|
|
# fast 0-norm
|
|
result = torch.norm(x, 0, 1)
|
|
expected = (x != 0).type_as(x).sum(1)
|
|
self.assertEqual(result, expected)
|
|
|
|
# fast 1-norm
|
|
result = torch.norm(x, 1, 1)
|
|
expected = x.abs().sum(1)
|
|
self.assertEqual(result, expected)
|
|
|
|
# fast 2-norm
|
|
result = torch.norm(x, 2, 1)
|
|
expected = torch.sqrt(x.pow(2).sum(1))
|
|
self.assertEqual(result, expected)
|
|
|
|
# fast 3-norm
|
|
result = torch.norm(x, 3, 1)
|
|
expected = torch.pow(x.pow(3).abs().sum(1), 1.0 / 3.0)
|
|
self.assertEqual(result, expected)
|
|
|
|
@staticmethod
|
|
def _test_bernoulli(self, t_dtype, p_dtype, device):
|
|
for trivial_p in ([0, 1], [1, 0, 1, 1, 0, 1]):
|
|
x = torch.tensor(trivial_p, dtype=p_dtype, device=device)
|
|
self.assertEqual(x.bernoulli().tolist(), trivial_p)
|
|
|
|
def isBinary(t):
|
|
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0
|
|
|
|
p = torch.rand(5, 5, dtype=p_dtype, device=device)
|
|
self.assertTrue(isBinary(p.bernoulli()))
|
|
|
|
p = torch.rand(5, dtype=p_dtype, device=device).expand(5, 5)
|
|
self.assertTrue(isBinary(p.bernoulli()))
|
|
|
|
p = torch.rand(5, 5, dtype=p_dtype, device=device)
|
|
torch.bernoulli(torch.rand_like(p), out=p)
|
|
self.assertTrue(isBinary(p))
|
|
|
|
p = torch.rand(5, dtype=p_dtype, device=device).expand(5, 5)
|
|
torch.bernoulli(torch.rand_like(p), out=p)
|
|
self.assertTrue(isBinary(p))
|
|
|
|
t = torch.empty(10, 10, dtype=t_dtype, device=device)
|
|
|
|
t.fill_(2)
|
|
t.bernoulli_(0.5)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
p = torch.rand(10, dtype=p_dtype, device=device).expand(10, 10)
|
|
t.fill_(2)
|
|
t.bernoulli_(p)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
t.fill_(2)
|
|
torch.bernoulli(torch.rand_like(t, dtype=p_dtype), out=t)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
t.fill_(2)
|
|
t.bernoulli_(torch.rand_like(t, dtype=p_dtype))
|
|
self.assertTrue(isBinary(t))
|
|
|
|
def test_bernoulli(self):
|
|
self._test_bernoulli(self, torch.float32, torch.float64, 'cpu')
|
|
# test that it works with integral tensors
|
|
self._test_bernoulli(self, torch.uint8, torch.float64, 'cpu')
|
|
|
|
def test_normal(self):
|
|
q = torch.Tensor(100, 100)
|
|
q.normal_()
|
|
self.assertEqual(q.mean(), 0, 0.2)
|
|
self.assertEqual(q.std(), 1, 0.2)
|
|
|
|
q.normal_(2, 3)
|
|
self.assertEqual(q.mean(), 2, 0.3)
|
|
self.assertEqual(q.std(), 3, 0.3)
|
|
|
|
q = torch.Tensor(100, 100)
|
|
q_row1 = q[0:1].clone()
|
|
q[99:100].normal_()
|
|
self.assertEqual(q[99:100].mean(), 0, 0.2)
|
|
self.assertEqual(q[99:100].std(), 1, 0.2)
|
|
self.assertEqual(q[0:1].clone(), q_row1)
|
|
|
|
mean = torch.Tensor(100, 100)
|
|
std = torch.Tensor(100, 100)
|
|
mean[:50] = 0
|
|
mean[50:] = 1
|
|
std[:, :50] = 4
|
|
std[:, 50:] = 1
|
|
|
|
r = torch.normal(mean)
|
|
self.assertEqual(r[:50].mean(), 0, 0.2)
|
|
self.assertEqual(r[50:].mean(), 1, 0.2)
|
|
self.assertEqual(r.std(), 1, 0.2)
|
|
|
|
r = torch.normal(mean, 3)
|
|
self.assertEqual(r[:50].mean(), 0, 0.2)
|
|
self.assertEqual(r[50:].mean(), 1, 0.2)
|
|
self.assertEqual(r.std(), 3, 0.2)
|
|
|
|
r = torch.normal(2, std)
|
|
self.assertEqual(r.mean(), 2, 0.2)
|
|
self.assertEqual(r[:, :50].std(), 4, 0.3)
|
|
self.assertEqual(r[:, 50:].std(), 1, 0.2)
|
|
|
|
r = torch.normal(mean, std)
|
|
self.assertEqual(r[:50].mean(), 0, 0.2)
|
|
self.assertEqual(r[50:].mean(), 1, 0.2)
|
|
self.assertEqual(r[:, :50].std(), 4, 0.3)
|
|
self.assertEqual(r[:, 50:].std(), 1, 0.2)
|
|
|
|
def test_sobolengine_unscrambled_lowdim(self):
|
|
engine_1d = torch.quasirandom.SobolEngine(1)
|
|
expected_1d = torch.tensor([0.5, 0.75, 0.25, 0.375, 0.875, 0.625, 0.125, 0.1875, 0.6875, 0.9375])
|
|
actual_1d = engine_1d.draw(10)
|
|
self.assertEqual(actual_1d.view(-1), expected_1d)
|
|
self.assertEqual(actual_1d.size(), torch.Size([10, 1]))
|
|
|
|
# Test out kwarg
|
|
engine_1d.reset()
|
|
actual_1d_out = torch.Tensor().float()
|
|
engine_1d.draw(10, out=actual_1d_out)
|
|
self.assertEqual(actual_1d.view(-1), expected_1d)
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3)
|
|
expected_3d = torch.tensor([0.5, 0.75, 0.25, 0.625, 0.125, 0.375, 0.875, 0.3125, 0.8125, 0.5625])
|
|
actual_3d = engine_3d.draw(10)
|
|
self.assertEqual(actual_3d[:, 2], expected_3d)
|
|
self.assertEqual(actual_3d[:, 0], expected_1d)
|
|
self.assertEqual(actual_3d.size(), torch.Size([10, 3]))
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3)
|
|
draws = torch.cat([engine_3d.draw() for _ in range(0, 10)])
|
|
self.assertEqual(draws, actual_3d)
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3).fast_forward(5)
|
|
draws = engine_3d.draw(5)
|
|
self.assertEqual(draws, actual_3d[5:])
|
|
engine_3d.reset()
|
|
self.assertEqual(engine_3d.draw(3), actual_3d[:3])
|
|
engine_3d.fast_forward(2)
|
|
self.assertEqual(engine_3d.draw(5), actual_3d[5:])
|
|
|
|
def test_sobolengine_unscrambled_highdim(self):
|
|
from collections import Counter
|
|
engine = torch.quasirandom.SobolEngine(1111)
|
|
count1 = dict(Counter(engine.draw().view(-1).tolist()))
|
|
count2 = dict(Counter(engine.draw().view(-1).tolist()))
|
|
count3 = dict(Counter(engine.draw().view(-1).tolist()))
|
|
self.assertTrue(count1 == {0.5: 1111})
|
|
self.assertTrue(count2 == {0.25: 580, 0.75: 531})
|
|
self.assertTrue(count3 == {0.25: 531, 0.75: 580})
|
|
|
|
engine = torch.quasirandom.SobolEngine(1111)
|
|
draws = engine.draw(1000)
|
|
self.assertTrue(torch.all(draws <= 1))
|
|
self.assertTrue(torch.all(draws >= 0))
|
|
|
|
def test_sobolengine_scrambled_lowdim(self):
|
|
engine_1d = torch.quasirandom.SobolEngine(1, scramble=True, seed=1729)
|
|
expected_1d = [0.16478512, 0.43221009, 0.84261382, 0.99750268, 0.27460563,
|
|
0.01084163, 0.73373985, 0.65039611, 0.12329865, 0.35587373]
|
|
actual_1d = engine_1d.draw(10)
|
|
self.assertEqual(actual_1d.flatten(), torch.tensor(expected_1d))
|
|
self.assertEqual(actual_1d.size(), torch.Size([10, 1]))
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
|
|
expected_3d = [0.32642800, 0.17881306, 0.68837059, 0.46492538, 0.91789097,
|
|
0.58075899, 0.03642474, 0.68229187, 0.20051685, 0.30083340]
|
|
actual_3d = engine_3d.draw(10)
|
|
self.assertEqual(actual_3d[:, 2], torch.tensor(expected_3d))
|
|
self.assertEqual(actual_3d.size(), torch.Size([10, 3]))
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
|
|
draws = torch.cat([engine_3d.draw() for _ in range(0, 10)])
|
|
self.assertEqual(draws, actual_3d)
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
|
|
engine_3d.fast_forward(5)
|
|
draws = engine_3d.draw(5)
|
|
self.assertEqual(draws, actual_3d[5:])
|
|
engine_3d.reset()
|
|
self.assertEqual(engine_3d.draw(3), actual_3d[:3])
|
|
engine_3d.fast_forward(2)
|
|
self.assertEqual(engine_3d.draw(5), actual_3d[5:])
|
|
|
|
def test_sobolengine_scrambled_highdim(self):
|
|
engine = torch.quasirandom.SobolEngine(1111, scramble=True)
|
|
draws = engine.draw(1000)
|
|
self.assertTrue(torch.all(draws <= 1))
|
|
self.assertTrue(torch.all(draws >= 0))
|
|
|
|
def test_parsing_int64(self):
|
|
# accepts integer arguments
|
|
x = torch.cumsum(torch.ones(5, 5), 0)
|
|
self.assertEqual(x, torch.cumsum(torch.ones(5, 5), torch.tensor(0)))
|
|
# doesn't accept floating point variables
|
|
self.assertRaises(TypeError, lambda: torch.cumsum(torch.ones(5, 5), torch.tensor(0.)))
|
|
|
|
def test_parsing_double(self):
|
|
# accepts floating point and integer arguments
|
|
x = torch.randn(2, 3)
|
|
torch.isclose(x, x, 1, 1)
|
|
self.assertTrue(torch.isclose(x, x, 1, 1).all())
|
|
self.assertTrue(torch.isclose(x, x, 1.5, 1.).all())
|
|
# accepts floating point and integer tensors
|
|
self.assertTrue(torch.isclose(x, x, torch.tensor(1), torch.tensor(1)).all())
|
|
self.assertTrue(torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1.)).all())
|
|
# doesn't accept variables with requires_grad
|
|
self.assertRaises(TypeError,
|
|
lambda: torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1., requires_grad=True)).all())
|
|
|
|
def test_parsing_intlist(self):
|
|
# parse with integer variables
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((torch.tensor(3), torch.tensor(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(torch.tensor(3), torch.tensor(4)).shape)
|
|
# parse with numpy integers
|
|
if TEST_NUMPY:
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((np.array(3), np.int64(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(np.array(3), np.int64(4)).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((np.int64(3), np.array(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(np.int64(3), np.array(4)).shape)
|
|
|
|
# fail parse with float variables
|
|
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3.), torch.tensor(4))))
|
|
# fail parse with numpy floats
|
|
if TEST_NUMPY:
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4))))
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.array(3.), torch.tensor(4))))
|
|
|
|
# fail parse with > 1 element variables
|
|
self.assertRaises(TypeError, lambda: torch.ones(torch.tensor(3, 3)))
|
|
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3, 3))))
|
|
if TEST_NUMPY:
|
|
self.assertRaises(TypeError, lambda: torch.ones(np.array(3, 3)))
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.array(3, 3))))
|
|
|
|
# fail parse with additional positional args after intlist arg
|
|
self.assertRaisesRegex(TypeError,
|
|
"received an invalid combination of arguments",
|
|
lambda: torch.LongTensor((6, 0), 1, 1, 0))
|
|
self.assertRaisesRegex(TypeError,
|
|
"missing 1 required positional arguments",
|
|
lambda: torch.tensor().new_zeros((5, 5), 0))
|
|
|
|
def _test_serialization_data(self):
|
|
a = [torch.randn(5, 5).float() for i in range(2)]
|
|
b = [a[i % 2] for i in range(4)] # 0-3
|
|
b += [a[0].storage()] # 4
|
|
b += [a[0].reshape(-1)[1:4].storage()] # 5
|
|
b += [torch.arange(1, 11).int()] # 6
|
|
t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,))
|
|
t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,))
|
|
b += [(t1.storage(), t1.storage(), t2.storage())] # 7
|
|
b += [a[0].reshape(-1)[0:2].storage()] # 8
|
|
return b
|
|
|
|
def _test_serialization_assert(self, b, c):
|
|
self.assertEqual(b, c, 0)
|
|
self.assertTrue(isinstance(c[0], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[1], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[2], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[3], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[4], torch.FloatStorage))
|
|
c[0].fill_(10)
|
|
self.assertEqual(c[0], c[2], 0)
|
|
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
|
|
c[1].fill_(20)
|
|
self.assertEqual(c[1], c[3], 0)
|
|
# I have to do it in this roundabout fashion, because there's no
|
|
# way to slice storages
|
|
for i in range(4):
|
|
self.assertEqual(c[4][i + 1], c[5][i])
|
|
|
|
# check that serializing the same storage view object unpickles
|
|
# it as one object not two (and vice versa)
|
|
views = c[7]
|
|
self.assertEqual(views[0]._cdata, views[1]._cdata)
|
|
self.assertEqual(views[0], views[2])
|
|
self.assertNotEqual(views[0]._cdata, views[2]._cdata)
|
|
|
|
rootview = c[8]
|
|
self.assertEqual(rootview.data_ptr(), c[0].data_ptr())
|
|
|
|
def test_serialization(self):
|
|
# Test serialization with a real file
|
|
b = self._test_serialization_data()
|
|
for use_name in (False, True):
|
|
# Passing filename to torch.save(...) will cause the file to be opened twice,
|
|
# which is not supported on Windows
|
|
if sys.platform == "win32" and use_name:
|
|
continue
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
handle = f if not use_name else f.name
|
|
torch.save(b, handle)
|
|
f.seek(0)
|
|
c = torch.load(handle)
|
|
self._test_serialization_assert(b, c)
|
|
# test non-ascii encoding of bytes arrays/strings
|
|
# The following bytes are produced by serializing
|
|
# [b'\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85\xc5\xbc', torch.zeros(1, dtype=torch.float), 2]
|
|
# in Python 2.7.12 and PyTorch 0.4.1, where the first element contains
|
|
# bytes of some utf-8 characters (i.e., `utf8_str.encode('utf-8')`).
|
|
serialized = (
|
|
b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9\x03.'
|
|
b'\x80\x02}q\x01(U\x10protocol_versionq\x02M\xe9\x03U\n'
|
|
b'type_sizesq\x03}q\x04(U\x03intq\x05K\x04U\x05shortq\x06K\x02U'
|
|
b'\x04longq\x07K\x04uU\rlittle_endianq\x08\x88u.\x80\x02]q'
|
|
b'\x01(U\x0e\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85'
|
|
b'\xc5\xbcq\x02ctorch._utils\n_rebuild_tensor_v2\nq\x03((U'
|
|
b'\x07storageq\x04ctorch\nFloatStorage\nq\x05U\x0845640624q'
|
|
b'\x06U\x03cpuq\x07\x8a\x01\x01NtQK\x00K\x01\x85K\x01\x85'
|
|
b'\x89NtRq\x08K\x02e.\x80\x02]q\x01U\x0845640624q\x02a.\x01\x00'
|
|
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
|
|
)
|
|
buf = io.BytesIO(serialized)
|
|
utf8_bytes = b'\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85\xc5\xbc'
|
|
utf8_str = utf8_bytes.decode('utf-8')
|
|
if PY3:
|
|
with self.assertRaisesRegex(UnicodeDecodeError, "'ascii' codec can't decode byte"):
|
|
loaded = torch.load(buf)
|
|
buf.seek(0)
|
|
loaded_utf8 = torch.load(buf, encoding='utf-8')
|
|
self.assertEqual(loaded_utf8, [utf8_str, torch.zeros(1, dtype=torch.float), 2])
|
|
buf.seek(0)
|
|
loaded_bytes = torch.load(buf, encoding='bytes')
|
|
else:
|
|
loaded_bytes = torch.load(buf)
|
|
self.assertEqual(loaded_bytes, [utf8_bytes, torch.zeros(1, dtype=torch.float), 2])
|
|
|
|
def test_serialization_filelike(self):
|
|
# Test serialization (load and save) with a filelike object
|
|
b = self._test_serialization_data()
|
|
with BytesIOContext() as f:
|
|
torch.save(b, f)
|
|
f.seek(0)
|
|
c = torch.load(f)
|
|
self._test_serialization_assert(b, c)
|
|
|
|
def test_serialization_gzip(self):
|
|
# Test serialization with gzip file
|
|
b = self._test_serialization_data()
|
|
f1 = tempfile.NamedTemporaryFile(delete=False)
|
|
f2 = tempfile.NamedTemporaryFile(delete=False)
|
|
torch.save(b, f1)
|
|
with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out:
|
|
shutil.copyfileobj(f_in, f_out)
|
|
|
|
with gzip.open(f2.name, 'rb') as f:
|
|
c = torch.load(f)
|
|
self._test_serialization_assert(b, c)
|
|
|
|
def test_serialization_offset(self):
|
|
a = torch.randn(5, 5)
|
|
b = torch.randn(2, 2)
|
|
m = torch.nn.Conv2d(1, 1, (1, 3))
|
|
i, j = 41, 43
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
pickle.dump(i, f)
|
|
torch.save(a, f)
|
|
pickle.dump(j, f)
|
|
torch.save(b, f)
|
|
torch.save(m, f)
|
|
f.seek(0)
|
|
i_loaded = pickle.load(f)
|
|
a_loaded = torch.load(f)
|
|
j_loaded = pickle.load(f)
|
|
b_loaded = torch.load(f)
|
|
m_loaded = torch.load(f)
|
|
self.assertTrue(torch.equal(a, a_loaded))
|
|
self.assertTrue(torch.equal(b, b_loaded))
|
|
self.assertTrue(m.kernel_size == m_loaded.kernel_size)
|
|
self.assertEqual(i, i_loaded)
|
|
self.assertEqual(j, j_loaded)
|
|
|
|
def test_serialization_offset_filelike(self):
|
|
a = torch.randn(5, 5)
|
|
b = torch.randn(2, 3)
|
|
i, j = 41, 43
|
|
with BytesIOContext() as f:
|
|
pickle.dump(i, f)
|
|
torch.save(a, f)
|
|
pickle.dump(j, f)
|
|
torch.save(b, f)
|
|
f.seek(0)
|
|
i_loaded = pickle.load(f)
|
|
a_loaded = torch.load(f)
|
|
j_loaded = pickle.load(f)
|
|
b_loaded = torch.load(f)
|
|
self.assertTrue(torch.equal(a, a_loaded))
|
|
self.assertTrue(torch.equal(b, b_loaded))
|
|
self.assertEqual(i, i_loaded)
|
|
self.assertEqual(j, j_loaded)
|
|
|
|
def test_serialization_offset_gzip(self):
|
|
a = torch.randn(5, 5)
|
|
i = 41
|
|
f1 = tempfile.NamedTemporaryFile(delete=False)
|
|
f2 = tempfile.NamedTemporaryFile(delete=False)
|
|
with open(f1.name, 'wb') as f:
|
|
pickle.dump(i, f)
|
|
torch.save(a, f)
|
|
with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out:
|
|
shutil.copyfileobj(f_in, f_out)
|
|
|
|
with gzip.open(f2.name, 'rb') as f:
|
|
j = pickle.load(f)
|
|
b = torch.load(f)
|
|
self.assertTrue(torch.equal(a, b))
|
|
self.assertEqual(i, j)
|
|
|
|
def test_half_tensor(self):
|
|
x = torch.randn(5, 5).float()
|
|
y = torch.randn(5, 5).float()
|
|
xh, yh = x.half(), y.half()
|
|
|
|
self.assertEqual(x.half().float(), x, 1e-3)
|
|
|
|
z = torch.Tensor(5, 5)
|
|
self.assertEqual(z.copy_(xh), x, 1e-3)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(xh, f)
|
|
f.seek(0)
|
|
xh2 = torch.load(f)
|
|
self.assertEqual(xh.float(), xh2.float())
|
|
|
|
def test_serialize_device(self):
|
|
device_str = ['cpu', 'cpu:0', 'cuda', 'cuda:0']
|
|
device_obj = [torch.device(d) for d in device_str]
|
|
for device in device_obj:
|
|
device_copied = copy.deepcopy(device)
|
|
self.assertEqual(device, device_copied)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_half_tensor_cuda(self):
|
|
x = torch.randn(5, 5).half()
|
|
self.assertEqual(x.cuda(), x)
|
|
|
|
xc = x.cuda()
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(xc, f)
|
|
f.seek(0)
|
|
xc2 = torch.load(f)
|
|
self.assertIsInstance(xc2, type(xc))
|
|
self.assertEqual(xc.float(), xc2.float())
|
|
|
|
def _test_serialization_cuda(self, filecontext_lambda):
|
|
device_count = torch.cuda.device_count()
|
|
t0 = torch.cuda.FloatTensor(5).fill_(1)
|
|
torch.cuda.set_device(device_count - 1)
|
|
tn = torch.cuda.FloatTensor(3).fill_(2)
|
|
torch.cuda.set_device(0)
|
|
b = (t0, tn)
|
|
with filecontext_lambda() as f:
|
|
torch.save(b, f)
|
|
f.seek(0)
|
|
c = torch.load(f)
|
|
self.assertEqual(b, c, 0)
|
|
u0, un = c
|
|
self.assertEqual(u0.get_device(), 0)
|
|
self.assertEqual(un.get_device(), device_count - 1)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_serialization_cuda(self):
|
|
self._test_serialization_cuda(tempfile.NamedTemporaryFile)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_serialization_cuda_filelike(self):
|
|
self._test_serialization_cuda(BytesIOContext)
|
|
|
|
def test_serialization_backwards_compat(self):
|
|
a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)]
|
|
b = [a[i % 2] for i in range(4)]
|
|
b += [a[0].storage()]
|
|
b += [a[0].reshape(-1)[1:4].clone().storage()]
|
|
path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt')
|
|
c = torch.load(path)
|
|
self.assertEqual(b, c, 0)
|
|
self.assertTrue(isinstance(c[0], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[1], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[2], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[3], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[4], torch.FloatStorage))
|
|
c[0].fill_(10)
|
|
self.assertEqual(c[0], c[2], 0)
|
|
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
|
|
c[1].fill_(20)
|
|
self.assertEqual(c[1], c[3], 0)
|
|
|
|
# test some old tensor serialization mechanism
|
|
class OldTensorBase(object):
|
|
def __init__(self, new_tensor):
|
|
self.new_tensor = new_tensor
|
|
|
|
def __getstate__(self):
|
|
return (self.new_tensor.storage(),
|
|
self.new_tensor.storage_offset(),
|
|
tuple(self.new_tensor.size()),
|
|
self.new_tensor.stride())
|
|
|
|
class OldTensorV1(OldTensorBase):
|
|
def __reduce__(self):
|
|
return (torch.Tensor, (), self.__getstate__())
|
|
|
|
class OldTensorV2(OldTensorBase):
|
|
def __reduce__(self):
|
|
return (_rebuild_tensor, self.__getstate__())
|
|
|
|
x = torch.randn(30).as_strided([2, 3], [9, 3], 2)
|
|
for old_cls in [OldTensorV1, OldTensorV2]:
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
old_x = old_cls(x)
|
|
torch.save(old_x, f)
|
|
f.seek(0)
|
|
load_x = torch.load(f)
|
|
self.assertEqual(x.storage(), load_x.storage())
|
|
self.assertEqual(x.storage_offset(), load_x.storage_offset())
|
|
self.assertEqual(x.size(), load_x.size())
|
|
self.assertEqual(x.stride(), load_x.stride())
|
|
|
|
# unique_key is necessary because on Python 2.7, if a warning passed to
|
|
# the warning module is the same, it is not raised again.
|
|
def _test_serialization_container(self, unique_key, filecontext_lambda):
|
|
tmpmodule_name = 'tmpmodule{}'.format(unique_key)
|
|
|
|
def import_module(name, filename):
|
|
if sys.version_info >= (3, 5):
|
|
import importlib.util
|
|
spec = importlib.util.spec_from_file_location(name, filename)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
else:
|
|
import imp
|
|
module = imp.load_source(name, filename)
|
|
sys.modules[module.__name__] = module
|
|
return module
|
|
|
|
with filecontext_lambda() as checkpoint:
|
|
fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network1.py')
|
|
module = import_module(tmpmodule_name, fname)
|
|
torch.save(module.Net(), checkpoint)
|
|
|
|
# First check that the checkpoint can be loaded without warnings
|
|
checkpoint.seek(0)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
loaded = torch.load(checkpoint)
|
|
self.assertTrue(isinstance(loaded, module.Net))
|
|
if can_retrieve_source:
|
|
self.assertEquals(len(w), 0)
|
|
|
|
# Replace the module with different source
|
|
fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network2.py')
|
|
module = import_module(tmpmodule_name, fname)
|
|
checkpoint.seek(0)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
loaded = torch.load(checkpoint)
|
|
self.assertTrue(isinstance(loaded, module.Net))
|
|
if can_retrieve_source:
|
|
self.assertEquals(len(w), 1)
|
|
self.assertTrue(w[0].category, 'SourceChangeWarning')
|
|
|
|
def test_serialization_container(self):
|
|
self._test_serialization_container('file', tempfile.NamedTemporaryFile)
|
|
|
|
def test_serialization_container_filelike(self):
|
|
self._test_serialization_container('filelike', BytesIOContext)
|
|
|
|
def test_serialization_map_location(self):
|
|
test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt')
|
|
|
|
def map_location(storage, loc):
|
|
return storage
|
|
|
|
def load_bytes():
|
|
with open(test_file_path, 'rb') as f:
|
|
return io.BytesIO(f.read())
|
|
|
|
fileobject_lambdas = [lambda: test_file_path, load_bytes]
|
|
cpu_map_locations = [
|
|
map_location,
|
|
{'cuda:0': 'cpu'},
|
|
'cpu',
|
|
torch.device('cpu'),
|
|
]
|
|
gpu_0_map_locations = [
|
|
{'cuda:0': 'cuda:0'},
|
|
'cuda',
|
|
'cuda:0',
|
|
torch.device('cuda'),
|
|
torch.device('cuda', 0)
|
|
]
|
|
gpu_last_map_locations = [
|
|
'cuda:{}'.format(torch.cuda.device_count() - 1),
|
|
]
|
|
|
|
def check_map_locations(map_locations, tensor_class, intended_device):
|
|
for fileobject_lambda in fileobject_lambdas:
|
|
for map_location in map_locations:
|
|
tensor = torch.load(fileobject_lambda(), map_location=map_location)
|
|
|
|
self.assertEqual(tensor.device, intended_device)
|
|
self.assertIsInstance(tensor, tensor_class)
|
|
self.assertEqual(tensor, tensor_class([[1.0, 2.0], [3.0, 4.0]]))
|
|
|
|
check_map_locations(cpu_map_locations, torch.FloatTensor, torch.device('cpu'))
|
|
if torch.cuda.is_available():
|
|
check_map_locations(gpu_0_map_locations, torch.cuda.FloatTensor, torch.device('cuda', 0))
|
|
check_map_locations(
|
|
gpu_last_map_locations,
|
|
torch.cuda.FloatTensor,
|
|
torch.device('cuda', torch.cuda.device_count() - 1)
|
|
)
|
|
|
|
@unittest.skipIf(torch.cuda.is_available(), "Testing torch.load on CPU-only machine")
|
|
@unittest.skipIf(not PY3, "Test tensors were serialized using python 3")
|
|
def test_load_nonexistent_device(self):
|
|
# Setup: create a serialized file object with a 'cuda:0' restore location
|
|
# The following was generated by saving a torch.randn(2, device='cuda') tensor.
|
|
serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9'
|
|
b'\x03.\x80\x02}q\x00(X\x10\x00\x00\x00protocol_versionq'
|
|
b'\x01M\xe9\x03X\r\x00\x00\x00little_endianq\x02\x88X\n'
|
|
b'\x00\x00\x00type_sizesq\x03}q\x04(X\x05\x00\x00\x00shortq'
|
|
b'\x05K\x02X\x03\x00\x00\x00intq\x06K\x04X\x04\x00\x00\x00'
|
|
b'longq\x07K\x04uu.\x80\x02ctorch._utils\n_rebuild_tensor_v2'
|
|
b'\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\nFloatStorage'
|
|
b'\nq\x02X\x0e\x00\x00\x0094919395964320q\x03X\x06\x00\x00'
|
|
b'\x00cuda:0q\x04K\x02Ntq\x05QK\x00K\x02\x85q\x06K\x01\x85q'
|
|
b'\x07\x89Ntq\x08Rq\t.\x80\x02]q\x00X\x0e\x00\x00\x00'
|
|
b'94919395964320q\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\xbb'
|
|
b'\x1f\x82\xbe\xea\x81\xd1>')
|
|
|
|
buf = io.BytesIO(serialized)
|
|
|
|
error_msg = r'Attempting to deserialize object on a CUDA device'
|
|
with self.assertRaisesRegex(RuntimeError, error_msg):
|
|
_ = torch.load(buf)
|
|
|
|
def test_serialization_filelike_api_requirements(self):
|
|
filemock = FilelikeMock(b'', has_readinto=False)
|
|
tensor = torch.randn(3, 5)
|
|
torch.save(tensor, filemock)
|
|
expected_superset = {'write', 'flush'}
|
|
self.assertTrue(expected_superset.issuperset(filemock.calls))
|
|
|
|
# Reset between save and load
|
|
filemock.seek(0)
|
|
filemock.calls.clear()
|
|
|
|
_ = torch.load(filemock)
|
|
expected_superset = {'read', 'readline', 'seek', 'tell'}
|
|
self.assertTrue(expected_superset.issuperset(filemock.calls))
|
|
|
|
def _test_serialization_filelike(self, tensor, mock, desc):
|
|
f = mock(b'')
|
|
torch.save(tensor, f)
|
|
f.seek(0)
|
|
data = mock(f.read())
|
|
|
|
msg = 'filelike serialization with {}'
|
|
|
|
b = torch.load(data)
|
|
self.assertTrue(torch.equal(tensor, b), msg.format(desc))
|
|
|
|
def test_serialization_filelike_missing_attrs(self):
|
|
# Test edge cases where filelike objects are missing attributes.
|
|
# The Python io docs suggests that these attributes should really exist
|
|
# and throw io.UnsupportedOperation, but that isn't always the case.
|
|
mocks = [
|
|
('no readinto', lambda x: FilelikeMock(x)),
|
|
('has readinto', lambda x: FilelikeMock(x, has_readinto=True)),
|
|
('no fileno', lambda x: FilelikeMock(x, has_fileno=False)),
|
|
]
|
|
|
|
to_serialize = torch.randn(3, 10)
|
|
for desc, mock in mocks:
|
|
self._test_serialization_filelike(to_serialize, mock, desc)
|
|
|
|
def test_serialization_filelike_stress(self):
|
|
a = torch.randn(11 * (2 ** 9) + 1, 5 * (2 ** 9))
|
|
|
|
# This one should call python read multiple times
|
|
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=False),
|
|
'read() stress test')
|
|
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=True),
|
|
'readinto() stress test')
|
|
|
|
def test_serialization_filelike_uses_readinto(self):
|
|
# For maximum effiency, when reading a file-like object,
|
|
# ensure the C API calls readinto instead of read.
|
|
a = torch.randn(5, 4)
|
|
|
|
f = io.BytesIO()
|
|
torch.save(a, f)
|
|
f.seek(0)
|
|
data = FilelikeMock(f.read(), has_readinto=True)
|
|
|
|
b = torch.load(data)
|
|
self.assertTrue(data.was_called('readinto'))
|
|
|
|
def test_serialization_storage_slice(self):
|
|
# Generated using:
|
|
#
|
|
# t = torch.zeros(2);
|
|
# s1 = t.storage()[:1]
|
|
# s2 = t.storage()[1:]
|
|
# torch.save((s1, s2), 'foo.ser')
|
|
#
|
|
# with PyTorch 0.3.1
|
|
serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9\x03'
|
|
b'.\x80\x02}q\x00(X\n\x00\x00\x00type_sizesq\x01}q\x02(X\x03'
|
|
b'\x00\x00\x00intq\x03K\x04X\x05\x00\x00\x00shortq\x04K\x02X'
|
|
b'\x04\x00\x00\x00longq\x05K\x04uX\x10\x00\x00\x00protocol_versionq'
|
|
b'\x06M\xe9\x03X\r\x00\x00\x00little_endianq\x07\x88u.\x80\x02'
|
|
b'(X\x07\x00\x00\x00storageq\x00ctorch\nFloatStorage\nq\x01X\x0e'
|
|
b'\x00\x00\x0094279043900432q\x02X\x03\x00\x00\x00cpuq\x03K\x02'
|
|
b'X\x0e\x00\x00\x0094279029750368q\x04K\x00K\x01\x87q\x05tq\x06'
|
|
b'Q(h\x00h\x01X\x0e\x00\x00\x0094279043900432q\x07h\x03K\x02X'
|
|
b'\x0e\x00\x00\x0094279029750432q\x08K\x01K\x01\x87q\ttq\nQ'
|
|
b'\x86q\x0b.\x80\x02]q\x00X\x0e\x00\x00\x0094279043900432q'
|
|
b'\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
|
|
b'\x00\x00\x00\x00')
|
|
|
|
buf = io.BytesIO(serialized)
|
|
(s1, s2) = torch.load(buf)
|
|
self.assertEqual(s1[0], 0)
|
|
self.assertEqual(s2[0], 0)
|
|
self.assertEqual(s1.data_ptr() + 4, s2.data_ptr())
|
|
|
|
def test_load_error_msg(self):
|
|
expected_err_msg = (".*You can only torch.load from a file that is seekable. " +
|
|
"Please pre-load the data into a buffer like io.BytesIO and " +
|
|
"try to load from it instead.")
|
|
|
|
resource = FilelikeMock(data=b"data")
|
|
delattr(resource, "tell")
|
|
delattr(resource, "seek")
|
|
self.assertRaisesRegex(AttributeError, expected_err_msg, lambda: torch.load(resource))
|
|
|
|
def test_from_buffer(self):
|
|
a = bytearray([1, 2, 3, 4])
|
|
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
|
|
shorts = torch.ShortStorage.from_buffer(a, 'big')
|
|
self.assertEqual(shorts.size(), 2)
|
|
self.assertEqual(shorts.tolist(), [258, 772])
|
|
ints = torch.IntStorage.from_buffer(a, 'little')
|
|
self.assertEqual(ints.size(), 1)
|
|
self.assertEqual(ints[0], 67305985)
|
|
f = bytearray([0x40, 0x10, 0x00, 0x00])
|
|
floats = torch.FloatStorage.from_buffer(f, 'big')
|
|
self.assertEqual(floats.size(), 1)
|
|
self.assertEqual(floats[0], 2.25)
|
|
|
|
f = bytearray([0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x10, 0x40])
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 8)
|
|
self.assertEqual(bools.tolist(), [False, True, True, True, True, True, True, True])
|
|
self.assertEqual(bools.type(), 'torch.BoolStorage')
|
|
|
|
f = bytearray(b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9')
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 19)
|
|
|
|
f = bytearray(b'\0x4A')
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 4)
|
|
self.assertEqual(bools.tolist(), [False, True, True, True])
|
|
|
|
def test_storage_casts(self):
|
|
storage = torch.IntStorage([-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(storage.size(), 6)
|
|
self.assertEqual(storage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(storage.type(), 'torch.IntStorage')
|
|
self.assertIs(storage.dtype, torch.int32)
|
|
|
|
floatStorage = storage.float()
|
|
self.assertEqual(floatStorage.size(), 6)
|
|
self.assertEqual(floatStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(floatStorage.type(), 'torch.FloatStorage')
|
|
self.assertEqual(floatStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(floatStorage.dtype, torch.float32)
|
|
|
|
halfStorage = storage.half()
|
|
self.assertEqual(halfStorage.size(), 6)
|
|
self.assertEqual(halfStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(halfStorage.type(), 'torch.HalfStorage')
|
|
self.assertEqual(halfStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(halfStorage.dtype, torch.float16)
|
|
|
|
longStorage = storage.long()
|
|
self.assertEqual(longStorage.size(), 6)
|
|
self.assertEqual(longStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(longStorage.type(), 'torch.LongStorage')
|
|
self.assertEqual(longStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(longStorage.dtype, torch.int64)
|
|
|
|
shortStorage = storage.short()
|
|
self.assertEqual(shortStorage.size(), 6)
|
|
self.assertEqual(shortStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(shortStorage.type(), 'torch.ShortStorage')
|
|
self.assertEqual(shortStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(shortStorage.dtype, torch.int16)
|
|
|
|
doubleStorage = storage.double()
|
|
self.assertEqual(doubleStorage.size(), 6)
|
|
self.assertEqual(doubleStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
|
|
self.assertEqual(doubleStorage.type(), 'torch.DoubleStorage')
|
|
self.assertEqual(doubleStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(doubleStorage.dtype, torch.float64)
|
|
|
|
charStorage = storage.char()
|
|
self.assertEqual(charStorage.size(), 6)
|
|
self.assertEqual(charStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
|
|
self.assertEqual(charStorage.type(), 'torch.CharStorage')
|
|
self.assertEqual(charStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(charStorage.dtype, torch.int8)
|
|
|
|
byteStorage = storage.byte()
|
|
self.assertEqual(byteStorage.size(), 6)
|
|
self.assertEqual(byteStorage.tolist(), [255, 0, 1, 2, 3, 4])
|
|
self.assertEqual(byteStorage.type(), 'torch.ByteStorage')
|
|
self.assertEqual(byteStorage.int().tolist(), [255, 0, 1, 2, 3, 4])
|
|
self.assertIs(byteStorage.dtype, torch.uint8)
|
|
|
|
boolStorage = storage.bool()
|
|
self.assertEqual(boolStorage.size(), 6)
|
|
self.assertEqual(boolStorage.tolist(), [True, False, True, True, True, True])
|
|
self.assertEqual(boolStorage.type(), 'torch.BoolStorage')
|
|
self.assertEqual(boolStorage.int().tolist(), [1, 0, 1, 1, 1, 1])
|
|
self.assertIs(boolStorage.dtype, torch.bool)
|
|
|
|
def test_storage_device(self):
|
|
devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
|
|
for device in devices:
|
|
x = torch.tensor([], device=device)
|
|
self.assertEqual(x.dtype, x.storage().dtype)
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, 'less than 2 GPUs detected')
|
|
def test_storage_multigpu(self):
|
|
devices = ['cuda:0', 'cuda:1']
|
|
for device in devices:
|
|
x = torch.tensor([], device=device)
|
|
self.assertEqual(x.dtype, x.storage().dtype)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
|
|
def test_from_file(self):
|
|
size = 10000
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
s1 = torch.FloatStorage.from_file(f.name, True, size)
|
|
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
|
|
|
|
# check mapping
|
|
s2 = torch.FloatStorage.from_file(f.name, True, size)
|
|
t2 = torch.FloatTensor(s2)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
# check changes to t1 from t2
|
|
rnum = random.uniform(-1, 1)
|
|
t1.fill_(rnum)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
# check changes to t2 from t1
|
|
rnum = random.uniform(-1, 1)
|
|
t2.fill_(rnum)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
|
|
def test_torch_from_file(self):
|
|
size = 10000
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
s1 = torch.from_file(f.name, True, size, dtype=torch.float)
|
|
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
|
|
|
|
# check mapping
|
|
s2 = torch.from_file(f.name, True, size, dtype=torch.float)
|
|
t2 = torch.FloatTensor(s2)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
# check changes to t1 from t2
|
|
rnum = random.uniform(-1, 1)
|
|
t1.fill_(rnum)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
# check changes to t2 from t1
|
|
rnum = random.uniform(-1, 1)
|
|
t2.fill_(rnum)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
def test_print(self):
|
|
default_type = torch.Tensor().type()
|
|
for t in torch._tensor_classes:
|
|
if t == torch.HalfTensor:
|
|
continue # HalfTensor does not support fill
|
|
if t.is_sparse:
|
|
continue
|
|
if t.is_cuda and not torch.cuda.is_available():
|
|
continue
|
|
obj = t(100, 100).fill_(1)
|
|
obj.__repr__()
|
|
str(obj)
|
|
# test half tensor
|
|
obj = torch.rand(100, 100, device='cpu').half()
|
|
obj.__repr__()
|
|
str(obj)
|
|
for t in torch._storage_classes:
|
|
if t.is_cuda and not torch.cuda.is_available():
|
|
continue
|
|
if t == torch.BoolStorage or t == torch.cuda.BoolStorage:
|
|
obj = t(100).fill_(True)
|
|
else:
|
|
obj = t(100).fill_(1)
|
|
obj.__repr__()
|
|
str(obj)
|
|
|
|
# test big integer
|
|
x = torch.tensor(2341234123412341)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor(2341234123412341)''')
|
|
|
|
# test scientific notation
|
|
x = torch.tensor([1e28, 1e-28])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+28, 1.0000e-28])''')
|
|
|
|
# test scientific notation using set_printoptions
|
|
x = torch.tensor([1e2, 1e-2])
|
|
torch.set_printoptions(sci_mode=True)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+02, 1.0000e-02])''')
|
|
torch.set_printoptions(sci_mode=False)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 100.0000, 0.0100])''')
|
|
torch.set_printoptions(sci_mode=None) # reset to the default value
|
|
|
|
# test no leading space if all elements positive
|
|
x = torch.tensor([1, 2])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1, 2])''')
|
|
|
|
# test for leading space if there are negative elements
|
|
x = torch.tensor([1, -2])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1, -2])''')
|
|
|
|
# test inf and nan
|
|
x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([4.0000, inf, 1.5000, -inf, 0.0000, nan, 1.0000])''')
|
|
|
|
# test dtype
|
|
torch.set_default_dtype(torch.float)
|
|
x = torch.tensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309], dtype=torch.float64)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
expected_str = '''\
|
|
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
|
|
inf], dtype=torch.float64)'''
|
|
self.assertExpectedInline(str(x), expected_str)
|
|
|
|
# test changing default dtype
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
expected_str = '''\
|
|
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
|
|
inf])'''
|
|
self.assertExpectedInline(str(x), expected_str)
|
|
|
|
# test summary
|
|
x = torch.zeros(10000)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([0., 0., 0., ..., 0., 0., 0.])''')
|
|
|
|
# test internal summary function
|
|
x = torch.rand(1, 20, 5, 30)
|
|
summary = torch._tensor_str.get_summarized_data(x)
|
|
self.assertEqual(summary.shape, (1, 6, 5, 6))
|
|
first_and_last = [0, 1, 2, -3, -2, -1]
|
|
self.assertEqual(summary, x[:, first_and_last][..., first_and_last])
|
|
|
|
# test device
|
|
if torch.cuda.is_available():
|
|
x = torch.tensor([123], device='cuda:0')
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
|
|
|
|
# test changing default to cuda
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123])''')
|
|
torch.set_default_tensor_type(default_type)
|
|
|
|
# test integral floats and requires_grad
|
|
x = torch.tensor([123.], requires_grad=True)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123.], requires_grad=True)''')
|
|
|
|
# test non-contiguous print
|
|
# sliced tensor should have > PRINT_OPTS.threshold elements
|
|
x = torch.ones(100, 2, 2, 10)
|
|
y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1))
|
|
self.assertEqual(str(y), y.__repr__())
|
|
expected_str = '''\
|
|
tensor([[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
...,
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]]])\
|
|
'''
|
|
|
|
self.assertExpectedInline(str(y), expected_str)
|
|
|
|
# test print 0-dim tensor: there's no 0-dim in Numpy, we match arrayprint style
|
|
x = torch.tensor(0.00002)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor(2.0000e-05)''')
|
|
|
|
# [Numpy] test print float in sci_mode when min < 0.0001.
|
|
x = torch.tensor([0.00002])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([2.0000e-05])''')
|
|
|
|
# [Numpy] test print float in sci_mode when max > 1e8.
|
|
# TODO: Pytorch uses fixed precision to print, while Numpy uses dragon4_scientific
|
|
# to do automatic trimming and padding.
|
|
x = torch.tensor([123456789.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.2346e+08])''')
|
|
|
|
# [Numpy] test print float in sci_mode when max / min > 1000.
|
|
x = torch.tensor([0.01, 11])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e-02, 1.1000e+01])''')
|
|
|
|
# [Numpy] test print int max / min > 1000, no sci_mode
|
|
x = torch.tensor([1, 1010])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1, 1010])''')
|
|
|
|
# [Numpy] test print int > 1e8, no sci_mode
|
|
x = torch.tensor([1000000000]) # 1e9
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1000000000])''')
|
|
|
|
# [Numpy] test printing float in int_mode
|
|
x = torch.tensor([1., 1000.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1., 1000.])''')
|
|
|
|
# [Numpy] test printing float in int_mode in sci format when max / min > 1000.
|
|
x = torch.tensor([1., 1010.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+00, 1.0100e+03])''')
|
|
|
|
def test_sizeof(self):
|
|
sizeof_empty = torch.randn(0).storage().__sizeof__()
|
|
sizeof_10 = torch.randn(10).storage().__sizeof__()
|
|
sizeof_100 = torch.randn(100).storage().__sizeof__()
|
|
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
|
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
|
|
|
sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__()
|
|
sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__()
|
|
sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__()
|
|
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
|
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
|
|
|
def test_unsqueeze(self):
|
|
x = torch.randn(2, 3, 4)
|
|
y = x.unsqueeze(1)
|
|
self.assertEqual(y, x.view(2, 1, 3, 4))
|
|
y = x.clone().unsqueeze_(2)
|
|
self.assertEqual(y, x.view(2, 3, 1, 4))
|
|
|
|
x = x[:, 1]
|
|
self.assertFalse(x.is_contiguous())
|
|
y = x.unsqueeze(1)
|
|
self.assertEqual(y, x.contiguous().view(2, 1, 4))
|
|
y = x.clone().unsqueeze_(2)
|
|
self.assertEqual(y, x.contiguous().view(2, 4, 1))
|
|
|
|
def test_iter(self):
|
|
x = torch.randn(5, 5)
|
|
for i, sub in enumerate(x):
|
|
self.assertEqual(sub, x[i])
|
|
|
|
x = torch.Tensor()
|
|
self.assertEqual(list(x), [])
|
|
|
|
def test_accreal_type(self):
|
|
x = torch.ones(2, 3, 4)
|
|
self.assertIsInstance(x.double().sum().item(), float)
|
|
self.assertIsInstance(x.float().sum().item(), float)
|
|
self.assertIsInstance(x.long().sum().item(), int)
|
|
self.assertIsInstance(x.int().sum().item(), int)
|
|
self.assertIsInstance(x.short().sum().item(), int)
|
|
self.assertIsInstance(x.char().sum().item(), int)
|
|
self.assertIsInstance(x.byte().sum().item(), int)
|
|
|
|
def test_assertEqual(self):
|
|
x = torch.FloatTensor([0])
|
|
self.assertEqual(x, 0)
|
|
xv = torch.autograd.Variable(x)
|
|
self.assertEqual(xv, 0)
|
|
self.assertEqual(x, xv)
|
|
self.assertEqual(xv, x)
|
|
|
|
def test_new(self):
|
|
x = torch.autograd.Variable(torch.Tensor())
|
|
y = torch.autograd.Variable(torch.randn(4, 4))
|
|
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
|
|
self.assertEqual(x.new().shape, [0])
|
|
self.assertEqual(x.new(), x)
|
|
self.assertEqual(x.new(1, 2).shape, [1, 2])
|
|
self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4])
|
|
self.assertEqual(x.new([3, 4]).shape, [2])
|
|
self.assertEqual(x.new([3, 4]).tolist(), [3, 4])
|
|
self.assertEqual(x.new((3, 4)).tolist(), [3, 4])
|
|
if TEST_NUMPY:
|
|
self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4])
|
|
self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4])
|
|
self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4])
|
|
self.assertEqual(x.new(size=(3, 4)).shape, [3, 4])
|
|
self.assertEqual(x.new(()).shape, [0])
|
|
self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr())
|
|
self.assertEqual(x.new(y).data_ptr(), y.data_ptr())
|
|
self.assertIsNot(x.new(y), y)
|
|
|
|
self.assertRaises(TypeError, lambda: x.new(z))
|
|
# TypeError would be better
|
|
self.assertRaises(RuntimeError, lambda: x.new(z.storage()))
|
|
|
|
def test_empty_like(self):
|
|
x = torch.autograd.Variable(torch.Tensor())
|
|
y = torch.autograd.Variable(torch.randn(4, 4))
|
|
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
|
|
for a in (x, y, z):
|
|
self.assertEqual(torch.empty_like(a).shape, a.shape)
|
|
self.assertEqual(torch.empty_like(a).type(), a.type())
|
|
|
|
def test_empty_strided(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for shape in [(2, 3, 4), (0, 2, 0)]:
|
|
# some of these cases are pretty strange, just verifying that if as_strided
|
|
# allows them then empty_strided can as well.
|
|
for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]:
|
|
empty_strided = torch.empty_strided(shape, strides, device=device)
|
|
# as_strided checks the storage size is big enough to support such a strided tensor;
|
|
# instead of repeating this calculation, we just use empty_strided which does the same
|
|
# calculation when setting the storage size.
|
|
as_strided = torch.empty(empty_strided.storage().size(),
|
|
device=device).as_strided(shape, strides)
|
|
self.assertEqual(empty_strided.shape, as_strided.shape)
|
|
self.assertEqual(empty_strided.stride(), as_strided.stride())
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_pin_memory(self):
|
|
x = torch.randn(3, 5)
|
|
self.assertFalse(x.is_pinned())
|
|
pinned = x.pin_memory()
|
|
self.assertTrue(pinned.is_pinned())
|
|
self.assertEqual(pinned, x)
|
|
self.assertNotEqual(pinned.data_ptr(), x.data_ptr())
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_pin_memory_from_constructor(self):
|
|
|
|
def _get_like(t, **kwargs):
|
|
return [
|
|
torch.rand_like(t, **kwargs),
|
|
torch.randn_like(t, **kwargs),
|
|
torch.empty_like(t, **kwargs),
|
|
torch.full_like(t, 4, **kwargs),
|
|
torch.zeros_like(t, **kwargs),
|
|
torch.ones_like(t, **kwargs),
|
|
]
|
|
|
|
def _get_tensors(**kwargs):
|
|
return [
|
|
torch.tensor([10, 11], **kwargs),
|
|
torch.randn(3, 5, **kwargs),
|
|
torch.rand(3, **kwargs),
|
|
# torch.randint(3, 5, **kwargs), // unsupported
|
|
torch.zeros(3, **kwargs),
|
|
torch.randperm(3, **kwargs),
|
|
torch.empty(6, **kwargs),
|
|
torch.ones(6, **kwargs),
|
|
torch.eye(6, **kwargs),
|
|
torch.arange(3, 5, **kwargs)]
|
|
|
|
pinned_tensors = _get_tensors(pin_memory=True) + _get_like(torch.empty(5, dtype=torch.float64), pin_memory=True)
|
|
for x in pinned_tensors:
|
|
self.assertTrue(x.is_pinned())
|
|
|
|
tensors = _get_tensors() + _get_like(torch.empty(5, dtype=torch.float64, pin_memory=True))
|
|
for x in tensors:
|
|
self.assertFalse(x.is_pinned())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_unresizable(self):
|
|
x = np.zeros((2, 2))
|
|
y = torch.from_numpy(x)
|
|
with self.assertRaises(ValueError):
|
|
x.resize((5, 5))
|
|
|
|
z = torch.randn(5, 5)
|
|
w = z.numpy()
|
|
with self.assertRaises(RuntimeError):
|
|
z.resize_(10, 10)
|
|
with self.assertRaises(ValueError):
|
|
w.resize((10, 10))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_to_numpy(self):
|
|
def get_castable_tensor(shape, tp):
|
|
dtype = tp.dtype
|
|
if dtype.is_floating_point:
|
|
dtype_info = torch.finfo(dtype)
|
|
# can't directly use min and max, because for double, max - min
|
|
# is greater than double range and sampling always gives inf.
|
|
low = max(dtype_info.min, -1e10)
|
|
high = min(dtype_info.max, 1e10)
|
|
t = torch.empty(shape, dtype=torch.float64).uniform_(low, high)
|
|
else:
|
|
# can't directly use min and max, because for int64_t, max - min
|
|
# is greater than int64_t range and triggers UB.
|
|
dtype_info = torch.iinfo(dtype)
|
|
low = max(dtype_info.min, int(-1e10))
|
|
high = min(dtype_info.max, int(1e10))
|
|
dtype_info = torch.iinfo(dtype)
|
|
t = torch.empty(shape, dtype=torch.int64).random_(low, high)
|
|
return t.to(dtype)
|
|
|
|
types = [
|
|
torch.ByteTensor,
|
|
torch.CharTensor,
|
|
torch.ShortTensor,
|
|
torch.IntTensor,
|
|
torch.HalfTensor,
|
|
torch.FloatTensor,
|
|
torch.DoubleTensor,
|
|
torch.LongTensor,
|
|
]
|
|
for tp in types:
|
|
# 1D
|
|
sz = 10
|
|
x = get_castable_tensor(sz, tp)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
# 1D > 0 storage offset
|
|
xm = get_castable_tensor(sz * 2, tp)
|
|
x = xm.narrow(0, sz - 1, sz)
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
def check2d(x, y):
|
|
for i in range(sz1):
|
|
for j in range(sz2):
|
|
self.assertEqual(x[i][j], y[i][j])
|
|
|
|
# empty
|
|
x = torch.Tensor().type(tp)
|
|
y = x.numpy()
|
|
self.assertEqual(y.size, 0)
|
|
|
|
# contiguous 2D
|
|
sz1 = 3
|
|
sz2 = 5
|
|
x = get_castable_tensor((sz1, sz2), tp)
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags['C_CONTIGUOUS'])
|
|
|
|
# with storage offset
|
|
xm = get_castable_tensor((sz1 * 2, sz2), tp)
|
|
x = xm.narrow(0, sz1 - 1, sz1)
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags['C_CONTIGUOUS'])
|
|
|
|
# non-contiguous 2D
|
|
x = get_castable_tensor((sz2, sz1), tp).t()
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertFalse(y.flags['C_CONTIGUOUS'])
|
|
|
|
# with storage offset
|
|
xm = get_castable_tensor((sz2 * 2, sz1), tp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
# non-contiguous 2D with holes
|
|
xm = get_castable_tensor((sz2 * 2, sz1 * 2), tp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
if tp != torch.HalfTensor:
|
|
# check writeable
|
|
x = get_castable_tensor((3, 4), tp)
|
|
y = x.numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
y = x.t().numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_to_numpy_bool(self):
|
|
x = torch.tensor([True, False], dtype=torch.bool)
|
|
self.assertEqual(x.dtype, torch.bool)
|
|
|
|
y = x.numpy()
|
|
self.assertEqual(y.dtype, np.bool)
|
|
for i in range(len(x)):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
x = torch.tensor([True], dtype=torch.bool)
|
|
self.assertEqual(x.dtype, torch.bool)
|
|
|
|
y = x.numpy()
|
|
self.assertEqual(y.dtype, np.bool)
|
|
self.assertEqual(x[0], y[0])
|
|
|
|
def test_dlpack_conversion(self):
|
|
x = torch.randn(1, 2, 3, 4).type('torch.FloatTensor')
|
|
z = from_dlpack(to_dlpack(x))
|
|
self.assertEqual(z, x)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "No CUDA")
|
|
def test_dlpack_cuda(self):
|
|
x = torch.randn(1, 2, 3, 4).cuda()
|
|
z = from_dlpack(to_dlpack(x))
|
|
self.assertEqual(z, x)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_from_numpy(self):
|
|
dtypes = [
|
|
np.double,
|
|
np.float,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.int8,
|
|
np.uint8,
|
|
np.longlong,
|
|
np.bool,
|
|
]
|
|
for dtype in dtypes:
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
tensor_from_array = torch.from_numpy(array)
|
|
# TODO: change to tensor equality check once HalfTensor
|
|
# implements `==`
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor_from_array[i], array[i])
|
|
|
|
# check storage offset
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[1]
|
|
expected = torch.arange(1, 126).view(5, 5, 5)[1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check noncontiguous
|
|
x = np.linspace(1, 25, 25)
|
|
x.shape = (5, 5)
|
|
expected = torch.arange(1, 26).view(5, 5).t()
|
|
self.assertEqual(torch.from_numpy(x.T), expected)
|
|
|
|
# check noncontiguous with holes
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[:, 1]
|
|
expected = torch.arange(1, 126).view(5, 5, 5)[:, 1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check zero dimensional
|
|
x = np.zeros((0, 2))
|
|
self.assertEqual(torch.from_numpy(x).shape, (0, 2))
|
|
x = np.zeros((2, 0))
|
|
self.assertEqual(torch.from_numpy(x).shape, (2, 0))
|
|
|
|
# check ill-sized strides raise exception
|
|
x = np.array([3., 5., 8.])
|
|
x.strides = (3,)
|
|
self.assertRaises(ValueError, lambda: torch.from_numpy(x))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_ctor_with_numpy_array(self):
|
|
correct_dtypes = [
|
|
np.double,
|
|
np.float,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.int8,
|
|
np.uint8,
|
|
np.bool,
|
|
]
|
|
|
|
incorrect_byteorder = '>' if sys.byteorder == 'little' else '<'
|
|
incorrect_dtypes = map(lambda t: incorrect_byteorder + t, ['d', 'f'])
|
|
|
|
for dtype in correct_dtypes:
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
|
|
# Upcast
|
|
tensor = torch.DoubleTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
if torch.cuda.is_available():
|
|
tensor = torch.cuda.DoubleTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
# Downcast (sometimes)
|
|
tensor = torch.FloatTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
tensor = torch.HalfTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
if torch.cuda.is_available():
|
|
tensor = torch.cuda.FloatTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
tensor = torch.cuda.HalfTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_ctor_with_numpy_scalar_ctor(self):
|
|
dtypes = [
|
|
np.double,
|
|
np.float,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
np.bool,
|
|
]
|
|
for dtype in dtypes:
|
|
self.assertEqual(dtype(42), torch.tensor(dtype(42)).item())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_index(self):
|
|
i = np.int32([0, 1, 2])
|
|
x = torch.randn(5, 5)
|
|
for idx in i:
|
|
self.assertFalse(isinstance(idx, int))
|
|
self.assertEqual(x[idx], x[int(idx)])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_array_interface(self):
|
|
types = [
|
|
torch.DoubleTensor,
|
|
torch.FloatTensor,
|
|
torch.HalfTensor,
|
|
torch.LongTensor,
|
|
torch.IntTensor,
|
|
torch.ShortTensor,
|
|
torch.ByteTensor,
|
|
]
|
|
dtypes = [
|
|
np.float64,
|
|
np.float32,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
]
|
|
for tp, dtype in zip(types, dtypes):
|
|
if np.dtype(dtype).kind == 'u':
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
else:
|
|
x = torch.Tensor([1, -2, 3, -4]).type(tp)
|
|
array = np.array([1, -2, 3, -4], dtype=dtype)
|
|
|
|
# Test __array__ w/o dtype argument
|
|
asarray = np.asarray(x)
|
|
self.assertIsInstance(asarray, np.ndarray)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test __array_wrap__, same dtype
|
|
abs_x = np.abs(x)
|
|
abs_array = np.abs(array)
|
|
self.assertIsInstance(abs_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(abs_x[i], abs_array[i])
|
|
|
|
# Test __array__ with dtype argument
|
|
for dtype in dtypes:
|
|
x = torch.IntTensor([1, -2, 3, -4])
|
|
asarray = np.asarray(x, dtype=dtype)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
if np.dtype(dtype).kind == 'u':
|
|
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], wrapped_x[i])
|
|
else:
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test some math functions with float types
|
|
float_types = [torch.DoubleTensor, torch.FloatTensor]
|
|
float_dtypes = [np.float64, np.float32]
|
|
for tp, dtype in zip(float_types, float_dtypes):
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
for func in ['sin', 'sqrt', 'ceil']:
|
|
ufunc = getattr(np, func)
|
|
res_x = ufunc(x)
|
|
res_array = ufunc(array)
|
|
self.assertIsInstance(res_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(res_x[i], res_array[i])
|
|
|
|
# Test functions with boolean return value
|
|
for tp, dtype in zip(types, dtypes):
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
geq2_x = np.greater_equal(x, 2)
|
|
geq2_array = np.greater_equal(array, 2).astype('uint8')
|
|
self.assertIsInstance(geq2_x, torch.ByteTensor)
|
|
for i in range(len(x)):
|
|
self.assertEqual(geq2_x[i], geq2_array[i])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_multiplication_numpy_scalar(self):
|
|
for np_dtype in [np.float32, np.float64, np.int32, np.int64, np.int16, np.uint8]:
|
|
for t_dtype in [torch.float, torch.double]:
|
|
np_sc = np_dtype(2.0)
|
|
t = torch.ones(2, requires_grad=True, dtype=t_dtype)
|
|
r1 = t * np_sc
|
|
self.assertIsInstance(r1, torch.Tensor)
|
|
self.assertTrue(r1.dtype == t_dtype)
|
|
self.assertTrue(r1.requires_grad)
|
|
r2 = np_sc * t
|
|
self.assertIsInstance(r2, torch.Tensor)
|
|
self.assertTrue(r2.dtype == t_dtype)
|
|
self.assertTrue(r2.requires_grad)
|
|
|
|
def test_error_msg_type_translation(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
# message includes both Double and Long
|
|
'(?=.*Double)(?=.*Long)'):
|
|
|
|
# Calls model with a DoubleTensor input but LongTensor weights
|
|
input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double())
|
|
weight = torch.zeros(1, 1, 1, 3).long()
|
|
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
|
|
model.weight.data = weight
|
|
out = model(input)
|
|
|
|
def test_tensor_from_sequence(self):
|
|
class MockSequence(object):
|
|
def __init__(self, lst):
|
|
self.lst = lst
|
|
|
|
def __len__(self):
|
|
return len(self.lst)
|
|
|
|
def __getitem__(self, item):
|
|
raise TypeError
|
|
|
|
class GoodMockSequence(MockSequence):
|
|
def __getitem__(self, item):
|
|
return self.lst[item]
|
|
|
|
bad_mock_seq = MockSequence([1.0, 2.0, 3.0])
|
|
good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0])
|
|
with self.assertRaisesRegex(ValueError, 'could not determine the shape'):
|
|
torch.Tensor(bad_mock_seq)
|
|
self.assertEqual(torch.Tensor([1.0, 2.0, 3.0]), torch.Tensor(good_mock_seq))
|
|
|
|
def test_comparison_ops(self):
|
|
x = torch.randn(5, 5)
|
|
y = torch.randn(5, 5)
|
|
|
|
eq = x == y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] == y[idx], eq[idx] == 1)
|
|
|
|
ne = x != y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] != y[idx], ne[idx] == 1)
|
|
|
|
lt = x < y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] < y[idx], lt[idx] == 1)
|
|
|
|
le = x <= y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] <= y[idx], le[idx] == 1)
|
|
|
|
gt = x > y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] > y[idx], gt[idx] == 1)
|
|
|
|
ge = x >= y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] >= y[idx], ge[idx] == 1)
|
|
|
|
def test_bitwise_ops(self):
|
|
x = torch.randn(5, 5).gt(0)
|
|
y = torch.randn(5, 5).gt(0)
|
|
|
|
and_result = x & y
|
|
for idx in iter_indices(x):
|
|
if and_result[idx]:
|
|
self.assertTrue(x[idx] and y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] and y[idx])
|
|
|
|
or_result = x | y
|
|
for idx in iter_indices(x):
|
|
if or_result[idx]:
|
|
self.assertTrue(x[idx] or y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] or y[idx])
|
|
|
|
xor_result = x ^ y
|
|
for idx in iter_indices(x):
|
|
if xor_result[idx]:
|
|
self.assertTrue(x[idx] ^ y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] ^ y[idx])
|
|
|
|
invert_result = ~x
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(1 - x[idx], invert_result[idx])
|
|
|
|
x_clone = x.clone()
|
|
x_clone &= y
|
|
self.assertEqual(x_clone, and_result)
|
|
|
|
x_clone = x.clone()
|
|
x_clone |= y
|
|
self.assertEqual(x_clone, or_result)
|
|
|
|
x_clone = x.clone()
|
|
x_clone ^= y
|
|
self.assertEqual(x_clone, xor_result)
|
|
|
|
def test_invert(self):
|
|
x = torch.ByteTensor([0, 1, 1])
|
|
self.assertEqual((~x).tolist(), [1, 0, 0])
|
|
|
|
def test_apply(self):
|
|
x = torch.arange(1, 6)
|
|
res = x.clone().apply_(lambda k: k + k)
|
|
self.assertEqual(res, x * 2)
|
|
self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str"))
|
|
|
|
def test_map(self):
|
|
x = torch.autograd.Variable(torch.randn(3, 3))
|
|
y = torch.autograd.Variable(torch.randn(3))
|
|
res = x.clone()
|
|
res.map_(y, lambda a, b: a + b)
|
|
self.assertEqual(res, x + y)
|
|
self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str"))
|
|
|
|
def test_map2(self):
|
|
x = torch.autograd.Variable(torch.randn(3, 3))
|
|
y = torch.autograd.Variable(torch.randn(3))
|
|
z = torch.autograd.Variable(torch.randn(1, 3))
|
|
res = x.clone()
|
|
res.map2_(y, z, lambda a, b, c: a + b * c)
|
|
self.assertEqual(res, x + y * z)
|
|
z.requires_grad = True
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "requires grad",
|
|
lambda: res.map2_(y, z, lambda a, b, c: a + b * c))
|
|
|
|
def test_Size(self):
|
|
x = torch.Size([1, 2, 3])
|
|
self.assertIsInstance(x, tuple)
|
|
self.assertEqual(x[0], 1)
|
|
self.assertEqual(x[1], 2)
|
|
self.assertEqual(x[2], 3)
|
|
self.assertEqual(len(x), 3)
|
|
self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3)))
|
|
|
|
self.assertIsInstance(x * 2, torch.Size)
|
|
self.assertIsInstance(x[:-1], torch.Size)
|
|
self.assertIsInstance(x + x, torch.Size)
|
|
|
|
def test_Size_scalar(self):
|
|
three = torch.tensor(3)
|
|
two = torch.tensor(2)
|
|
x = torch.Size([0, 1, two, three, 4])
|
|
for i in range(1, 5):
|
|
self.assertEqual(x[i], i)
|
|
|
|
def test_Size_iter(self):
|
|
for sizes in [iter([1, 2, 3, 4, 5]), range(1, 6)]:
|
|
x = torch.Size(sizes)
|
|
for i in range(0, 5):
|
|
self.assertEqual(x[i], i + 1)
|
|
|
|
def test_t_not_2d_error(self):
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t())
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t_())
|
|
|
|
# unit test for special case transposed copy (see ATen/native/Copy.cpp for details)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_big_transpose(self):
|
|
t = torch.rand(456, 789)
|
|
t1 = t.t().contiguous()
|
|
t2 = torch.from_numpy(t.numpy().transpose())
|
|
self.assertEqual(t1, t2)
|
|
|
|
def test_inplace_division(self):
|
|
t = torch.rand(5, 5)
|
|
id_before = id(t)
|
|
t /= 2
|
|
id_after = id(t)
|
|
self.assertEqual(id_before, id_after)
|
|
|
|
def test_simple_scalar_cast(self):
|
|
ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)]
|
|
ok_values = [1.5, 0]
|
|
|
|
not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]])
|
|
|
|
for tensor, value in zip(ok, ok_values):
|
|
self.assertEqual(int(tensor), int(value))
|
|
self.assertEqual(float(tensor), float(value))
|
|
if sys.version_info[0] < 3:
|
|
self.assertEqual(long(tensor), long(value))
|
|
|
|
for tensor in not_ok:
|
|
self.assertRaises(ValueError, lambda: int(tensor))
|
|
self.assertRaises(ValueError, lambda: float(tensor))
|
|
if sys.version_info[0] < 3:
|
|
self.assertRaises(ValueError, lambda: long(tensor))
|
|
|
|
def test_offset_scalar_cast(self):
|
|
x = torch.Tensor([1, 2, 3])
|
|
y = x[2:]
|
|
self.assertEqual(int(y), 3)
|
|
|
|
# skip this test for now as it affects all tests
|
|
@unittest.skipIf(True, "flush_denormal not supported")
|
|
def test_set_flush_denormal(self):
|
|
tiny_float = 1e-42
|
|
tiny_double = 1e-320
|
|
float_tensor = torch.FloatTensor([1.0, tiny_float])
|
|
double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double])
|
|
|
|
self.assertEqual(float_tensor[0], 1.0, prec=0.0)
|
|
self.assertEqual(float_tensor[1], tiny_float, prec=tiny_float / 16)
|
|
self.assertEqual(double_tensor[0], 1.0, prec=0.0)
|
|
self.assertEqual(double_tensor[1], tiny_float, prec=0.0)
|
|
self.assertEqual(double_tensor[2], tiny_double, prec=0.0)
|
|
|
|
torch.set_flush_denormal(True)
|
|
self.assertEqual(float_tensor[0], 1.0, prec=0.0)
|
|
self.assertEqual(float_tensor[1], 0.0, prec=0.0) # tiny_float to zero
|
|
self.assertEqual(double_tensor[0], 1.0, prec=0.0)
|
|
# tiny_float is not converted to zero in double type
|
|
self.assertEqual(double_tensor[1], tiny_float, prec=0.0)
|
|
self.assertEqual(double_tensor[2], 0.0, prec=0.0) # tiny_double to zero
|
|
torch.set_flush_denormal(False)
|
|
|
|
def test_unique(self):
|
|
def run_test(device):
|
|
x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], device=device)
|
|
expected_unique = torch.tensor([1, 2, 3, 5, 8], device=device)
|
|
expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
|
|
expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)
|
|
|
|
x_unique = torch.unique(x)
|
|
self.assertEqual(
|
|
expected_unique.tolist(), sorted(x_unique.tolist()))
|
|
|
|
x_unique, x_inverse = x.unique(return_inverse=True)
|
|
self.assertEqual(
|
|
expected_unique.tolist(), sorted(x_unique.tolist()))
|
|
self.assertEqual(expected_inverse.numel(), x_inverse.numel())
|
|
|
|
x_unique = x.unique(sorted=True)
|
|
self.assertEqual(expected_unique, x_unique)
|
|
|
|
x_unique, x_counts = torch.unique(x, sorted=True, return_counts=True)
|
|
self.assertEqual(expected_counts, x_counts)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x, sorted=True, return_inverse=True)
|
|
self.assertEqual(expected_unique, x_unique)
|
|
self.assertEqual(expected_inverse, x_inverse)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x, sorted=True, return_inverse=True, return_counts=True)
|
|
self.assertEqual(expected_unique, x_unique)
|
|
self.assertEqual(expected_inverse, x_inverse)
|
|
self.assertEqual(expected_counts, x_counts)
|
|
|
|
# Tests per-element unique on a higher rank tensor.
|
|
y = x.view(2, 2, 2)
|
|
y_unique, y_inverse = y.unique(sorted=True, return_inverse=True)
|
|
self.assertEqual(expected_unique, y_unique)
|
|
self.assertEqual(expected_inverse.view(y.size()), y_inverse)
|
|
|
|
y_unique, y_inverse, y_counts = torch.unique(
|
|
y, sorted=True, return_inverse=True, return_counts=True)
|
|
self.assertEqual(expected_unique, y_unique)
|
|
self.assertEqual(expected_inverse.view(y.size()), y_inverse)
|
|
self.assertEqual(expected_counts, y_counts)
|
|
|
|
# Tests unique on other types.
|
|
int_unique, int_inverse, int_counts = torch.unique(
|
|
torch.tensor([2, 1, 2], dtype=torch.int, device=device),
|
|
sorted=True,
|
|
return_inverse=True,
|
|
return_counts=True
|
|
)
|
|
self.assertEqual(torch.tensor([1, 2], dtype=torch.int, device=device), int_unique)
|
|
self.assertEqual(torch.tensor([1, 0, 1], dtype=torch.long, device=device), int_inverse)
|
|
self.assertEqual(torch.tensor([1, 2], dtype=torch.long, device=device), int_counts)
|
|
|
|
double_unique, double_inverse, double_counts = torch.unique(
|
|
torch.tensor([2., 1.5, 2.1, 2.], dtype=torch.double, device=device),
|
|
sorted=True,
|
|
return_inverse=True,
|
|
return_counts=True
|
|
)
|
|
self.assertEqual(torch.tensor([1.5, 2., 2.1], dtype=torch.double, device=device), double_unique)
|
|
self.assertEqual(torch.tensor([1, 0, 2, 1], dtype=torch.long, device=device), double_inverse)
|
|
self.assertEqual(torch.tensor([1, 2, 1], dtype=torch.long, device=device), double_counts)
|
|
|
|
byte_unique, byte_inverse, byte_counts = torch.unique(
|
|
torch.tensor([133, 7, 7, 7, 42, 128], dtype=torch.uint8, device=device),
|
|
sorted=True,
|
|
return_inverse=True,
|
|
return_counts=True
|
|
)
|
|
self.assertEqual(torch.tensor([7, 42, 128, 133], dtype=torch.uint8, device=device), byte_unique)
|
|
self.assertEqual(torch.tensor([3, 0, 0, 0, 1, 2], dtype=torch.long, device=device), byte_inverse)
|
|
self.assertEqual(torch.tensor([3, 1, 1, 1], dtype=torch.long, device=device), byte_counts)
|
|
|
|
# test consecutive version
|
|
z = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], device=device)
|
|
expected_z_unique = torch.tensor([1, 2, 5, 2, 3], device=device)
|
|
expected_z_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
|
|
expected_z_counts = torch.tensor([1, 3, 2, 2, 1], device=device)
|
|
|
|
z_unique = torch.unique_consecutive(z)
|
|
self.assertEqual(z_unique, expected_z_unique)
|
|
|
|
z_unique, z_inverse = torch.unique_consecutive(z, return_inverse=True)
|
|
self.assertEqual(z_unique, expected_z_unique)
|
|
self.assertEqual(z_inverse, expected_z_inverse)
|
|
|
|
z_unique, z_counts = torch.unique_consecutive(z, return_counts=True)
|
|
self.assertEqual(z_unique, expected_z_unique)
|
|
self.assertEqual(z_counts, expected_z_counts)
|
|
|
|
z_unique, z_inverse, z_counts = torch.unique_consecutive(z, return_inverse=True, return_counts=True)
|
|
self.assertEqual(z_unique, expected_z_unique)
|
|
self.assertEqual(z_inverse, expected_z_inverse)
|
|
self.assertEqual(z_counts, expected_z_counts)
|
|
|
|
run_test(torch.device('cpu'))
|
|
if torch.cuda.is_available():
|
|
run_test(torch.device('cuda'))
|
|
|
|
def test_unique_dim(self):
|
|
self.assertFalse(hasattr(torch, 'unique_dim'))
|
|
|
|
def run_test(dtype=torch.float, device=torch.device('cpu')):
|
|
x = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]],
|
|
[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_unique_dim0 = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_inverse_dim0 = torch.tensor([0, 0])
|
|
expected_counts_dim0 = torch.tensor([2])
|
|
expected_unique_dim1 = torch.tensor([[[0., 1.],
|
|
[1., 1.],
|
|
[2., 1.]],
|
|
[[0., 1.],
|
|
[1., 1.],
|
|
[2., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
|
|
expected_counts_dim1 = torch.tensor([2, 1, 1])
|
|
expected_unique_dim2 = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]],
|
|
[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_inverse_dim2 = torch.tensor([0, 1])
|
|
expected_counts_dim2 = torch.tensor([1, 1])
|
|
|
|
# dim0
|
|
x_unique = torch.unique(x, dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_inverse_dim0, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_counts_dim0, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_inverse_dim0, x_inverse)
|
|
self.assertEqual(expected_counts_dim0, x_counts)
|
|
|
|
# dim1
|
|
x_unique = torch.unique(x, dim=1)
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=1)
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_inverse_dim1, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=1)
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_counts_dim1, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=1)
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_inverse_dim1, x_inverse)
|
|
self.assertEqual(expected_counts_dim1, x_counts)
|
|
|
|
# dim2
|
|
x_unique = torch.unique(x, dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_inverse_dim2, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_counts_dim2, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_inverse_dim2, x_inverse)
|
|
self.assertEqual(expected_counts_dim2, x_counts)
|
|
|
|
# test consecutive version
|
|
y = torch.tensor(
|
|
[[0, 1],
|
|
[0, 1],
|
|
[0, 1],
|
|
[1, 2],
|
|
[1, 2],
|
|
[3, 4],
|
|
[0, 1],
|
|
[0, 1],
|
|
[3, 4],
|
|
[1, 2]],
|
|
dtype=dtype,
|
|
device=device
|
|
)
|
|
expected_y_unique = torch.tensor(
|
|
[[0, 1],
|
|
[1, 2],
|
|
[3, 4],
|
|
[0, 1],
|
|
[3, 4],
|
|
[1, 2]],
|
|
dtype=dtype,
|
|
device=device
|
|
)
|
|
expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=dtype, device=device)
|
|
expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=dtype, device=device)
|
|
y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
|
|
self.assertEqual(expected_y_inverse, y_inverse)
|
|
self.assertEqual(expected_y_counts, y_counts)
|
|
|
|
run_test(torch.float)
|
|
run_test(torch.double)
|
|
run_test(torch.long)
|
|
run_test(torch.uint8)
|
|
if torch.cuda.is_available():
|
|
run_test(torch.float, torch.device('cuda'))
|
|
run_test(torch.double, torch.device('cuda'))
|
|
run_test(torch.long, torch.device('cuda'))
|
|
run_test(torch.uint8, torch.device('cuda'))
|
|
|
|
def test_show_config(self):
|
|
# We can't usefully test the output; just make sure this doesn't crash
|
|
torch.__config__.show()
|
|
|
|
def test_parallel_info(self):
|
|
torch.__config__.parallel_info()
|
|
|
|
@staticmethod
|
|
def _test_bincount(self, device):
|
|
# negative input throws
|
|
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
|
|
torch.bincount(torch.tensor([1, -1], device=device))
|
|
# n-d input, with n > 1 throws
|
|
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
|
|
torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device))
|
|
# floating input type throws
|
|
with self.assertRaisesRegex(RuntimeError, 'not implemented'):
|
|
torch.bincount(torch.tensor([1., 0.3], device=device))
|
|
# minlength < 0 throws
|
|
with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'):
|
|
torch.bincount(torch.tensor([1, 3], device=device),
|
|
torch.tensor([.2, .2], device=device),
|
|
minlength=-1)
|
|
# input and weights dim mismatch
|
|
with self.assertRaisesRegex(RuntimeError, 'same length'):
|
|
torch.bincount(torch.tensor([1, 0], device=device),
|
|
torch.tensor([1., 0.3, 0.5], device=device))
|
|
# 1-d input with no elements and default minlength
|
|
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)),
|
|
torch.zeros(0, dtype=torch.long, device=device))
|
|
# 1-d input with no elements and specified minlength
|
|
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10),
|
|
torch.zeros(10, dtype=torch.long, device=device))
|
|
|
|
# test tensor method without weights
|
|
long_counts = torch.tensor(
|
|
[0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount()
|
|
self.assertEqual(
|
|
torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device),
|
|
long_counts)
|
|
# test minlength functionality
|
|
int_counts = torch.bincount(
|
|
torch.tensor([1, 1, 1, 1], device=device), minlength=5)
|
|
self.assertEqual(
|
|
torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device),
|
|
int_counts)
|
|
# test weights
|
|
byte_counts = torch.bincount(
|
|
torch.tensor([0, 1, 1, 1, 4], device=device),
|
|
torch.tensor([.1, .2, .3, .4, .5], device=device))
|
|
self.assertEqual(
|
|
torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts)
|
|
byte_counts = torch.bincount(
|
|
torch.tensor([0, 1, 1, 1, 4], device=device),
|
|
torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device))
|
|
self.assertEqual(
|
|
torch.tensor([1, 9, 0, 0, 5], device=device), byte_counts)
|
|
# test non-contiguous inputs and weights
|
|
inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device)
|
|
weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device)
|
|
for i in [0, 1]:
|
|
assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous"
|
|
assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous"
|
|
# inputs are non-contiguous but weights are contiguous
|
|
self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2]))
|
|
# inputs and weights are non-contiguous
|
|
self.assertEqual(inputs[:, 1].bincount(weights[:, 1]), torch.tensor([1, 9, 0, 0, 5]))
|
|
# weights are non-contiguous but inputs are contiguous
|
|
self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]),
|
|
torch.tensor([1, 9, 0, 0, 5]))
|
|
|
|
# test bincount on non-contiguous slices
|
|
all0s = torch.zeros((32, 2), dtype=torch.int64, device=device)
|
|
self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32]))
|
|
|
|
all1s = torch.ones((32, 2), dtype=torch.int64, device=device)
|
|
self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32]))
|
|
|
|
# test large number of bins - global memory use
|
|
big_exp = torch.zeros(10000000, device=device)
|
|
big_exp[-1] = 50.0
|
|
big_w = torch.tensor([.5] * 100, device=device)
|
|
big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w)
|
|
self.assertEqual(big_exp, big_out)
|
|
# test large input size
|
|
big_exp = torch.zeros(2, device=device)
|
|
big_exp[1] = 1000000
|
|
big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount()
|
|
self.assertEqual(big_exp, big_out)
|
|
|
|
@slowTest
|
|
def test_slow_test(self):
|
|
# Just a smoketest to make sure our slowTest decorator works.
|
|
pass
|
|
|
|
def test_bincount_cpu(self):
|
|
self._test_bincount(self, device='cpu')
|
|
|
|
def test_is_nonzero(self):
|
|
self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([]).is_nonzero(), subname="empty")
|
|
self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([0, 0]).is_nonzero(), subname="multiple")
|
|
self.assertFalse(torch.tensor(0).is_nonzero())
|
|
self.assertTrue(torch.tensor(1).is_nonzero())
|
|
self.assertFalse(torch.tensor([0]).is_nonzero())
|
|
self.assertTrue(torch.tensor([1]).is_nonzero())
|
|
self.assertFalse(torch.tensor([[0]]).is_nonzero())
|
|
self.assertTrue(torch.tensor([[1]]).is_nonzero())
|
|
|
|
def test_meshgrid(self):
|
|
a = torch.tensor(1)
|
|
b = torch.tensor([1, 2, 3])
|
|
c = torch.tensor([1, 2])
|
|
grid_a, grid_b, grid_c = torch.meshgrid([a, b, c])
|
|
self.assertEqual(grid_a.shape, torch.Size([1, 3, 2]))
|
|
self.assertEqual(grid_b.shape, torch.Size([1, 3, 2]))
|
|
self.assertEqual(grid_c.shape, torch.Size([1, 3, 2]))
|
|
grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c)
|
|
self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2]))
|
|
self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2]))
|
|
self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2]))
|
|
expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64)
|
|
expected_grid_b = torch.tensor([[[1, 1],
|
|
[2, 2],
|
|
[3, 3]]])
|
|
expected_grid_c = torch.tensor([[[1, 2],
|
|
[1, 2],
|
|
[1, 2]]])
|
|
self.assertTrue(grid_a.equal(expected_grid_a))
|
|
self.assertTrue(grid_b.equal(expected_grid_b))
|
|
self.assertTrue(grid_c.equal(expected_grid_c))
|
|
self.assertTrue(grid_a2.equal(expected_grid_a))
|
|
self.assertTrue(grid_b2.equal(expected_grid_b))
|
|
self.assertTrue(grid_c2.equal(expected_grid_c))
|
|
|
|
# NB: we must not be built with CUDA; if we are built with CUDA but no CUDA
|
|
# is available, we get a different error.
|
|
@unittest.skipIf(torch.backends.cuda.is_built() or IS_SANDCASTLE, "CUDA is built, can't test CUDA not built error")
|
|
def test_cuda_not_built(self):
|
|
msg = "Torch not compiled with CUDA enabled"
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.cuda.current_device())
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1], device="cuda"))
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).cuda())
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.cuda.FloatTensor())
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).to(device="cuda"))
|
|
|
|
def test_cast_binary_op(self):
|
|
# Scalar
|
|
a = torch.tensor(2)
|
|
b = torch.tensor(3)
|
|
a_copy = a.clone()
|
|
b_copy = b.clone()
|
|
|
|
self.assertEqual(torch.tensor(6), a.float() * b)
|
|
|
|
self.assertEqual(a.type(), a_copy.type())
|
|
self.assertEqual(a.data.type(), a_copy.data.type())
|
|
self.assertEqual(b.type(), b_copy.type())
|
|
self.assertEqual(b.data.type(), b_copy.type())
|
|
|
|
def test_cartesian_prod(self):
|
|
a = torch.tensor([1])
|
|
b = torch.tensor([1, 2, 3])
|
|
c = torch.tensor([1, 2])
|
|
prod = torch.cartesian_prod(a, b, c)
|
|
expected = torch.tensor(list(product([a], b, c)))
|
|
self.assertEqual(expected, prod)
|
|
|
|
# test 0 size input
|
|
d = torch.empty(0, dtype=b.dtype)
|
|
prod = torch.cartesian_prod(a, b, c, d)
|
|
expected = torch.empty(0, 4, dtype=b.dtype)
|
|
self.assertEqual(expected, prod)
|
|
|
|
# test single input
|
|
prod = torch.cartesian_prod(b)
|
|
self.assertEqual(b, prod)
|
|
|
|
def test_combinations(self):
|
|
a = torch.tensor([1, 2, 3])
|
|
|
|
c = torch.combinations(a, r=1)
|
|
expected = torch.tensor(list(combinations(a, r=1)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, r=1, with_replacement=True)
|
|
expected = torch.tensor(list(combinations_with_replacement(a, r=1)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a)
|
|
expected = torch.tensor(list(combinations(a, r=2)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, with_replacement=True)
|
|
expected = torch.tensor(list(combinations_with_replacement(a, r=2)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, r=3)
|
|
expected = torch.tensor(list(combinations(a, r=3)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, r=4)
|
|
expected = torch.empty(0, 4, dtype=a.dtype)
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, r=5)
|
|
expected = torch.empty(0, 5, dtype=a.dtype)
|
|
self.assertEqual(c, expected)
|
|
|
|
# test empty imput
|
|
a = torch.empty(0)
|
|
c1 = torch.combinations(a)
|
|
c2 = torch.combinations(a, with_replacement=True)
|
|
expected = torch.empty(0, 2, dtype=a.dtype)
|
|
self.assertEqual(c1, expected)
|
|
self.assertEqual(c2, expected)
|
|
|
|
def test_has_internal_overlap(self):
|
|
OVERLAP_NO = 0
|
|
OVERLAP_YES = 1
|
|
OVERLAP_TOO_HARD = 2
|
|
|
|
# Check for contiguous tensors
|
|
a = torch.randn(3, 3)
|
|
self.assertEqual(torch._debug_has_internal_overlap(a), OVERLAP_NO)
|
|
|
|
# Checks for zero strides
|
|
b = torch.randn(1, 3)
|
|
b_expanded = b.expand(4, 3)
|
|
self.assertEqual(torch._debug_has_internal_overlap(b_expanded), OVERLAP_YES)
|
|
|
|
@staticmethod
|
|
def unary_check_mem_overlap(self, inplace_op, value=-0.5, device='cpu'):
|
|
tensor = torch.tensor(value, device=device).expand(3, 3)
|
|
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
|
|
inplace_op(tensor)
|
|
|
|
@staticmethod
|
|
def binary_check_mem_overlap(self, inplace_op, value=-0.5, device='cpu'):
|
|
if isinstance(inplace_op, str):
|
|
inplace_op = getattr(torch.Tensor, inplace_op)
|
|
tensor = torch.tensor(value, device=device).expand(3, 3)
|
|
other = torch.rand_like(tensor)
|
|
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
|
|
inplace_op(tensor, other)
|
|
|
|
@staticmethod
|
|
def _test_inplace_unary_mem_overlap(self, device='cpu'):
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.acos_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.asin_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.atan_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.ceil_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.cos_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.erf_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.erfc_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.exp_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.expm1_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.floor_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.log_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.log10_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.log1p_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.log2_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.round_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.rsqrt_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.sin_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.sqrt_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.tan_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.tanh_(), device=device)
|
|
TestTorch.unary_check_mem_overlap(self, lambda t: t.trunc_(), device=device)
|
|
|
|
@staticmethod
|
|
def _test_inplace_binary_mem_overlap(self, device='cpu'):
|
|
binary_ops = ['add_', 'mul_', 'div_', 'sub_']
|
|
for op in binary_ops:
|
|
TestTorch.binary_check_mem_overlap(self, op, device=device)
|
|
|
|
def test_inplace_unary_mem_overlap(self):
|
|
return self._test_inplace_unary_mem_overlap(self)
|
|
|
|
def test_inplace_binary_mem_overlap(self):
|
|
return self._test_inplace_binary_mem_overlap(self)
|
|
|
|
@unittest.expectedFailure
|
|
def test_abs_unary_mem_overlap(self):
|
|
self.unary_check_mem_overlap(lambda t: t.abs_())
|
|
|
|
@unittest.expectedFailure
|
|
def test_sinh_unary_mem_overlap(self):
|
|
self.unary_check_mem_overlap(lambda t: t.sinh_())
|
|
|
|
@unittest.expectedFailure
|
|
def test_cosh_unary_mem_overlap(self):
|
|
self.unary_check_mem_overlap(lambda t: t.cosh_())
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
|
|
def test_reverse_binary_ops_multiple_device(self):
|
|
self.assertEqual(2 + torch.tensor(3), 2 + torch.tensor(3).to("cuda:1")) # __radd__
|
|
self.assertEqual(2 - torch.tensor(3), 2 - torch.tensor(3).to("cuda:1")) # __rsub__
|
|
self.assertEqual(2 * torch.tensor(3), 2 * torch.tensor(3).to("cuda:1")) # __rmul__
|
|
self.assertEqual(2 / torch.tensor(3), 2 / torch.tensor(3).to("cuda:1")) # __rtruediv__
|
|
self.assertEqual(2 // torch.tensor(3), 2 // torch.tensor(3).to("cuda:1")) # __rfloordiv__
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected both inputs to be on same device"):
|
|
torch.tensor(2).to("cuda:1") + torch.tensor(3).to("cuda:0")
|
|
with self.assertRaisesRegex(RuntimeError, "expected both inputs to be on same device"):
|
|
torch.tensor(2).to("cuda:1") - torch.tensor(3).to("cuda:0")
|
|
with self.assertRaisesRegex(RuntimeError, "expected both inputs to be on same device"):
|
|
torch.tensor(2).to("cuda:1") * torch.tensor(3).to("cuda:0")
|
|
with self.assertRaisesRegex(RuntimeError, "expected both inputs to be on same device"):
|
|
torch.tensor(2).to("cuda:1") / torch.tensor(3).to("cuda:0")
|
|
with self.assertRaisesRegex(RuntimeError, "expected both inputs to be on same device"):
|
|
torch.tensor(2).to("cuda:1") // torch.tensor(3).to("cuda:0")
|
|
|
|
def test_allow_tensor_metadata_change(self):
|
|
def do_test(t):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"set_sizes_contiguous is not allowed on Tensor created from .data or .detach()"):
|
|
t.resize_((2, 1))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"set_storage is not allowed on Tensor created from .data or .detach()"):
|
|
t.set_()
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"set_storage_offset is not allowed on Tensor created from .data or .detach()"):
|
|
t.set_(t.storage(), 0, t.size(), list(t.stride()))
|
|
|
|
do_test(torch.tensor([[1, 2]]).data)
|
|
do_test(torch.tensor([[1, 2]]).detach())
|
|
|
|
def test_c10_layer_norm(self):
|
|
# test that we can call c10 ops and they return a reasonable result
|
|
X = torch.rand(5, 5, dtype=torch.float)
|
|
weight = torch.rand(*X.size()[1:], dtype=torch.float)
|
|
bias = torch.rand(*X.size()[1:], dtype=torch.float)
|
|
epsilon = 1e-4
|
|
|
|
expected_norm = torch.nn.functional.layer_norm(
|
|
X, X.size()[1:], weight=weight, bias=bias, eps=epsilon)
|
|
actual_norm, actual_mean, actual_stdev = \
|
|
torch.ops._caffe2.LayerNorm(torch.tensor(X), torch.tensor(
|
|
weight), torch.tensor(bias), 1, epsilon, True)
|
|
torch.testing.assert_allclose(expected_norm, actual_norm)
|
|
|
|
def test_memory_format(self):
|
|
x = torch.randn(10, 3, 32, 32)
|
|
nhwc = x.contiguous(memory_format=torch.channels_last)
|
|
self.assertFalse(nhwc.is_contiguous())
|
|
self.assertTrue(nhwc.is_contiguous(memory_format=torch.channels_last))
|
|
self.assertEqual(nhwc, x)
|
|
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_memory_format_permute_cuda(self):
|
|
x = torch.randn(10, 3, 32, 32)
|
|
nhwc = x.contiguous(memory_format=torch.channels_last).cuda()
|
|
y = nhwc.permute(0, 1, 3, 2).permute(0, 1, 3, 2)
|
|
self.assertFalse(y.is_contiguous(memory_format=torch.channels_last))
|
|
|
|
def test_subclass_tensors(self):
|
|
# raise an error when trying to subclass FloatTensor
|
|
with self.assertRaisesRegex(TypeError, "type 'torch.FloatTensor' is not an acceptable base type"):
|
|
class Foo1(torch.FloatTensor):
|
|
pass
|
|
|
|
# but allow subclassing Tensor:
|
|
class Foo2(torch.Tensor):
|
|
def foo(self):
|
|
return 5
|
|
f = Foo2()
|
|
self.assertEqual(f.foo(), 5)
|
|
|
|
def test_ndim(self):
|
|
a = torch.randn(1, 2, 3)
|
|
self.assertEqual(3, a.ndim)
|
|
b = torch.randn(())
|
|
self.assertEqual(0, b.ndim)
|
|
c = torch.randn(1, 0)
|
|
self.assertEqual(2, c.ndim)
|
|
|
|
# Functions to test negative dimension wrapping
|
|
METHOD = 1
|
|
INPLACE_METHOD = 2
|
|
FUNCTIONAL = 4
|
|
DIM_ARG = None
|
|
|
|
def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0):
|
|
def neg_dim_test(self):
|
|
if isinstance(tensor_arg, list):
|
|
assert METHOD not in types and INPLACE_METHOD not in types
|
|
x = [torch.randn(arg) for arg in tensor_arg]
|
|
ndim = len(tensor_arg[-1])
|
|
else:
|
|
x = torch.randn(*tensor_arg)
|
|
ndim = len(tensor_arg)
|
|
ndim += extra_dim
|
|
|
|
n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr()))
|
|
|
|
for dims_val in combinations(range(ndim), n_dim_to_test):
|
|
arg = arg_constr()
|
|
arg_neg = copy.deepcopy(arg)
|
|
idx = 0
|
|
for i, v in enumerate(arg):
|
|
if v is DIM_ARG:
|
|
arg[i] = dims_val[idx]
|
|
arg_neg[i] = dims_val[idx] - ndim
|
|
idx += 1
|
|
|
|
if METHOD in types:
|
|
a = getattr(x, name)(*arg)
|
|
b = getattr(x, name)(*arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
if INPLACE_METHOD in types:
|
|
a = x.clone()
|
|
getattr(a, name + '_')(*arg)
|
|
b = x.clone()
|
|
getattr(b, name + '_')(*arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
if FUNCTIONAL in types:
|
|
a = getattr(torch, name)(x, *arg)
|
|
b = getattr(torch, name)(x, *arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
return neg_dim_test
|
|
|
|
|
|
def idx_tensor(size, max_val):
|
|
return torch.LongTensor(*size).random_(0, max_val - 1)
|
|
|
|
|
|
def add_neg_dim_tests():
|
|
neg_dim_tests = [
|
|
('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]),
|
|
('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]),
|
|
('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]),
|
|
('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]),
|
|
('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]),
|
|
('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]),
|
|
('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1),
|
|
('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]),
|
|
('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]),
|
|
('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]),
|
|
]
|
|
|
|
for decl in neg_dim_tests:
|
|
if len(decl) == 4:
|
|
name, tensor_arg, arg_constr, types = decl
|
|
extra_dim = 0
|
|
elif len(decl) == 5:
|
|
name, tensor_arg, arg_constr, types, extra_dim = decl
|
|
|
|
test_name = 'test_' + name + '_neg_dim'
|
|
|
|
assert not hasattr(_TestTorchMixin, test_name), "Duplicated test name: " + test_name
|
|
setattr(_TestTorchMixin, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim))
|
|
|
|
add_neg_dim_tests()
|
|
|
|
|
|
class TestTorch(TestCase, _TestTorchMixin):
|
|
pass
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|