Files
pytorch/test/functorch/test_eager_transforms.py
2024-07-24 12:21:43 +00:00

5246 lines
172 KiB
Python

# Owner(s): ["module: functorch"]
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import copy
import math
import os
import subprocess
import sys
import unittest
import warnings
from functools import partial, wraps
# NB: numpy is a testing dependency!
import numpy as np
from common_utils import expectedFailureIf
import functorch
import torch
import torch.autograd.forward_ad as fwAD
import torch.nn as nn
import torch.nn.functional as F
from functorch import (
combine_state_for_ensemble,
grad,
grad_and_value,
hessian,
jacfwd,
jacrev,
jvp,
make_functional,
make_functional_with_buffers,
make_fx,
vjp,
vmap,
)
from functorch.experimental import functionalize, replace_all_batch_norm_modules_
from torch._C import _ExcludeDispatchKeyGuard, DispatchKey, DispatchKeySet
from torch._dynamo import allow_in_graph
from torch._functorch.eager_transforms import _slice_argnums
from torch._functorch.make_functional import (
functional_init,
functional_init_with_buffers,
)
from torch._functorch.utils import enable_single_level_autograd_function
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.func import functional_call, linearize, stack_module_state
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import (
SM70OrLater,
TEST_CUDA,
tf32_on_and_off,
with_tf32_off,
)
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCPU,
onlyCUDA,
)
from torch.testing._internal.common_dtype import get_all_fp_dtypes
from torch.testing._internal.common_utils import (
freeze_rng_state,
instantiate_parametrized_tests,
IS_FBCODE,
IS_WINDOWS,
markDynamoStrictTest,
parametrize,
run_tests,
skipIfRocm,
skipIfTorchDynamo,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
)
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
USE_TORCHVISION = False
try:
import torchvision # noqa: F401
USE_TORCHVISION = True
except ImportError:
warnings.warn(
"Couldn't import torchvision. Some of our tests use it, try "
"to install it with commands from pytorch.org, post-fixed with "
"`--no-deps` to avoid overwriting the pytorch installation",
UserWarning,
)
# TestCase for _slice_argnums, an important helper function
class VmapTearDownMixin:
def tearDown(self):
# Ensure that in the case of a test failure, the next test won't fail
# because of a previous call to _vmap_increment_nesting that wasn't undone
# i.e. test_vmap_free_tensor fails when PYTORCH_TEST_WITH_DYNAMO=1
# and the call to increment nesting is not undone
if not TEST_WITH_TORCHDYNAMO:
return
warn = False
while ci := torch._C._functorch.peek_interpreter_stack():
if ci.key() == torch._C._functorch.TransformType.Vmap:
warn = True
torch._C._functorch._vmap_decrement_nesting()
else:
break
if warn:
msg = (
"Interpreter stack is not empty. Test should have called "
"'torch._C._functorch._vmap_decrement_nesting()'"
)
warnings.warn(msg)
@markDynamoStrictTest
class TestSliceArgnums(TestCase):
def test_invalid_argnum_type(self):
x = torch.randn(3)
args = (x,)
with self.assertRaisesRegex(RuntimeError, "int or Tuple"):
_slice_argnums(args, 0.0)
with self.assertRaisesRegex(RuntimeError, "int or Tuple"):
_slice_argnums(args, [0])
with self.assertRaisesRegex(RuntimeError, "must be int"):
_slice_argnums(args, (0.0,))
args = (0.1, 1.1, 2.1, 3.1, 4.1)
with self.assertRaisesRegex(RuntimeError, "must be int"):
_slice_argnums(args, ((0, 1), 2))
def test_out_of_bounds_argnum_values(self):
x = torch.randn(3)
args = (x,)
with self.assertRaisesRegex(RuntimeError, "positional inputs"):
_slice_argnums(args, 1)
with self.assertRaisesRegex(RuntimeError, "positional inputs"):
_slice_argnums(args, -2)
with self.assertRaisesRegex(RuntimeError, "positional inputs"):
_slice_argnums(args, (-2,))
def test_not_enough_argnums(self):
x = torch.randn(3)
args = (x,)
with self.assertRaisesRegex(RuntimeError, "must be non-empty"):
_slice_argnums(args, ())
def test_duplicate_argnums(self):
x = torch.randn(3)
args = (x, x)
with self.assertRaisesRegex(RuntimeError, "must be unique"):
_slice_argnums(args, (0, 0))
with self.assertRaisesRegex(RuntimeError, "must be unique"):
_slice_argnums(args, (0, -2))
def test_flat_args_with_positive_int_argnum(self):
args = (0.1, 1.1, 2.1, 3.1, 4.1)
res = _slice_argnums(args, 0)
self.assertEqual(res, (0.1,))
res = _slice_argnums(args, 4)
self.assertEqual(res, (4.1,))
def test_flat_args_with_negative_int_argnum(self):
args = (0.1, 1.1, 2.1, 3.1, 4.1)
res = _slice_argnums(args, -1)
self.assertEqual(res, (4.1,))
res = _slice_argnums(args, -5)
self.assertEqual(res, (0.1,))
def test_flat_args_with_tuple_argnum(self):
args = (0.1, 1.1, 2.1, 3.1, 4.1)
res = _slice_argnums(args, (0, 1, 2, 3, 4))
self.assertEqual(res, args)
res = _slice_argnums(args, (0, -3))
self.assertEqual(res, (0.1, 2.1))
def test_pytree_args(self):
args = ((0.1, 1.1), 2.0, [3.1])
res = _slice_argnums(args, 0)
self.assertEqual(res, args[0:1])
res = _slice_argnums(args, (0,))
self.assertEqual(res, args[0:1])
res = _slice_argnums(args, -1)
self.assertEqual(res, args[-1:])
res = _slice_argnums(args, (0, -2))
self.assertEqual(res, args[0:2])
def test_argnums_reorders(self):
args = ((0.1, 1.1, 2.1), 3.1, 4.1)
res = _slice_argnums(args, (1, 0))
self.assertEqual(res, (args[1], args[0]))
def _get_weights_and_functional_call(net, mechanism):
if mechanism == "make_functional":
return make_functional(net)
else:
assert mechanism == "functional_call"
# this makes it so the function from make_functional and this call have the same signature
def net_func(weights, data):
return functional_call(net, weights, (data,))
return net_func, dict(net.named_parameters())
def _get_weights_and_functional_call_with_buffers(net, mechanism):
if mechanism == "make_functional":
return make_functional_with_buffers(net)
else:
assert mechanism == "functional_call"
# this makes it so the function from make_functional and this call have the same signature
def net_func(weights, buffers, data):
return functional_call(net, (weights, buffers), (data,))
return net_func, dict(net.named_parameters()), dict(net.named_buffers())
@markDynamoStrictTest
class TestGradTransform(TestCase):
def test_primitive(self, device):
x = torch.randn([], device=device)
result = grad(torch.sin)(x)
self.assertEqual(result, torch.cos(x))
def test_composite_simple(self, device):
x = torch.randn(2, 3, 4, device=device)
result = grad(lambda x: torch.flatten(x).sum())(x)
self.assertEqual(result, torch.ones_like(x))
def test_fn_with_kwargs(self, device):
def foo(x, y):
return (x * y).sum()
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
expected = grad(foo)(x, y)
result = grad(foo)(x, y=y)
self.assertEqual(result, expected)
def test_composite_complicated(self, device):
x = torch.randn(3, device=device)
y = torch.randn(3, 5, device=device)
def foo(x, y):
result = x @ y
return result.sum()
result = grad(foo)(x, y)
x.requires_grad_()
out = foo(x, y)
(expected,) = torch.autograd.grad(out, x)
self.assertEqual(result, expected)
def test_composite_two_ops(self, device):
N, C = 2, 5
y = torch.randn(N, C, device=device)
targets = torch.randint(0, C, (N,), device=device)
def foo(y, targets):
return F.cross_entropy(y, targets)
result = grad(foo)(y, targets)
y.requires_grad_()
(expected,) = torch.autograd.grad(foo(y, targets), y)
self.assertEqual(result, expected)
def _test_attributes(self, get_attr_lambda, device):
x = torch.randn(2, 3, 5, dtype=torch.double, device=device)
expected = get_attr_lambda(x)
def foo(x):
self.assertEqual(get_attr_lambda(x), expected)
return x.sum()
grad(foo)(x)
def test_shape(self, device):
self._test_attributes(lambda x: x.shape, device)
def test_dtype(self, device):
self._test_attributes(lambda x: x.dtype, device)
def test_is_cuda(self, device):
self._test_attributes(lambda x: x.is_cuda, device)
def test_numel(self, device):
self._test_attributes(lambda x: x.numel(), device)
def test_inplace(self, device):
x = torch.randn([], device=device)
def foo(x):
return x.clone().sin_()
result = grad(foo)(x)
self.assertEqual(result, x.cos())
def test_inplace_on_view(self, device):
x = torch.randn(3, device=device)
def foo(x):
y = x.clone()
y0 = y[0]
y0.sin_()
return y.sum()
result = grad(foo)(x)
x.requires_grad_()
out = foo(x)
(expected,) = torch.autograd.grad(out, x)
self.assertEqual(result, expected)
def test_inplace_on_view_base(self, device):
x = torch.randn(3, device=device)
def foo(x):
y = x.clone()
y0 = y[0]
y.sin_()
return y0
result = grad(foo)(x)
x.requires_grad_()
out = foo(x)
(expected,) = torch.autograd.grad(out, x)
self.assertEqual(result, expected)
def test_inplace_on_captures(self, device):
x = torch.tensor([1.0, 2.0, 3.0], device=device)
captured = torch.randn(3, device=device)
def foo(x):
captured.copy_(x)
return (x * captured).sum()
with self.assertRaisesRegex(RuntimeError, "mutate a captured Tensor"):
grad(foo)(x)
def test_nesting_simple(self, device):
x = torch.randn([], device=device)
result = grad(grad(torch.sin))(x)
self.assertEqual(result, -torch.sin(x))
@skipIfTorchDynamo("Ref: https://github.com/pytorch/pytorch/issues/103613")
def test_escaped_wrappers_are_marked_as_dead(self, device):
x = torch.randn([], device=device)
escaped = []
def foo(x):
y = x.sin()
escaped.append(y)
return y
grad(foo)(x)
self.assertEqual(torch._C._functorch.dlevel(escaped[0]), -1)
@skipIfTorchDynamo("Ref: https://github.com/pytorch/pytorch/issues/103613")
def test_escaped_wrappers_are_ignored(self, device):
x = torch.randn([], device=device)
escaped = []
def foo(x):
y = x.sin()
escaped.append(y)
return y
grad(foo)(x)
something = escaped[0].sum()
self.assertEqual(torch._C._functorch.dlevel(something), 0)
self.assertEqual(something, x.sin().sum())
def test_manual_seed_inside_grad(self, device):
x = torch.randn([], device=device)
def f(x):
torch.manual_seed(0)
return x * torch.randn_like(x)
with freeze_rng_state():
result = grad(f)(x)
x.requires_grad_()
(expected,) = torch.autograd.grad(f(x), x)
self.assertEqual(result, expected)
def test_vjp(self, device):
x = torch.randn([], device=device)
out, vjp_fn = vjp(torch.sin, x)
self.assertEqual(out, x.sin())
v = torch.randn([], device=device)
(result,) = vjp_fn(v)
self.assertEqual(result, v * x.cos())
def test_vjp_two_outputs(self, device):
def f(x):
return x, x
result, vjp_fn = vjp(f, torch.tensor(1.0))
vjp_fn(result)
def test_conj_bit(self):
x = torch.tensor(1 + 1j)
def foo(x):
assert not x.is_conj()
y = x.conj()
assert y.is_conj()
return y.abs()
res = grad(foo)(x)
with torch.no_grad():
self.assertEqual(res, torch.ones_like(res) * torch.sgn(x))
def test_composed_with_autograd(self, device):
x = torch.randn([], requires_grad=True, device=device)
y = grad(torch.sin)(x)
(result,) = torch.autograd.grad(y, x)
self.assertEqual(result, -x.sin())
def test_grad_of_vjp_composition(self, device):
x = torch.randn([], device=device)
y = torch.randn([], device=device)
def foo(x, y):
out, vjp_fn = vjp(torch.sin, x)
return grad(lambda y: vjp_fn(y)[0])(y)
result = foo(x, y)
expected = x.cos()
self.assertEqual(result, expected)
def test_vjp_of_grad_composition(self, device):
x = torch.randn([], device=device)
y = torch.randn([], device=device)
def foo(x, y):
out, vjp_fn = vjp(grad(torch.sin), x)
return vjp_fn(y)[0]
result = foo(x, y)
expected = -y * x.sin()
self.assertEqual(result, expected)
def test_grad_of_vjp_of_grad_composition(self, device):
x = torch.randn([], device=device)
y = torch.randn([], device=device)
def foo(x, y):
df, vjp_fn = vjp(grad(lambda x: -torch.cos(x)), x)
return grad(lambda y: vjp_fn(y)[0])(y)
result = foo(x, y)
expected = x.cos()
self.assertEqual(result, expected)
def test_views(self, device):
x = torch.randn([], requires_grad=True, device=device)
y = torch.randn([], requires_grad=True, device=device)
def silly_sin(x):
x = x.view([])
x = x.sin()
return x
def foo(x, y):
z1 = grad(silly_sin)(x)
z2 = torch.cos(y)
return z1 + z2
result = foo(x, y)
grads = torch.autograd.grad(result, [x, y])
self.assertEqual(grads[0], -x.sin())
self.assertEqual(grads[1], -y.sin())
def test_view_inplace_simple(self, device):
def foo(x):
x = x.clone()
x.view([]).sin_()
return x
x = torch.randn([], requires_grad=True, device=device)
result = grad(foo)(x)
self.assertEqual(result, x.cos())
def test_invalid_argnums(self, device):
x = torch.randn([])
y = torch.randn([])
with self.assertRaisesRegex(RuntimeError, "but only"):
grad(torch.mul, argnums=-3)(x, y)
with self.assertRaisesRegex(RuntimeError, "but only"):
grad(torch.mul, argnums=2)(x, y)
with self.assertRaisesRegex(RuntimeError, "int or Tuple"):
grad(torch.mul, argnums=[0])(x, y)
with self.assertRaisesRegex(RuntimeError, "must be int"):
grad(torch.mul, argnums=("0",))(x, y)
with self.assertRaisesRegex(RuntimeError, "must be unique"):
grad(torch.mul, argnums=(0, 0))(x, y)
with self.assertRaisesRegex(RuntimeError, "must be unique"):
grad(torch.mul, argnums=(0, -2))(x, y)
def test_argnums(self, device):
x = torch.randn([])
y = torch.randn([])
gx = grad(torch.mul, argnums=0)(x, y)
self.assertEqual(gx, y)
gy = grad(torch.mul, argnums=1)(x, y)
self.assertEqual(gy, x)
(gx,) = grad(torch.mul, argnums=(0,))(x, y)
self.assertEqual(gx, y)
gx, gy = grad(torch.mul, argnums=(0, 1))(x, y)
self.assertEqual(gx, y)
self.assertEqual(gy, x)
def test_out_of_order_argnums(self, device):
x = torch.randn([])
y = torch.randn([])
gy, gx = grad(torch.mul, argnums=(1, 0))(x, y)
self.assertEqual(gx, y)
self.assertEqual(gy, x)
def test_negative_argnums(self, device):
x = torch.randn([])
y = torch.randn([])
gx = grad(torch.mul, argnums=-2)(x, y)
self.assertEqual(gx, y)
gy = grad(torch.mul, argnums=-1)(x, y)
self.assertEqual(gy, x)
(gx,) = grad(torch.mul, argnums=(-2,))(x, y)
self.assertEqual(gx, y)
gx, gy = grad(torch.mul, argnums=(-2, -1))(x, y)
self.assertEqual(gx, y)
self.assertEqual(gy, x)
def test_grad_pytree_inputs(self, device):
x = torch.randn([], device=device)
def f(a, b):
x, y = a
return 1 * x + 2 * y + 3 * b["foo"]
args = ((x, x), {"foo": x})
gx, gy = grad(f)(*args)
self.assertEqual(gx, torch.tensor(1.0, device=device))
self.assertEqual(gy, torch.tensor(2.0, device=device))
((gx, gy),) = grad(f, argnums=(0,))(*args)
self.assertEqual(gx, torch.tensor(1.0, device=device))
self.assertEqual(gy, torch.tensor(2.0, device=device))
(gx, gy), gz = grad(f, argnums=(0, 1))(*args)
self.assertEqual(gx, torch.tensor(1.0, device=device))
self.assertEqual(gy, torch.tensor(2.0, device=device))
self.assertEqual(gz["foo"], torch.tensor(3.0, device=device))
def test_grad_aux_tensor(self, device):
x = torch.randn(3, device=device)
with self.assertRaisesRegex(
RuntimeError,
r"grad_and_value\(f\)\(\*args\): output of function f should be a tuple",
):
grad(lambda t: [t, t], has_aux=True)(x)
with self.assertRaisesRegex(
RuntimeError,
r"grad_and_value\(f\)\(\*args\): output of function f should be a tuple",
):
grad(lambda t: (t, t + 2, t + 3), has_aux=True)(x)
def f(t):
y = t.sin()
return y.sum(), t.cos()
out, aux = grad(f, has_aux=True)(x)
self.assertEqual(aux, x.cos())
self.assertEqual(out, x.cos())
def test_grad_aux_pytree(self, device):
def f(x):
y = x.sin()
return y.sum(), {"a": x.cos(), "b": [x.tan()]}
x = torch.randn(3, device=device)
out, aux = grad(f, has_aux=True)(x)
_, expected_aux = f(x)
self.assertEqual(aux, expected_aux)
self.assertEqual(out, x.cos())
for aux in [1, 1.0, "abc"]:
with self.assertRaisesRegex(
RuntimeError, r"Expected tensors, got unsupported type"
):
_ = grad(lambda x: (x.sum(), aux), has_aux=True)(x)
with self.assertRaisesRegex(
RuntimeError, r"Expected tensors, got unsupported type"
):
_ = grad(lambda x: (x.sum(), [x, aux]), has_aux=True)(x)
def test_zero_grad(self, device):
def f(x):
return (x["a"] ** 2.0).sum()
inps = {
"a": torch.randn(10, device=device) + 3,
"b": torch.randn(10, device=device),
}
grads = grad(f)(inps)
self.assertNotEqual(grads["a"].sum(), 0.0)
self.assertEqual(grads["b"].sum(), 0.0)
def test_unrelated_grad(self, device):
x = torch.tensor(1.0, device=device)
y = torch.tensor(2.0, device=device)
def unrelated(x):
return y
result = grad(unrelated)(x)
self.assertEqual(result, torch.zeros_like(x))
def test_unrelated_vjp(self, device):
x = torch.tensor(1.0, device=device)
y = torch.tensor(2.0, device=device)
v = torch.tensor(1.0, device=device)
def unrelated(x):
return y
out, vjp_fn = vjp(unrelated, x)
result = vjp_fn(v)
expected = (torch.zeros_like(x),)
self.assertEqual(result, expected)
def test_unrelated_vjp_multiple_inputs_outputs(self, device):
w = torch.tensor(3.0, device=device)
x = torch.tensor(4.0, device=device)
y = torch.tensor(2.0, device=device)
v = torch.tensor(1.0, device=device)
def unrelated(w, x):
return y, y, x
out, vjp_fn = vjp(unrelated, w, x)
result = vjp_fn((v, v, v))
expected = (torch.zeros_like(x), torch.ones_like(x))
self.assertEqual(result, expected)
# TODO: https://github.com/zou3519/functorch/issues/12
@onlyCPU
def test_unrelated_hessian(self, device):
N = 5
M = 3
W = torch.randn(N, M, device=device)
def f(x):
return W @ x
x = torch.randn(M)
result = jacrev(jacrev(f))(x)
expected = torch.zeros(N, M, M, device=device)
self.assertEqual(result, expected)
def test_vjp_pytree_input(self, device):
def f(x):
return x[0] * x[1][0]
x = torch.randn([], device=device)
v = torch.randn([], device=device)
out, vjp_fn = vjp(f, (x, (x, x)))
self.assertEqual(out, x * x)
result = vjp_fn(v)
self.assertEqual(result, ((x * v, (x * v, 0.0)),))
def test_vjp_pytree_output(self, device):
def f(x):
return x, (x, x)
x = torch.randn([], device=device)
v1 = torch.randn([], device=device)
v2 = torch.randn([], device=device)
v3 = torch.randn([], device=device)
_, vjp_fn = vjp(f, x)
(result,) = vjp_fn((v1, (v2, v3)))
self.assertEqual(result, v1 + v2 + v3)
def test_vjp_outputs_can_any_pytree(self, device):
x = torch.randn(2, 3, device=device)
t = torch.randn(2, 3, device=device)
for output in [None, ()]:
with self.assertRaisesRegex(
RuntimeError,
r"vjp\(f, \*primals\): Expected f to be a function that has non-empty output",
):
_, vjp_fn = vjp(lambda _: output, x)
vjp_fn(t)
for output in [1, True, 12.2, "abc"]:
with self.assertRaisesRegex(
RuntimeError,
r"vjp\(f, \*primals\): expected f\(\*primals\) to return only tensors",
):
_, vjp_fn = vjp(lambda _: output, x)
vjp_fn(t)
# Check list output
output, vjp_fn = vjp(lambda x: [x, x.sum()], x)
(vjp_out,) = vjp_fn([t, t.sum()])
assert isinstance(output, list) and len(output) == 2
assert isinstance(vjp_out, torch.Tensor)
# Check dict output
output, vjp_fn = vjp(lambda x: {"x": x, "xsum": x.sum()}, x)
(vjp_out,) = vjp_fn({"x": t, "xsum": t.sum()})
assert isinstance(output, dict) and len(output) == 2 and "xsum" in output
assert isinstance(vjp_out, torch.Tensor)
def composite_output(x):
out = x.sum()
return [
(out, {"a": x, "out": [x, out]}),
]
output, vjp_fn = vjp(composite_output, x)
(vjp_out,) = vjp_fn(
[
(t.sum(), {"a": t, "out": [t, t.sum()]}),
]
)
assert isinstance(output, list)
assert isinstance(output[0], tuple) and isinstance(output[0][1], dict)
assert isinstance(vjp_out, torch.Tensor)
def test_vjp_pytree_error(self, device):
def f(x):
return x, (x, x)
x = torch.randn([], device=device)
v1 = torch.randn([], device=device)
v2 = torch.randn([], device=device)
v3 = torch.randn([], device=device)
_, vjp_fn = vjp(f, x)
with self.assertRaisesRegex(RuntimeError, "Expected pytree structure"):
(result,) = vjp_fn(((v1, (v2, v3)),))
def test_vjp_aux_tensor(self, device):
x = torch.randn(3, device=device)
with self.assertRaisesRegex(
RuntimeError, r"vjp\(f, \*primals\): output of function f should be a tuple"
):
vjp(lambda t: [t, t], x, has_aux=True)
with self.assertRaisesRegex(
RuntimeError, r"vjp\(f, \*primals\): output of function f should be a tuple"
):
vjp(lambda t: (t, t + 2, t + 3), x, has_aux=True)
def f(t):
y = t.sin()
return y, t.cos()
out, vjp_fn, aux = vjp(f, x, has_aux=True)
self.assertEqual(aux, x.cos())
self.assertEqual(out, x.sin())
v = torch.randn(3, device=device)
(grad_x,) = vjp_fn(v)
self.assertEqual(grad_x, v * x.cos())
def test_vjp_aux_pytree(self, device):
def f(x):
y = x.sin()
return y, {"a": x.cos(), "b": [x.tan()]}
x = torch.randn(3, device=device)
out, vjp_fn, aux = vjp(f, x, has_aux=True)
expected_out, expected_aux = f(x)
self.assertEqual(out, expected_out)
self.assertEqual(aux, expected_aux)
v = torch.randn(3, device=device)
(grad_x,) = vjp_fn(v)
self.assertEqual(grad_x, v * x.cos())
for aux in [1, 1.0, "abc"]:
with self.assertRaisesRegex(
RuntimeError, r"Expected tensors, got unsupported type"
):
_ = vjp(lambda x: (x, aux), x, has_aux=True)
with self.assertRaisesRegex(
RuntimeError, r"Expected tensors, got unsupported type"
):
_ = vjp(lambda x: (x, [x, aux]), x, has_aux=True)
def test_functional_init(self, device):
class MLPClassifier(nn.Module):
def __init__(self, hidden_dim=32, n_classes=2):
super().__init__()
self.hidden_dim = hidden_dim
self.n_classes = n_classes
self.fc1 = nn.Linear(2, self.hidden_dim)
self.fc2 = nn.Linear(self.hidden_dim, self.n_classes)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.log_softmax(x, -1)
return x
B = 10
weights, fn, _ = functional_init(MLPClassifier, (B,), device=device)(32, 2)
inputs = torch.randn(B, 7, 2, device=device)
vmap(fn)(weights, (inputs,))
def test_functional_init_with_buffers(self, device):
class MLPClassifier(nn.Module):
def __init__(self, hidden_dim=32, n_classes=2):
super().__init__()
self.hidden_dim = hidden_dim
self.n_classes = n_classes
self.fc1 = nn.Linear(2, self.hidden_dim)
self.bn = nn.BatchNorm1d(self.hidden_dim, affine=True)
self.fc2 = nn.Linear(self.hidden_dim, self.n_classes)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.bn(x)
x = self.fc2(x)
x = F.log_softmax(x, -1)
return x
B = 10
weights, buffers, fn, _, _ = functional_init_with_buffers(
MLPClassifier, [B], device=device
)(32, 2)
inputs = torch.randn(B, 7, 2, device=device)
vmap(fn)(weights, buffers, (inputs,))
def test_advanced_indexing(self, device):
def f(value):
log_prob = torch.ones((), device=device)
val = torch.zeros(()) > 0
log_prob[val] = 0
return value
result = grad(f)(torch.randn((), device=device))
self.assertEqual(result, torch.ones_like(result))
def f2(value):
value = value.clone()
value[value > 0] = 0
return value.sum()
x = torch.randn(100, device=device)
result = grad(f2)(x)
self.assertEqual(result, (x <= 0).type_as(x))
def test_tensor_ctor_inside_grad(self, device):
def foo(x):
return x * torch.tensor(2.0, device=device)
x = torch.tensor(3.14, device=device)
functorch.grad(foo)(x)
@parametrize(
"op_list_data",
[
subtest(
(
[
vmap,
],
[(4, 2), (64, 3, 32, 32)],
),
name="vmap",
),
subtest(([vmap, vmap], [(4, 3, 2), (64, 3, 32, 32)]), name="vmap_vmap"),
subtest(
(
[
grad,
],
[(0,), [], (4, 2), (64, 3, 32, 32)],
),
name="grad",
),
subtest(
(
[grad, grad],
[
[],
],
),
name="grad_grad",
),
subtest(([vmap, grad], [(4, 2)]), name="vmap_grad"),
],
)
def test_tensor_print(self, device, op_list_data):
op_list, shapes = op_list_data
for dt in get_all_fp_dtypes():
data = [torch.randn(s, dtype=dt, device=device) for s in shapes]
for x in data:
buf = None
def foo(t):
nonlocal buf
buf = repr(t)
return t.mean()
fn = foo
bdim = 0
for op in reversed(op_list):
if op == vmap:
fn = op(fn, in_dims=bdim)
bdim += 1
else:
fn = op(fn)
expected = f"{repr(x)}"
level = 0
for op in op_list:
level += 1
if op == grad:
expected = f"GradTrackingTensor(lvl={level}, value={expected})"
elif op == vmap:
bdim -= 1
expected = (
f"BatchedTensor(lvl={level}, bdim={bdim}, value={expected})"
)
fn(x)
buf = buf.replace("\n", "").replace(" ", "")
expected = expected.replace("\n", "").replace(" ", "")
self.assertEqual(expected, buf)
def test_print_captured_tensor_inside_transform(self, device):
x = torch.tensor([1.0, 2.0, 3.0], device=device)
out = None
def f(y):
nonlocal out
out = repr(x)
return y
vjp(f, torch.randn(4, device=device))
self.assertEqual(out, repr(x))
def test_no_grad_outside(self, device):
x = torch.randn([], device=device, requires_grad=True)
with torch.no_grad():
y = grad(torch.sin)(x)
self.assertEqual(y, x.cos())
self.assertFalse(y.requires_grad)
def test_no_grad_inside(self, device):
def f(x):
with torch.no_grad():
shift = x**2
return x**2 - shift
x = torch.randn([], device=device)
y = grad(f)(x)
self.assertEqual(y, 2 * x)
y = grad(grad(f))(x)
self.assertEqual(y, 2)
x = torch.randn([], device=device, requires_grad=True)
y = grad(f)(x)
(z,) = torch.autograd.grad(y, x)
self.assertEqual(z, 2)
def test_no_grad_mixed(self, device):
def f(x):
with torch.no_grad():
shift = x**2
return x**2 - shift
x = torch.randn([], device=device, requires_grad=True)
with torch.no_grad():
y = grad(f)(x)
self.assertEqual(y, 2 * x)
self.assertFalse(y.requires_grad)
def test_no_grad_nested_simple(self, device):
def h(x):
with torch.no_grad():
shift = grad(lambda x: 0.25 * x**4)(x)
return x**3 - shift
x = torch.tensor(1.5, device=device, requires_grad=True)
y = grad(h)(x)
self.assertEqual(y, 3 * x**2)
(z,) = torch.autograd.grad(y, x)
self.assertEqual(z, 6 * x)
def test_no_grad_nested_complicated(self, device):
def f(x):
with torch.no_grad():
shift = x**3
return x**3 - shift
def g(x):
r1 = grad(f)(x)
with torch.no_grad():
shift = grad(f)(x)
return r1 - shift
x = torch.randn([], requires_grad=True, device=device)
y = grad(g)(x)
# The only differential part of g is x ** 3
self.assertEqual(y, 6 * x)
(z,) = torch.autograd.grad(y, x)
self.assertEqual(z, 6)
def test_no_grad_value(self, device):
def h(x):
with torch.no_grad():
gvalue, value = grad_and_value(lambda x: x**3)(x)
return x**3 - value
x = torch.tensor(1.6, device=device, requires_grad=True)
y = grad(h)(x)
self.assertEqual(y, 3 * x**2)
(z,) = torch.autograd.grad(y, x)
self.assertEqual(z, 6 * x)
def test_no_grad_outside_vjp(self, device):
def h(x):
return x**2
x = torch.tensor(2.0, requires_grad=True, device=device)
with torch.no_grad():
out, vjp_fn = vjp(h, x)
(y,) = vjp_fn(torch.tensor(1.0, device=device))
self.assertEqual(y, 2 * x)
self.assertFalse(y.requires_grad)
self.assertFalse(out.requires_grad)
def test_no_grad_outside_vjp_fn(self, device):
def h(x):
return x**2
x = torch.tensor(3.14, requires_grad=True, device=device)
out, vjp_fn = vjp(h, x)
with torch.no_grad():
(y,) = vjp_fn(torch.tensor(1.0, device=device))
self.assertEqual(y, 2 * x)
self.assertFalse(y.requires_grad)
self.assertTrue(out.requires_grad)
(z,) = torch.autograd.grad(out, x)
self.assertEqual(z, 2 * x)
def test_no_grad_outside_vjp_only(self, device):
def h(x):
return x**2
x = torch.tensor(3.14, requires_grad=True, device=device)
with torch.no_grad():
out, vjp_fn = vjp(h, x)
(y,) = vjp_fn(torch.tensor(1.0, device=device))
self.assertEqual(y, 2 * x)
self.assertFalse(out.requires_grad)
# This one is a little weird...
self.assertTrue(y.requires_grad)
(z,) = torch.autograd.grad(y, x)
self.assertEqual(z, 2)
@markDynamoStrictTest
class TestAutogradFunction(TestCase):
def test_set_materialize_grads(self, device):
class A(torch.autograd.Function):
@staticmethod
def forward(x, y):
return x, y
@staticmethod
def setup_context(ctx, inputs, output):
ctx.set_materialize_grads(False)
@staticmethod
def backward(ctx, gx, gy):
self.assertIsNotNone(gx)
self.assertIsNone(gy)
return gx, gy
def f(y, x):
x, y = A.apply(x, y)
return x**2
x = torch.tensor(2.0, device=device)
y = torch.tensor(3.0, device=device)
# grad differentiates w.r.t. arg 0 by default
grad(f)(y, x)
grad(grad(f))(y, x)
@parametrize("inner_requires_grad", [True, False])
@parametrize("save_for", ["jvp", "vjp"])
@parametrize("save_tensors", ["input", "output", "neither"])
@parametrize("mark_dirty", [True, False])
def test_function_returns_input(
self, device, inner_requires_grad, save_for, save_tensors, mark_dirty
):
class A(torch.autograd.Function):
@staticmethod
def forward(x):
return x
@staticmethod
def setup_context(ctx, inputs, output):
if save_for == "jvp":
save_fn = ctx.save_for_forward
else:
save_fn = ctx.save_for_backward
if mark_dirty:
ctx.mark_dirty(inputs[0])
if save_tensors == "input":
save_fn(inputs[0])
elif save_tensors == "output":
save_fn(output)
elif save_tensors == "neither":
pass
@staticmethod
def backward(ctx, grad_output):
return grad_output
@staticmethod
def jvp(ctx, x_t):
# NB: the logic to check ctx.save_for_forward happens
# before we reach this!
if mark_dirty:
ret = x_t.add_(0)
else:
ret = x_t.view_as(x_t)
return ret
def fn(x):
return A.apply(x.clone())
err_msg = "A input that has been returned as-is"
a = torch.tensor(2.0, device=device, requires_grad=inner_requires_grad)
a_t = torch.tensor(2.0, device=device, requires_grad=inner_requires_grad)
if save_tensors in ("input", "output") and not mark_dirty:
with self.assertRaisesRegex(RuntimeError, err_msg):
grad(fn)(a)
with self.assertRaisesRegex(RuntimeError, err_msg):
jvp(fn, (a,), (a_t,))
else:
grad(fn)(a)
jvp(fn, (a,), (a_t,))
a = torch.tensor(2.0, device=device, requires_grad=inner_requires_grad).clone()
a_t = torch.tensor(
2.0, device=device, requires_grad=inner_requires_grad
).clone()
if save_tensors in ("input", "output") and not mark_dirty:
with self.assertRaisesRegex(RuntimeError, err_msg):
A.apply(a)
with self.assertRaisesRegex(RuntimeError, err_msg):
with fwAD.dual_level():
A.apply(fwAD.make_dual(a, a_t))
else:
b = A.apply(a)
if mark_dirty:
self.assertTrue(a is b)
if not (
mark_dirty and save_for == "vjp" and save_tensors in ("input", "output")
):
# TODO(soulitzer): https://github.com/pytorch/pytorch/issues/97827
with fwAD.dual_level():
a_dual = fwAD.make_dual(a, a_t)
b_dual = A.apply(a_dual)
if mark_dirty:
self.assertTrue(a_dual is b_dual)
def test_needs_input_grads(self, device):
class A(torch.autograd.Function):
@staticmethod
def forward(x, y):
return x * y
@staticmethod
def setup_context(ctx, inputs, output):
return
@staticmethod
def backward(ctx, grad_output):
self.assertTrue(ctx.needs_input_grad[0])
self.assertFalse(ctx.needs_input_grad[1])
return None, None
x = torch.tensor(2.0, device=device)
y = torch.tensor(3.0, device=device)
# grad differentiates w.r.t. arg 0 by default
grad(A.apply)(x, y)
grad(grad(A.apply))(x, y)
def _get_NumpyCubeNotComposable(self):
class NumpyCubeNotComposable(torch.autograd.Function):
@staticmethod
def forward(input):
input_np = input.cpu().numpy()
return torch.tensor(input_np**3, device=input.device), input_np
@staticmethod
def setup_context(ctx, inputs, output):
ctx.input_np = output[1]
ctx.device = inputs[0].device
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_output, grad_saved):
result_np = 3 * (ctx.input_np**2)
return torch.tensor(result_np, device=ctx.device)
return NumpyCubeNotComposable
def test_once_differentiable_autograd_vjp(self, device):
NumpyCubeNotComposable = self._get_NumpyCubeNotComposable()
def f(x):
y, _ = NumpyCubeNotComposable.apply(x)
return y
# regular autograd x vjp
x = torch.randn([], requires_grad=True, device=device)
grad_y = torch.randn_like(x, requires_grad=True)
_, vjp_fn = vjp(f, x)
(gx,) = vjp_fn(grad_y)
with self.assertRaisesRegex(RuntimeError, "marked with @once_differentiable"):
gx.backward()
# TODO: support torch.autograd.function.once_differentiable
# (or, if impossible, figure out how to raise a nice error)
# https://github.com/pytorch/pytorch/issues/90224
@unittest.expectedFailure
def test_once_differentiable_grad_vjp(self, device):
NumpyCubeNotComposable = self._get_NumpyCubeNotComposable()
# grad x vjp
x = torch.randn([], device=device)
grad_y = torch.randn_like(x)
def h(x, grad_y):
_, vjp_fn = vjp(f, x) # noqa: F821
(gx,) = vjp_fn(grad_y)
return gx
grad(h, argnums=(0, 1))(x, grad_y)
def test_grad_fn_name(self, device):
names = []
class FooBar(torch.autograd.Function):
@staticmethod
def forward(x):
return x.clone()
@staticmethod
def setup_context(ctx, inputs, output):
return
@staticmethod
def backward(ctx, grad_output):
return grad_output
def f(x):
y = FooBar.apply(x)
names.append(type(y.grad_fn).__name__)
return y
x = torch.tensor(1.0)
grad(f)(x)
self.assertEqual(names, ["FooBarGeneratedBackward"])
@markDynamoStrictTest
class TestAutogradFunctionVmapAPI(TestCase):
def test_no_vmap_staticmethod_and_no_generate_vmap_rule(self, device):
class NumpyCube(torch.autograd.Function):
@staticmethod
def forward(input):
input_np = to_numpy(input) # noqa: F821
dinput = torch.tensor(3 * input_np**2, device=input.device)
return torch.tensor(input_np**3, device=input.device), dinput
@staticmethod
def setup_context(ctx, inputs, output):
ctx.save_for_backward(inputs, output[1])
@staticmethod
def backward(ctx, grad_output, grad_saved):
raise RuntimeError("foobar")
x = torch.randn(3, device=device)
with self.assertRaisesRegex(RuntimeError, "does not have vmap support"):
vmap(NumpyCube.apply)(x)
def test_has_vmap_staticmethod_and_has_generate_vmap_rule(self, device):
class NumpyCube(torch.autograd.Function):
generate_vmap_rule = True
@staticmethod
def forward(input):
input_np = to_numpy(input) # noqa: F821
dinput = torch.tensor(3 * input_np**2, device=input.device)
return torch.tensor(input_np**3, device=input.device), dinput
@staticmethod
def setup_context(ctx, outputs, input):
ctx.save_for_backward(input, outputs[1])
@staticmethod
def backward(ctx, grad_output, grad_saved):
raise RuntimeError("foobar")
@staticmethod
def vmap(infos, in_dims, x):
raise RuntimeError("foobar")
x = torch.randn(3, device=device)
with self.assertRaisesRegex(RuntimeError, "generate_vmap_rule=True and"):
vmap(NumpyCube.apply)(x)
def test_info_object(self, device):
batch_size = 10
class Id(torch.autograd.Function):
@staticmethod
def forward(input):
pass
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def backward(ctx, grad_output, grad_saved):
pass
@staticmethod
def vmap(info, in_dims, input):
self.assertEqual(info.batch_size, batch_size)
self.assertEqual(info.randomness, randomness)
return input, in_dims[0]
x = torch.randn(batch_size, 3, device=device)
for randomness in ("error", "different", "same"):
vmap(Id.apply, randomness=randomness)(x)
def test_in_dims_single_input(self, device):
class Id(torch.autograd.Function):
@staticmethod
def forward(input):
pass
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def backward(ctx, grad_output, grad_saved):
pass
@staticmethod
def vmap(info, in_dims, input):
self.assertEqual(in_dims, (1,))
return input, in_dims[0]
B = 10
x = torch.randn(3, B, device=device)
vmap(Id.apply, in_dims=1)(x)
vmap(Id.apply, in_dims=(1,))(x)
def test_in_dims_multiple_inputs(self, device):
class Id(torch.autograd.Function):
@staticmethod
def forward(x, y):
pass
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def backward(ctx, grad_output, grad_saved):
pass
@staticmethod
def vmap(info, in_dims, x, y):
self.assertEqual(in_dims, (0, [0, 0]))
self.assertTrue(isinstance(in_dims, tuple))
self.assertTrue(isinstance(in_dims[1], list))
return (x, y), in_dims
x = torch.randn(2, device=device)
vmap(Id.apply)(x, [x, x])
def test_skips_empty_layer(self, device):
class Id(torch.autograd.Function):
@staticmethod
def forward(input):
return input
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def backward(ctx, grad_output, grad_saved):
pass
@staticmethod
def vmap(info, in_dims, input):
raise RuntimeError("expected to not be called")
def f(x):
y = torch.tensor(1.0)
y = Id.apply(y)
return x * 1
x = torch.randn(2, 3)
vmap(f)(x)
def test_none_returns(self, device):
class Zeros(torch.autograd.Function):
@staticmethod
def forward(input):
return torch.zeros(input.shape, device=input.device)
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def vmap(info, in_dims, input):
assert in_dims == (0,)
return torch.zeros(input.shape[1:], device=input.device), None
B = 2
x = torch.randn(B, 3)
y = vmap(Zeros.apply)(x)
self.assertEqual(y, torch.zeros_like(x))
class TwoZeros(torch.autograd.Function):
@staticmethod
def forward(input):
r = torch.zeros(input.shape, device=input.device)
return r, r
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def vmap(info, in_dims, input):
assert in_dims == (0,)
r = torch.zeros(input.shape[1:], device=input.device)
return (r, r), None
B = 2
x = torch.randn(B, 3)
result = vmap(TwoZeros.apply)(x)
self.assertTrue(isinstance(result, tuple))
y, z = result
self.assertEqual(y, torch.zeros_like(x))
self.assertEqual(z, torch.zeros_like(x))
def test_should_have_two_returns(self, device):
class Zeros(torch.autograd.Function):
@staticmethod
def forward(input):
r = torch.zeros(input.shape, device=input.device)
return r
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def vmap(info, in_dims, input):
r = torch.zeros(input.shape[1:], device=input.device)
return r
B = 2
x = torch.randn(B, 3)
with self.assertRaisesRegex(RuntimeError, "to have two returns"):
result = vmap(Zeros.apply)(x)
class TwoZeros(torch.autograd.Function):
@staticmethod
def forward(input):
r = torch.zeros(input.shape, device=input.device)
return r, r
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def vmap(info, in_dims, input):
r = torch.zeros(input.shape[1:], device=input.device)
return r, r, 0, 0
B = 2
x = torch.randn(B, 3)
with self.assertRaisesRegex(RuntimeError, "to have two returns"):
result = vmap(Zeros.apply)(x)
def test_incompatible_out_dims_error_msg(self, device):
class Zeros(torch.autograd.Function):
@staticmethod
def forward(input):
r = torch.zeros(input.shape, device=input.device)
return r
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def vmap(info, in_dims, input):
r = torch.zeros(input.shape[1:], device=input.device)
return r, (None,)
B = 2
x = torch.randn(B, 3)
with self.assertRaisesRegex(RuntimeError, "returned an incompatible"):
result = vmap(Zeros.apply)(x)
class Zeros(torch.autograd.Function):
@staticmethod
def forward(input):
r = torch.zeros(input.shape, device=input.device)
return [r]
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def vmap(info, in_dims, input):
r = torch.zeros(input.shape[1:], device=input.device)
return [r], (None,)
B = 2
x = torch.randn(B, 3)
with self.assertRaisesRegex(RuntimeError, "returned an incompatible"):
result = vmap(Zeros.apply)(x)
def test_kwarg_only_tensors(self, device):
with self.assertRaisesRegex(NotImplementedError, "kwarg-only Tensor args"):
class MyClass(torch.autograd.Function):
@staticmethod
def forward(x, *, y):
return x + y
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def vmap(info, in_dims, x, *, y):
assert in_dims == (0,)
return x + y, 0
x = torch.randn(3)
y = torch.randn(3)
vmap(MyClass.apply)(x, y=y)
@markDynamoStrictTest
class TestVmapOfGrad(TestCase):
def test_per_sample_grads_inplace_view(self, device):
def compute_loss(weight, x, t):
x = x.mm(weight)
y = x.squeeze_(0)
return (y - t).sum()
weight = torch.randn(16, 2, device=device)
x = torch.randn(64, 1, 16, device=device)
t = torch.randn(64, 2, device=device)
result = vmap(partial(grad(compute_loss), weight))(x, t)
expected = [grad(compute_loss)(weight, x[i], t[i]) for i in range(64)]
expected = torch.stack(expected)
# TODO: Check if the rtol is a problem
self.assertEqual(result, expected, atol=0, rtol=5e-4)
def test_new_zeros_materializes_tensor(self, device):
N = 3
C = 5
def foo(y, x):
result = x.new_zeros((C,))
result.copy_(y)
return result.sum()
x = torch.randn(N, device=device)
y = torch.randn(N, C, device=device)
result = vmap(grad(foo))(y, x)
self.assertEqual(result, torch.ones_like(y))
def test_new_empty_materializes_tensor(self, device):
N = 3
C = 5
def foo(y, x):
result = x.new_empty((C,))
result.copy_(y)
return result.sum()
x = torch.randn(N, device=device)
y = torch.randn(N, C, device=device)
result = vmap(grad(foo))(y, x)
self.assertEqual(result, torch.ones_like(y))
def test_per_sample_grads_simple(self, device):
def compute_loss(weight, x, t):
y = x @ weight
return ((y - t) ** 2).sum()
weight = torch.randn(16, 2, device=device)
x = torch.randn(64, 16, device=device)
t = torch.randn(64, 2, device=device)
result = vmap(partial(grad(compute_loss), weight))(x, t)
expected = [grad(compute_loss)(weight, x[i], t[i]) for i in range(64)]
expected = torch.stack(expected)
# TODO: Check if the rtol is a problem
self.assertEqual(result, expected, atol=0, rtol=5e-4)
def _compare_expected_and_result(self, expected, result, mechanism):
if mechanism == "make_functional":
expected = zip(*expected)
expected = tuple(torch.stack(shards) for shards in expected)
for r, e in zip(result, expected):
self.assertEqual(r, e, atol=0, rtol=1.5e-3)
else:
assert mechanism == "functional_call"
expected = {
k: tuple(d[k] for d in expected) for k, v in expected[0].items()
}
expected = {k: torch.stack(shards) for k, shards in expected.items()}
for key in result:
self.assertEqual(result[key], expected[key], atol=0, rtol=1.5e-3)
@tf32_on_and_off(0.005)
@parametrize("mechanism", ["make_functional", "functional_call"])
def test_per_sample_grads_embeddingnet(self, device, mechanism):
class SampleNet(nn.Module):
def __init__(self, vocab_size: int):
super().__init__()
self.emb = nn.Embedding(vocab_size, 16)
self.fc1 = nn.Linear(16, 16)
self.fc2 = nn.Linear(16, 2)
def forward(self, x):
x = self.emb(x)
x = torch.transpose(x, -1, -2)
x = torch.mean(x, -1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return x
def name(self):
return "SampleNet"
# Create our inputs...
vocab_size = 1000
batch_shape = [64]
words_per_sentence = 5
data = torch.randint(
0, vocab_size, (*batch_shape, words_per_sentence), device=device
)
targets = torch.randint(0, 1, (*batch_shape,), device=device)
# Construct our module
net = SampleNet(vocab_size).to(device=device)
criterion = nn.CrossEntropyLoss()
net_func, weights = _get_weights_and_functional_call(net, mechanism)
def compute_loss(weights, data, target):
output = net_func(weights, data)
result = criterion(output, target)
return result
expected = [grad(compute_loss)(weights, data[i], targets[i]) for i in range(64)]
result = vmap(partial(grad(compute_loss), weights))(data, targets)
self._compare_expected_and_result(expected, result, mechanism)
def test_log_softmax(self, device):
x = torch.randn(3, 5, device=device)
v = torch.randn(5, device=device)
def foo(x, v):
_, vjp_fn = vjp(partial(torch.log_softmax, dim=-1), x)
return vjp_fn(v)[0]
result = vmap(foo, (0, None))(x, v)
v = v.expand_as(x)
x.requires_grad_()
output = torch.log_softmax(x, dim=-1)
output.backward(v)
self.assertEqual(result, x.grad)
jacrev_and_jacfwd = parametrize(
"jacapi", [subtest(jacrev, name="jacrev"), subtest(jacfwd, name="jacfwd")]
)
FIXME_jacrev_only = parametrize("jacapi", [subtest(jacrev, name="jacrev")])
@markDynamoStrictTest
class TestJac(VmapTearDownMixin, TestCase):
@jacrev_and_jacfwd
def test_simple(self, device, jacapi):
x = torch.randn(3, device=device)
y = jacapi(torch.sin)(x)
expected = torch.diagflat(x.cos())
assert torch.allclose(y, expected)
@jacrev_and_jacfwd
def test_simple_not_flat(self, device, jacapi):
x = torch.randn(2, 3, device=device)
y = jacapi(torch.sin)(x)
expected = torch.diagflat(x.view(-1).cos())
expected = expected.view(2, 3, 2, 3)
assert torch.allclose(y, expected)
@jacrev_and_jacfwd
def test_take(self, device, jacapi):
x = torch.rand(5)
def func(x):
y = torch.ones(3, dtype=torch.long)
z = torch.take(x, y)
return z
self.assertEqual(jacrev(func)(x), torch.autograd.functional.jacobian(func, x))
@jacrev_and_jacfwd
def test_diff_numel(self, device, jacapi):
x = torch.randn(2, 4, device=device)
# Tensor[2, 4] -> Tensor[3, 1]
def f(x):
return x[0, 1:].unsqueeze(-1)
y = jacapi(f)(x)
self.assertEqual(y.shape, (3, 1, 2, 4))
expected = x.new_zeros(3, 1, 2, 4)
expected[0, 0, 0, 1] = 1
expected[1, 0, 0, 2] = 1
expected[2, 0, 0, 3] = 1
self.assertEqual(y, expected)
@jacrev_and_jacfwd
def test_vmap_on_jac_simple(self, device, jacapi):
x = torch.randn(2, 3, device=device)
y = vmap(jacapi(torch.sin))(x)
expected = torch.stack([torch.diagflat(x[i].cos()) for i in range(2)])
assert torch.allclose(y, expected)
@jacrev_and_jacfwd
def test_nested_jac_simple(self, device, jacapi):
def foo(x):
return x.sin().sum()
x = torch.randn(3, device=device)
y = jacapi(jacapi(foo))(x)
expected = torch.diagflat(-x.sin())
assert torch.allclose(y, expected)
@jacrev_and_jacfwd
def test_multiple_args(self, device, jacapi):
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
z = jacapi(torch.multiply, argnums=1)(x, y)
expected = torch.diagflat(x)
assert torch.allclose(z, expected)
@jacrev_and_jacfwd
def test_multiple_outputs_multiple_argnums(self, device, jacapi):
def f(x, y):
return 2 * x + 3 * y, 4 * x + 5 * y
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
z = jacapi(f, argnums=(0, 1))(x, y)
expected_out0_x = torch.diagflat(torch.full_like(x, 2))
expected_out0_y = torch.diagflat(torch.full_like(y, 3))
expected_out1_x = torch.diagflat(torch.full_like(x, 4))
expected_out1_y = torch.diagflat(torch.full_like(y, 5))
self.assertEqual(len(z), 2)
self.assertTrue(isinstance(z, tuple))
self.assertEqual(len(z[0]), 2)
self.assertTrue(isinstance(z[0], tuple))
self.assertEqual(z[0][0], expected_out0_x)
self.assertEqual(z[0][1], expected_out0_y)
self.assertEqual(z[1][0], expected_out1_x)
self.assertEqual(z[1][1], expected_out1_y)
@jacrev_and_jacfwd
def test_multiple_outputs_single_argnums(self, device, jacapi):
def f(x, y):
return 2 * x + 3 * y, 4 * x + 5 * y
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
expected_out0_x = torch.diagflat(torch.full_like(x, 2))
expected_out1_x = torch.diagflat(torch.full_like(x, 4))
z = jacapi(f, argnums=0)(x, y)
self.assertEqual(len(z), 2)
self.assertTrue(isinstance(z, tuple))
self.assertEqual(z, (expected_out0_x, expected_out1_x))
z = jacapi(f, argnums=(0,))(x, y)
self.assertEqual(len(z), 2)
self.assertTrue(isinstance(z, tuple))
self.assertTrue(isinstance(z[0], tuple))
self.assertEqual(z, ((expected_out0_x,), (expected_out1_x,)))
@jacrev_and_jacfwd
def test_multiple_outputs_pytree(self, device, jacapi):
def f(x, y):
return {"left": 2 * x + 3 * y, "right": 4 * x + 5 * y}
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
z = jacapi(f, argnums=(0, 1))(x, y)
expected_left_x = torch.diagflat(torch.full_like(x, 2))
expected_left_y = torch.diagflat(torch.full_like(y, 3))
expected_right_x = torch.diagflat(torch.full_like(x, 4))
expected_right_y = torch.diagflat(torch.full_like(y, 5))
expected = {
"left": (expected_left_x, expected_left_y),
"right": (expected_right_x, expected_right_y),
}
self.assertTrue(isinstance(z, dict))
self.assertTrue(isinstance(z["left"], tuple))
self.assertTrue(isinstance(z["right"], tuple))
self.assertEqual(z, expected)
@jacrev_and_jacfwd
def test_multiple_inputs_pytree(self, device, jacapi):
def f(a, b, c):
a0, a1 = a
return a0 + a1 * 2 + b * 3 + c * 4
x = torch.randn([], device=device)
args = ((x, x), x, x)
result = jacapi(f, argnums=(0, 1, 2))(*args)
expected = (
(torch.tensor(1.0, device=device), torch.tensor(2.0, device=device)),
torch.tensor(3.0, device=device),
torch.tensor(4.0, device=device),
)
self.assertEqual(result, expected)
result = jacapi(f, argnums=(0,))(*args)
expected = (
(torch.tensor(1.0, device=device), torch.tensor(2.0, device=device)),
)
self.assertEqual(result, expected)
result = jacapi(f)(*args)
expected = (torch.tensor(1.0, device=device), torch.tensor(2.0, device=device))
self.assertEqual(result, expected)
@jacrev_and_jacfwd
def test_dimensionality(self, device, jacapi):
def f(x):
return x
x = torch.randn([], device=device)
result = jacapi(f)(x)
self.assertEqual(result.dim(), 0)
self.assertEqual(result, torch.ones_like(x))
x = torch.randn([1], device=device)
result = jacapi(f)(x)
self.assertEqual(result.dim(), 2)
self.assertEqual(result, x.new_ones(1, 1))
@jacrev_and_jacfwd
def test_aux_tensor(self, device, jacapi):
def f(x):
y = x.clone()
return y, y.cos()
x = torch.randn(3, device=device)
result, aux = jacapi(f, has_aux=True)(x)
self.assertEqual(result, torch.eye(3, 3, device=device))
self.assertEqual(aux, x.cos())
@jacrev_and_jacfwd
def test_aux_pytree(self, device, jacapi):
def f(x):
y = x.clone()
return y, {"a": y.cos(), "b": [y.tan()]}
x = torch.randn(3, device=device)
result, aux = jacapi(f, has_aux=True)(x)
self.assertEqual(result, torch.eye(3, 3, device=device))
_, expected_aux = f(x)
self.assertEqual(aux, expected_aux)
for aux in [1, 1.0, "abc"]:
with self.assertRaisesRegex(
RuntimeError, r"Expected tensors, got unsupported type"
):
_ = jacapi(lambda x: (x, aux), has_aux=True)(x)
with self.assertRaisesRegex(
RuntimeError, r"Expected tensors, got unsupported type"
):
_ = jacapi(lambda x: (x, [x, aux]), has_aux=True)(x)
@jacrev_and_jacfwd
def test_outputs_can_any_pytree(self, device, jacapi):
x = torch.randn(2, 3, device=device)
for output in [None, ()]:
with self.assertRaisesRegex(
RuntimeError,
r"(vjp|jvp).+: Expected f to be a function that has non-empty output",
):
jacapi(lambda _: output)(x)
for output in [1, True, 12.2, "abc"]:
with self.assertRaisesRegex(
RuntimeError,
r"(vjp|jvp).+: expected f\(\*primals\) to return only tensors",
):
jacapi(lambda _: output)(x)
# Check list output
out = jacapi(lambda x: [x, x.sum()])(x)
assert isinstance(out, list) and len(out) == 2
# Check dict output
out = jacapi(lambda x: {"x": x, "xsum": x.sum()})(x)
assert isinstance(out, dict) and len(out) == 2 and "xsum" in out
def composite_output(x):
out = x.sum()
return [
(out, {"a": x, "out": [x, out]}),
]
out = jacapi(composite_output)(x)
assert isinstance(out, list)
assert isinstance(out[0], tuple) and isinstance(out[0][1], dict)
@jacrev_and_jacfwd
def test_multiple_inputs_outputs_pytree(self, device, jacapi):
def f(a, b, c):
a0, a1 = a
return a0 + a1 * 2, {"foo": b * 3 + c * 4}
x = torch.randn([], device=device)
zero = torch.zeros([], device=device)
args = ((x, x), x, x)
result = jacapi(f)(*args)
expected = (
(torch.tensor(1.0, device=device), torch.tensor(2.0, device=device)),
{"foo": (zero, zero)},
)
self.assertEqual(result, expected)
result = jacapi(f, argnums=(0,))(*args)
expected = (
((torch.tensor(1.0, device=device), torch.tensor(2.0, device=device)),),
{"foo": ((zero, zero),)},
)
self.assertEqual(result, expected)
result = jacapi(f, argnums=(0, 1))(*args)
expected = (
(
(torch.tensor(1.0, device=device), torch.tensor(2.0, device=device)),
zero,
),
{"foo": ((zero, zero), torch.tensor(3.0, device=device))},
)
self.assertEqual(result, expected)
@jacrev_and_jacfwd
def test_multiple_inputs_outputs_pytree_multidim(self, device, jacapi):
def f(dct):
a = dct["a"]
b = dct["b"]
return {"c": a.sin(), "d": b.cos()}
x = torch.randn(3, device=device)
args = ({"a": x, "b": x},)
result = jacapi(f)(*args)
expected = {
"c": {"a": x.cos().diagflat(), "b": x.new_zeros(3, 3)},
"d": {"a": x.new_zeros(3, 3), "b": -x.sin().diagflat()},
}
self.assertEqual(result, expected)
@jacrev_and_jacfwd
def test_unrelated_input(self, device, jacapi):
def f(x, y):
return x
x = torch.randn(2, 3, device=device)
y = torch.randn(2, 3, device=device)
result = jacapi(f, argnums=(0, 1))(x, y)
expected0 = torch.eye(6, 6, device=device).view(2, 3, 2, 3)
expected1 = y.new_zeros(2, 3, 2, 3)
expected = (expected0, expected1)
self.assertTrue(isinstance(result, tuple))
self.assertEqual(result, expected)
@jacrev_and_jacfwd
def test_unrelated_output(self, device, jacapi):
y = torch.randn(2, 3, device=device)
def f(x):
return y
x = torch.randn(2, 3, device=device)
result = jacapi(f)(x)
expected = x.new_zeros(2, 3, 2, 3)
self.assertEqual(result, expected)
@jacrev_and_jacfwd
def test_empty_output(self, device, jacapi):
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
def f(x, y):
return ()
with self.assertRaisesRegex(RuntimeError, "xpected"):
jacapi(f)(x, y)
@jacrev_and_jacfwd
def test_argnums_tuple(self, device, jacapi):
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
z = jacapi(torch.multiply, argnums=(0, 1))(x, y)
expected0 = torch.diagflat(y)
expected1 = torch.diagflat(x)
assert len(z) == 2
assert torch.allclose(z[0], expected0)
assert torch.allclose(z[1], expected1)
@jacrev_and_jacfwd
def test_argnums_effect_on_return(self, device, jacapi):
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
z = jacapi(torch.multiply, argnums=(0,))(x, y)
expected0 = torch.diagflat(y)
assert isinstance(z, tuple)
assert len(z) == 1
assert torch.allclose(z[0], expected0)
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
z = jacapi(torch.multiply, argnums=0)(x, y)
expected0 = torch.diagflat(y)
assert isinstance(z, torch.Tensor)
assert torch.allclose(z, expected0)
@jacrev_and_jacfwd
def test_argnums_defaults_to_zero(self, device, jacapi):
def f(x, y):
return x * 2 + y * 3
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
z = jacapi(f)(x, y)
expected = torch.diagflat(torch.full_like(x, 2))
self.assertEqual(z, expected)
@jacrev_and_jacfwd
def test_empty_argnums(self, device, jacapi):
x = torch.randn(3, device=device)
with self.assertRaisesRegex(RuntimeError, "must be non-empty"):
jacapi(torch.sin, argnums=())(x)
@jacrev_and_jacfwd
def test_out_of_bounds_argnums(self, device, jacapi):
x = torch.randn(3, device=device)
with self.assertRaisesRegex(RuntimeError, "only 1 positional inputs"):
jacapi(torch.sin, argnums=2)(x)
@jacrev_and_jacfwd
def test_negative_argnums(self, device, jacapi):
x = torch.randn(3, device=device)
with self.assertRaisesRegex(RuntimeError, "only 1 positional inputs"):
jacapi(torch.sin, argnums=-2)(x)
@jacrev_and_jacfwd
def test_repeated_argnums(self, device, jacapi):
x = torch.randn(3, device=device)
with self.assertRaisesRegex(RuntimeError, "must be unique"):
jacapi(torch.sin, argnums=(0, 0))(x)
@jacrev_and_jacfwd
def test_float_argnums(self, device, jacapi):
x = torch.randn(3, device=device)
with self.assertRaisesRegex(RuntimeError, "must be int or Tuple"):
jacapi(torch.sin, argnums=0.0)(x)
with self.assertRaisesRegex(RuntimeError, "must be int"):
jacapi(torch.multiply, argnums=(1, 0.0))(x, x)
def test_hessian_simple(self, device):
def f(x):
return x.sin()
x = torch.randn(3, device=device)
hessian(f)(x)
def _test_against_reference(self, f, inputs, jacapi):
def foo(inputs):
return f(*inputs)
expected = torch.autograd.functional.jacobian(f, inputs)
result = jacapi(foo)(inputs)
self.assertEqual(result, expected)
@jacrev_and_jacfwd
def test_against_reference_simple(self, device, jacapi):
def f(x):
return 3 * x**2
x = torch.randn(2, 3, 5, device=device)
self._test_against_reference(f, (x,), jacapi)
@jacrev_and_jacfwd
def test_against_reference_multi_input(self, device, jacapi):
def f(x, y):
return (x.cos() * x) @ y.sin()
x = torch.randn(2, 3, device=device)
y = torch.randn(3, 5, device=device)
self._test_against_reference(f, (x, y), jacapi)
@jacrev_and_jacfwd
def test_against_reference_multi_input_multi_output(self, device, jacapi):
def f(x, y):
return (x * x) @ y, x @ (x.sum(1) * y), y.sum()
x = torch.randn(5, 3, device=device)
y = torch.randn(3, 5, device=device)
self._test_against_reference(f, (x, y), jacapi)
@jacrev_and_jacfwd
def test_against_reference_unrelated_outputs(self, device, jacapi):
def f(x, y):
return x, y, x, y
x = torch.randn(2, device=device)
y = torch.randn(3, device=device)
self._test_against_reference(f, (x, y), jacapi)
@jacrev_and_jacfwd
def test_against_reference_zero_dim(self, device, jacapi):
# zero-dim output
def f(x, y):
return x.sum(), y.sum(), x * y
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
self._test_against_reference(f, (x, y), jacapi)
# zero-dim input
def g(x):
return torch.stack([x, x, x])
x = torch.randn([], device=device)
self._test_against_reference(g, (x,), jacapi)
# Mixed zero-dim input / zero-dim output
def h(x, y):
return y.sum(), x * y
x = torch.randn([], device=device)
y = torch.randn(1, device=device)
self._test_against_reference(h, (x, y), jacapi)
@jacrev_and_jacfwd
def test_against_reference_correctness_different_devices(self, device, jacapi):
def f(x, y):
return x * y, (x * y).to(device=device)
x = torch.randn(3)
y = torch.randn(3)
self._test_against_reference(f, (x, y), jacapi)
@jacrev_and_jacfwd
def test_against_reference_default_arg(self, device, jacapi):
def f(x, y, z=3.0):
return x * y * z
x = torch.randn(3, device=device)
y = torch.randn(3, device=device)
self._test_against_reference(f, (x, y), jacapi)
@jacrev_and_jacfwd
def test_inplace(self, device, jacapi):
def f(x, y):
y.copy_(x)
return y
out = jacapi(f, argnums=0) # x is differentiable
x, y = torch.randn(2, device=device), torch.randn(2, device=device)
self.assertEqual(out(x, y), torch.eye(y.shape[0]))
# testing tuple of argnums with the example that raised this issue originally
def g(x, y, z):
x[:2] = y
return torch.vstack([(x**2).sum(), (z**3).sum()])
out = jacapi(g, argnums=(1, 2))
x, y, z = (
torch.randn(3, device=device),
torch.randn(2, device=device),
torch.randn(2, device=device),
)
expected_out = (
torch.zeros(2, 1, 2, device=device),
torch.zeros(2, 1, 2, device=device),
)
expected_out[0][0][0] = 2 * y # top left corner
expected_out[1][1][0] = 3 * (z**2) # bottom right corner
out_val = out(x, y, z)
self.assertEqual(out_val, expected_out)
@parametrize("_preallocate_and_copy", (True, False))
def test_chunk_jacrev(self, device, _preallocate_and_copy):
x = torch.randn(10, 2, device=device)
y = torch.randn(1, 2, device=device)
def f(x, y):
return (x.sin(), x + y), (x + 2, x.sum())
for chunk_size in (1, 2, 3, 4, 7, 10, 1000):
expected = jacrev(f, argnums=(0, 1))(x, y)
actual = jacrev(
f,
argnums=(0, 1),
chunk_size=chunk_size,
_preallocate_and_copy=_preallocate_and_copy,
)(x, y)
self.assertEqual(actual, expected)
err_msg = "jacrev: `chunk_size` should be greater than 0."
with self.assertRaisesRegex(ValueError, err_msg):
jacrev(f, argnums=(0,), chunk_size=0)(x, y)
with self.assertRaisesRegex(ValueError, err_msg):
jacrev(f, argnums=(0,), chunk_size=-2)(x, y)
@parametrize("_preallocate_and_copy", (True, False))
def test_chunk_jacrev_composition(self, device, _preallocate_and_copy):
x = torch.randn(10, 2, device=device)
chunk_size = 3
def f(x):
return (x.sin(), x), (x + 2, x.sum())
expected = vmap(jacrev(jacrev(f)))(x)
actual = vmap(
jacrev(
jacrev(
f,
chunk_size=chunk_size,
_preallocate_and_copy=_preallocate_and_copy,
),
chunk_size=chunk_size,
)
)(x)
self.assertEqual(actual, expected)
# https://github.com/pytorch/pytorch/issues/127036
@xfailIfTorchDynamo
@parametrize("_preallocate_and_copy", (True, False))
def test_chunk_jacrev_chunksize_one(self, device, _preallocate_and_copy):
# With chunk_size=1, we shouldn't `vmap` and hence not be limited
# by it's constraints.
x = torch.randn(3, 3, device=device)
# Function with Dynamic Op in Backward.
# This should cause jacrev/vmap(vjp) to fail.
class IdentityWithDynamicBackwardOp(torch.autograd.Function):
@staticmethod
def forward(input):
return input
@staticmethod
def setup_context(ctx, inputs, output):
pass
@staticmethod
def backward(ctx, grad_output):
# dynamic op in backward pass.
grad_output.nonzero()
return grad_output
def f(x):
return IdentityWithDynamicBackwardOp.apply(x)
# With `chunk_size=1`, we don't use vmap. So the following should work.
jacfn = jacrev(f, chunk_size=1, _preallocate_and_copy=_preallocate_and_copy)
actual = jacfn(x)
expected = torch.autograd.functional.jacobian(f, x, vectorize=False)
self.assertEqual(actual, expected)
# Should fail with `chunk_size=2`.
msg = (
r"vmap: We do not support batching operators that can output dynamic shape."
)
with self.assertRaisesRegex(RuntimeError, msg):
jacrev(f, chunk_size=2, _preallocate_and_copy=_preallocate_and_copy)(x)
def test_complex_error(self, device):
# Verify complex input raises error
# C -> C
def fn(x):
return x.conj()
x = torch.randn(1, device=device, dtype=torch.cfloat)
with self.assertRaisesRegex(RuntimeError, "jacrev: Expected all inputs"):
jacrev(fn)(x)
with self.assertRaisesRegex(RuntimeError, "jacfwd: Expected all inputs"):
jacfwd(fn)(x)
# Verify complex output raises error
# R -> C
def fn(x):
return torch.conj(x * 0.5j)
x = torch.randn(1, device=device, dtype=torch.float)
with self.assertRaisesRegex(RuntimeError, "jacrev: Expected all outputs"):
jacrev(fn)(x)
with self.assertRaisesRegex(RuntimeError, "jacfwd: Expected all outputs"):
jacfwd(fn)(x)
@jacrev_and_jacfwd
def test_jac_with_non_tensor_args(self, device, jacapi):
def f(t, int_x):
return t + int_x
t = torch.randn(3, 3, device=device)
actual = jacapi(f)(t, 3)
expected = torch.autograd.functional.jacobian(partial(f, int_x=3), t)
self.assertEqual(actual, expected)
@markDynamoStrictTest
class TestHessian(TestCase):
def _test_against_reference(self, f, inputs):
def foo(inputs):
return f(*inputs)
expected = torch.autograd.functional.hessian(f, inputs)
result = hessian(foo)(inputs)
self.assertEqual(result, expected)
def test_hessian_vectorize_correctness_simple(self, device):
def f(x):
return (3 * x**2).sum()
x = torch.randn(2, 3, 5, device=device)
self._test_against_reference(f, (x,))
def test_hessian_vectorize_correctness_multi_input(self, device):
def f(x, y, z):
return ((x.relu() * x) @ y.sin() @ z).sum()
x = torch.randn(2, 3, device=device)
y = torch.randn(3, 5, device=device)
z = torch.randn(5, 5, device=device)
self._test_against_reference(f, (x, y, z))
def test_hessian_vectorize_correctness_unrelated_outputs(self, device):
# output unrelated to one input
def f(x, y):
return (x**2).sum()
x = torch.randn(2, device=device)
y = torch.randn(3, device=device)
self._test_against_reference(f, (x, y))
# output unrelated to all inputs
def f(x, y):
return torch.ones([])
x = torch.randn(2, device=device)
y = torch.randn(3, device=device)
self._test_against_reference(f, (x, y))
def test_jacfwd_different_levels(self, device):
# Test case from:
# https://github.com/pytorch/functorch/issues/597
b = 8
n = 100
d = 2
x1 = torch.randn(b, n, d, device=device)
x2 = x1
A = 0.1 * torch.randn(b, d, d, device=device)
def loss(A, x1, x2):
x2_hat = (A @ (x1.T)).T
res = x2 - x2_hat
res_sqr = res**2
return res_sqr.sum()
hess1 = vmap(jacrev(jacrev(loss)))(A, x1, x2)
hess2 = vmap(hessian(loss))(A, x1, x2)
self.assertEqual(hess2, hess1)
@markDynamoStrictTest
class TestJvp(TestCase):
def test_inplace_on_captures(self, device):
x = torch.tensor([1.0, 2.0, 3.0], device=device)
captured = torch.randn(3, device=device)
def foo(x):
captured.copy_(x)
return (x * captured).sum()
with self.assertRaisesRegex(RuntimeError, "mutate a captured Tensor"):
grad(foo)(x)
def test_simple(self, device):
x = torch.randn(2, 3, device=device)
t = torch.randn(2, 3, device=device)
result = jvp(torch.sin, (x,), (t,))
expected = (x.sin(), x.cos() * t)
self.assertTrue(isinstance(result, tuple))
self.assertEqual(result, expected)
def test_multiple_inputs(self, device):
x = torch.randn(2, 3, device=device)
y = torch.randn(2, 3, device=device)
tx = torch.randn(2, 3, device=device)
ty = torch.randn(2, 3, device=device)
def f(x, y):
return x * y
result = jvp(f, (x, y), (tx, ty))
expected = (x * y, y * tx + x * ty)
self.assertTrue(isinstance(result, tuple))
self.assertEqual(result, expected)
def test_pytree_inputs(self, device):
def f(x, y, z):
a, b = x
return a + 2 * b + 3 * y + 4 * z
one = torch.tensor(1.0, device=device)
primal_outs, tangent_outs = jvp(
f, ((one, one), one, one), ((one, one), one, one)
)
self.assertEqual(primal_outs, one * 10)
self.assertEqual(tangent_outs, one * 10)
def test_pytree_inputs_error_cases(self, device):
def f(x):
return x
one = torch.tensor(1.0, device=device)
with self.assertRaisesRegex(RuntimeError, "Expected primals to be a tuple"):
jvp(f, one, one)
with self.assertRaisesRegex(RuntimeError, "same python structure"):
jvp(f, ((one, one), one), (one, one))
with self.assertRaisesRegex(RuntimeError, "only contain Tensors"):
jvp(f, ((one, one), 1), ((one, one), one))
with self.assertRaisesRegex(RuntimeError, "only contain Tensors"):
jvp(f, ((one, one), 1), ((1, one), one))
with self.assertRaisesRegex(RuntimeError, "at least one Tensor"):
jvp(f, ((),), ((),))
def test_unrelated_input(self, device):
def f(x, y):
return x
x = torch.randn(2, 3, device=device)
y = torch.randn(2, 3, device=device)
tx = torch.randn(2, 3, device=device)
ty = torch.randn(2, 3, device=device)
result = jvp(f, (x, y), (tx, ty))
expected = (x, tx)
self.assertTrue(isinstance(result, tuple))
self.assertEqual(result, expected)
def test_unrelated_output(self, device):
y = torch.randn(2, 3, device=device)
def f(x):
return y
x = torch.randn(2, 3, device=device)
tx = torch.randn(2, 3, device=device)
result = jvp(f, (x,), (tx,))
expected = (y, torch.zeros_like(y))
self.assertTrue(isinstance(result, tuple))
self.assertEqual(result, expected)
def test_strict_mode(self, device):
y = torch.randn(2, 3, device=device)
def f(x):
return x, y
x = torch.randn(2, 3, device=device)
tx = torch.randn(2, 3, device=device)
with self.assertRaisesRegex(RuntimeError, "strict"):
jvp(f, (x,), (tx,), strict=True)
def test_multiple_outputs(self, device):
x = torch.randn(2, 3, device=device)
t = torch.randn(2, 3, device=device)
def f(x):
return torch.sin(x), torch.cos(x)
result = jvp(f, (x,), (t,))
expected = (f(x), (x.cos() * t, -x.sin() * t))
self.assertTrue(isinstance(result, tuple))
self.assertEqual(result, expected)
def test_multiple_inputs_outputs(self, device):
x = torch.randn(2, 3, device=device)
y = torch.randn(2, 3, device=device)
tx = torch.randn(2, 3, device=device)
ty = torch.randn(2, 3, device=device)
def f(x, y):
return 2 * x + 3 * y, 4 * x + 5 * y
result = jvp(f, (x, y), (tx, ty))
expected = (f(x, y), f(tx, ty))
self.assertTrue(isinstance(result, tuple))
self.assertEqual(result, expected)
def test_primals_tangents_length_mismatch(self, device):
x = torch.randn(2, 3, device=device)
t = torch.randn(2, 3, device=device)
msg = "same python structure"
with self.assertRaisesRegex(RuntimeError, msg):
jvp(torch.sin, (x,), (t, t))
with self.assertRaisesRegex(RuntimeError, msg):
jvp(torch.sin, (x, x), (t, t, t))
def test_nonempty_primals_and_tangents(self, device):
with self.assertRaisesRegex(RuntimeError, "at least one Tensor"):
jvp(torch.sin, (), ())
def test_inputs_are_tuples_of_tensors(self, device):
x = torch.randn(2, 3, device=device)
t = torch.randn(2, 3, device=device)
with self.assertRaisesRegex(RuntimeError, "be a tuple"):
jvp(torch.sin, x, (t,))
with self.assertRaisesRegex(RuntimeError, "same python structure"):
jvp(torch.sin, (x,), t)
with self.assertRaisesRegex(RuntimeError, "same python structure"):
jvp(torch.sin, (x,), [t])
with self.assertRaisesRegex(RuntimeError, "only contain Tensors"):
jvp(torch.sin, (1.0,), (t,))
with self.assertRaisesRegex(RuntimeError, "only contain Tensors"):
jvp(torch.sin, (x,), (1.0,))
def test_outputs_can_any_pytree(self, device):
x = torch.randn(2, 3, device=device)
t = torch.randn(2, 3, device=device)
for output in [None, ()]:
with self.assertRaisesRegex(
RuntimeError,
r"jvp\(f, primals, tangents\): Expected f to be a function that has non-empty output",
):
jvp(lambda _: output, (x,), (t,))
for output in [1, True, 12.2, "abc"]:
with self.assertRaisesRegex(
RuntimeError,
r"jvp\(f, primals, tangents\): expected f\(\*primals\) to return only tensors",
):
jvp(lambda _: output, (x,), (t,))
# Check list output
out = jvp(lambda x: [x, x.sum()], (x,), (t,))
for i in range(2):
assert isinstance(out[i], list) and len(out[i]) == 2
# Check dict output
out = jvp(lambda x: {"x": x, "xsum": x.sum()}, (x,), (t,))
for i in range(2):
assert isinstance(out[i], dict) and len(out[i]) == 2 and "xsum" in out[i]
def composite_output(x):
out = x.sum()
return [
(out, {"a": x, "out": [x, out]}),
]
out = jvp(composite_output, (x,), (t,))
for i in range(2):
assert isinstance(out[i], list)
assert isinstance(out[i][0], tuple) and isinstance(out[i][0][1], dict)
def test_aux_tensor(self, device):
x = torch.randn(3, device=device)
t = torch.randn(3, device=device)
with self.assertRaisesRegex(
RuntimeError,
r"jvp\(f, primals, tangents\): output of function f should be a tuple",
):
jvp(lambda t: [t, t], (x,), (t,), has_aux=True)
with self.assertRaisesRegex(
RuntimeError,
r"jvp\(f, primals, tangents\): output of function f should be a tuple",
):
jvp(lambda t: (t, t + 2, t + 3), (x,), (t,), has_aux=True)
def f(z):
y = z.sin()
return y, z.cos()
out, jvp_out, aux = jvp(f, (x,), (t,), has_aux=True)
self.assertEqual(aux, x.cos())
self.assertEqual(out, x.sin())
self.assertEqual(jvp_out, t * x.cos())
def test_aux_pytree(self, device):
def f(x):
y = x.sin()
return y, {"a": x.cos(), "b": [x.tan()]}
x = torch.randn(3, device=device)
t = torch.randn(3, device=device)
out, jvp_out, aux = jvp(f, (x,), (t,), has_aux=True)
expected_out, expected_aux = f(x)
self.assertEqual(out, expected_out)
self.assertEqual(aux, expected_aux)
self.assertEqual(jvp_out, t * x.cos())
for aux in [1, 1.0, "abc"]:
with self.assertRaisesRegex(
RuntimeError, r"Expected tensors, got unsupported type"
):
_ = jvp(lambda x: (x, aux), (x,), (t,), has_aux=True)
with self.assertRaisesRegex(
RuntimeError, r"Expected tensors, got unsupported type"
):
_ = jvp(lambda x: (x, [x, aux]), (x,), (t,), has_aux=True)
def test_autograd_function_disables_fwd_grad(self, device):
# Sanity check. We don't really assume this anywhere so
# it's fine if this breaks one day.
class MySquare(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
enabled = fwAD._is_fwd_grad_enabled()
self.assertFalse(enabled)
return x * x
@staticmethod
def backward(ctx, gx):
return gx
x = torch.randn(3, requires_grad=True)
MySquare.apply(x)
def test_disable_fwd_grad_outside(self, device):
x = torch.randn([], device=device)
t = torch.ones_like(x)
with fwAD._set_fwd_grad_enabled(False):
_, y = jvp(torch.sin, (x,), (t,))
self.assertEqual(y, x.cos())
def test_disable_fwd_grad_inside(self, device):
def f(x):
with fwAD._set_fwd_grad_enabled(False):
shift = x**2
return x**2 - shift
x = torch.randn([], device=device)
t = torch.ones_like(x)
_, y = jvp(f, (x,), (t,))
self.assertEqual(y, 2 * x)
_, y = jvp(lambda x: jvp(f, (x,), (t,))[1], (x,), (t,))
self.assertEqual(y, 2)
def test_disable_fwd_grad_mixed(self, device):
def f(x):
with fwAD._set_fwd_grad_enabled(False):
shift = x**2
return x**2 - shift
x = torch.randn([], device=device)
t = torch.ones_like(x)
with fwAD._set_fwd_grad_enabled(True):
_, y = jvp(f, (x,), (t,))
self.assertEqual(y, 2 * x)
def test_jvp_inside_autograd_function(self, device):
class MySin(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
t = torch.ones_like(x)
_, neg_sin_x = jvp(torch.cos, (x,), (t,))
ctx.save_for_backward(x)
return -neg_sin_x
@staticmethod
def backward(ctx, gx):
(x,) = ctx.saved_tensors
t = torch.ones_like(x)
_, cos_x = jvp(torch.sin, (x,), (t,))
return gx * cos_x
x = torch.randn([], device=device, requires_grad=True)
y = MySin.apply(x)
self.assertEqual(y, x.sin())
(gx,) = torch.autograd.grad(y, x)
self.assertEqual(gx, x.cos())
def test_zerotensor_vmapjvp_interaction(self, device):
dummy = torch.ones(4, 1)
x = torch.randn(4, 2)
x_tangent = torch.randn(2)
def push_jvp(dummy, x):
result = jvp(torch.cov, (x,), (x_tangent,))
return result
# Should not error
vmap(vmap(push_jvp, (0, None)))(dummy, x)
@markDynamoStrictTest
class TestLinearize(TestCase):
@dtypes(torch.float)
def test_linearize_basic(self, device, dtype):
x_p = make_tensor((3, 1), device=device, dtype=dtype)
x_t = make_tensor((3, 1), device=device, dtype=dtype)
def fn(x):
return x.cos()
actual_output, jvp_fn = linearize(fn, x_p)
actual_jvp = jvp_fn(x_t)
expected_output, expected_jvp = jvp(fn, (x_p,), (x_t,))
self.assertEqual(actual_output, expected_output)
self.assertEqual(actual_jvp, expected_jvp)
@dtypes(torch.float)
def test_linearize_return(self, device, dtype):
x_p = make_tensor((3, 1), device=device, dtype=dtype)
x_t = make_tensor((3, 1), device=device, dtype=dtype)
def fn(x):
return (x.cos(), x.sum())
actual_output, jvp_fn = linearize(fn, x_p)
actual_jvp = jvp_fn(x_t)
expected_output, expected_jvp = jvp(fn, (x_p,), (x_t,))
self.assertEqual(actual_output, expected_output)
self.assertEqual(actual_jvp, expected_jvp)
@dtypes(torch.float)
def test_linearize_composition(self, device, dtype):
x_p = make_tensor((3, 1), device=device, dtype=dtype)
x_t = make_tensor((3, 3, 1), device=device, dtype=dtype)
def fn(x):
return (x.cos(), x.sum())
_, jvp_fn = linearize(fn, x_p)
actual_batched_jvp = vmap(jvp_fn)(x_t)
def jvp_fn(x_t):
return jvp(fn, (x_p,), (x_t,))[1]
expected_batched_jvp = vmap(jvp_fn)(x_t)
self.assertEqual(actual_batched_jvp, expected_batched_jvp)
@dtypes(torch.float)
def test_linearize_nested_input_nested_output(self, device, dtype):
x_p = make_tensor((3, 1), device=device, dtype=dtype)
x_t = make_tensor((3, 1), device=device, dtype=dtype)
y_p = make_tensor((3, 1), device=device, dtype=dtype)
y_t = make_tensor((3, 1), device=device, dtype=dtype)
z_p = make_tensor((3, 1), device=device, dtype=dtype)
z_t = make_tensor((3, 1), device=device, dtype=dtype)
def fn(arg):
x = arg["x"]
y = arg["yz"][0]
z = arg["yz"][1]
return {"a": x.sum(), "b": {"c": y + z, "d": (x * z, y.exp())}}
inp_p = {"x": x_p, "yz": (y_p, z_p)}
inp_t = {"x": x_t, "yz": (y_t, z_t)}
actual_output, jvp_fn = linearize(fn, inp_p)
actual_jvp = jvp_fn(inp_t)
expected_output, expected_jvp = jvp(fn, (inp_p,), (inp_t,))
self.assertEqual(actual_output, expected_output)
self.assertEqual(actual_jvp, expected_jvp)
@onlyCUDA
def test_linearize_errors(self):
dtype = torch.float
device = torch.device("cpu")
x_p = make_tensor((3, 1), device=device, dtype=dtype)
x_t = make_tensor((3, 1), device=device, dtype=dtype)
def fn(x):
return x.sin()
_, jvp_fn = linearize(fn, x_p)
with self.assertRaisesRegex(
RuntimeError, "to have the same argspec as the primals"
):
jvp_fn((x_t, x_t))
with self.assertRaisesRegex(
RuntimeError, "in flattened pytree doesn't match the shape"
):
jvp_fn(x_t.unsqueeze(0))
with self.assertRaisesRegex(
RuntimeError, "in flattened pytree doesn't match the dtype"
):
jvp_fn(x_t.to(torch.double))
with self.assertRaisesRegex(
RuntimeError, "in flattened pytree doesn't match the device"
):
jvp_fn(x_t.to(torch.device("cuda")))
# The tests here follow the cases in [Forward Grad View/inplace]
# https://github.com/pytorch/pytorch/blob/master/torch/csrc/autograd/autograd_meta.cpp#L18-L43
@markDynamoStrictTest
class TestVmapJvpInplaceView(TestCase):
# Case 1 in [Forward Grad View/inplace]
def test_all_dual_no_view(self, device):
B = 2
def push_jvp(f):
def inner(x, xt, y, yt):
return jvp(f, (x, y), (xt, yt))
return inner
def f(x, y):
x.copy_(y)
return x
x = torch.randn(3, B, device=device)
xt = torch.randn(3, B, device=device)
y = torch.randn(3, B, device=device)
yt = torch.randn(3, B, device=device)
out, out_tangent = vmap(push_jvp(f), in_dims=1)(x, xt, y, yt)
self.assertEqual(out, x.movedim(1, 0))
self.assertEqual(out_tangent, yt.movedim(1, 0))
x = torch.randn(3, B, device=device)
xt = torch.randn(3, B, device=device)
y = torch.randn(3, 3, device=device)[:, 1]
yt = torch.randn(6, device=device)[::2]
out, out_tangent = vmap(push_jvp(f), in_dims=(1, 1, None, None))(x, xt, y, yt)
self.assertEqual(out, x.movedim(1, 0))
self.assertEqual(out_tangent, yt.expand(B, 3))
# Case 2 in [Forward Grad View/inplace]
def test_all_dual_base_view_inplace(self, device):
B = 2
def push_jvp(f):
def inner(x, xt, y, yt):
return jvp(f, (x, y), (xt, yt))
return inner
# with view, propagate from view to base
def f(x, y):
view = x[:, ::2]
view.copy_(y)
return view, x
orig_x = torch.randn(2, 6, B, device=device)
orig_xt = torch.randn(2, 6, B, device=device)
x = orig_x.clone()
xt = orig_xt.clone()
y = torch.randn(2, B, 3, device=device)
yt = torch.randn(2, B, 3, device=device)
out, out_tangent = vmap(push_jvp(f), in_dims=(2, 2, 1, 1))(x, xt, y, yt)
expected_out = vmap(f, in_dims=(2, 1))(orig_x.clone(), y)
self.assertEqual(out[0], expected_out[0])
self.assertEqual(out[1], expected_out[1])
self.assertEqual(out_tangent[0], yt.movedim(1, 0))
expected_x_tangent = orig_xt.movedim(-1, 0).clone()
expected_x_tangent[:, :, ::2].copy_(yt.movedim(1, 0))
self.assertEqual(out_tangent[1], expected_x_tangent)
expected = orig_x.movedim(2, 0).clone()
expected[:, :, ::2] = y.movedim(1, 0)
self.assertEqual(x.movedim(2, 0), expected)
# Case 3 in [Forward Grad View/inplace]
def test_all_dual_base_inplace(self, device):
B = 2
def push_jvp(f):
def inner(x, xt, y, yt):
return jvp(f, (x, y), (xt, yt))
return inner
# Case 3: with view, propagate from base to view
def f(x, y):
view = x[0, ::2]
x.copy_(y)
return x, view
x = torch.randn(2, B, 6, device=device)
xt = torch.randn(2, 6, B, device=device)
y = torch.randn(2, B, 6, device=device)
yt = torch.randn(2, B, 6, device=device)
out, out_tangent = vmap(push_jvp(f), in_dims=(1, 2, 1, 1))(x.clone(), xt, y, yt)
expected_out = vmap(f, in_dims=(1, 1))(x.clone(), y)
self.assertEqual(out[0], expected_out[0])
self.assertEqual(out[1], expected_out[1])
self.assertEqual(out_tangent[0], yt.movedim(1, 0))
self.assertEqual(out_tangent[1], yt.movedim(1, 0)[:, 0, ::2])
# Case 4 in [Forward Grad View/inplace]
def test_right_dual_view_prop(self, device):
B = 2
# Changes on the view must propagate to its base. Also:
# - x is a regular Tensor
# - y is a dual tensor
def f(x, y):
x = x.clone()
view = x[0]
view.copy_(y)
return view, x
def push_jvp(x, y, yt):
return jvp(partial(f, x), (y,), (yt,))
x = torch.randn(2, B, 6, device=device)
y = torch.randn(6, B, device=device)
yt = torch.randn(6, B, device=device)
outs, tangents = vmap(push_jvp, in_dims=(1, 1, 1))(x, y, yt)
expected_out = vmap(f, in_dims=(1, 1))(x.clone(), y)
self.assertEqual(outs[0], expected_out[0])
self.assertEqual(outs[1], expected_out[1])
self.assertEqual(tangents[0], yt.movedim(1, 0))
expected_tangent_1 = torch.zeros_like(x).movedim(1, 0)
expected_tangent_1[:, 0].copy_(yt.movedim(1, 0))
self.assertEqual(tangents[1], expected_tangent_1)
# Case 5 in [Forward Grad View/inplace]
def test_right_dual_base_prop(self, device):
B = 2
# Changes on the base must propagate on all its views. Also:
# - x is a regular Tensor
# - y is a dual tensor
def f(x, y):
x = x.clone()
view = x[0]
x.copy_(y)
return view, x
def push_jvp(x, y, yt):
return jvp(partial(f, x), (y,), (yt,))
x = torch.randn(2, B, 6)
y = torch.randn(2, 6, B)
yt = torch.randn(2, 6, B)
outs, tangents = vmap(push_jvp, in_dims=(1, 2, 2))(x, y, yt)
expected_out = vmap(f, in_dims=(1, 2))(x, y)
self.assertEqual(outs[0], expected_out[0])
self.assertEqual(outs[1], expected_out[1])
self.assertEqual(tangents[0], yt.movedim(2, 0)[:, 0])
self.assertEqual(tangents[1], yt.movedim(2, 0))
# Use for testing miscellaneous helper functions
@markDynamoStrictTest
class TestHelpers(TestCase):
def test_CtxWithSavedTensors_error_if_name_collision(self, device):
x = torch.randn([], device=device, requires_grad=True)
y = torch.randn([], device=device, requires_grad=True)
class A(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx._pt_inner_ctx = 1
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, gy):
wrapped = torch._functorch.autograd_function.CtxWithSavedTensors(
ctx, (y,)
)
return gy
class B(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx._pt_new_saved_tensors = 1
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, gy):
wrapped = torch._functorch.autograd_function.CtxWithSavedTensors(
ctx, (y,)
)
return gy
out = A.apply(x)
with self.assertRaisesRegex(RuntimeError, "name collision"):
out.backward()
out = B.apply(x)
with self.assertRaisesRegex(RuntimeError, "name collision"):
out.backward()
def test_CtxWithSavedTensors_nesting(self, device):
CtxWithSavedTensors = torch._functorch.autograd_function.CtxWithSavedTensors
x = torch.randn([], device=device, requires_grad=True)
y = torch.randn([], device=device)
z = torch.randn([], device=device)
class A(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, gy):
ctx_y = CtxWithSavedTensors(ctx, (y,))
# Can't use self.assertEqual because that relies on TLS
# that is not available in multithread autograd
assert len(ctx_y.saved_tensors) == 1
assert torch.allclose(ctx_y.saved_tensors[0], y)
wrapped = CtxWithSavedTensors(ctx_y, (z,))
assert len(wrapped.saved_tensors) == 1
assert torch.allclose(wrapped.saved_tensors[0], z)
assert len(ctx_y.saved_tensors) == 1
assert torch.allclose(ctx_y.saved_tensors[0], y)
return gy * wrapped.saved_tensors[0]
out = A.apply(x)
out.backward()
self.assertEqual(x.grad, z)
def test_CtxWithSavedTensors_overrides_saved_tensors(self, device):
x = torch.randn([], device=device, requires_grad=True)
class A(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, gy):
# The override can be literally anything
override = (1, 2, 3)
wrapped = torch._functorch.autograd_function.CtxWithSavedTensors(
ctx, override
)
assert wrapped.saved_tensors == override
return gy
out = A.apply(x)
out.backward()
def test_CtxWithSavedTensors_passthrough(self, device):
x = torch.randn([], device=device, requires_grad=True)
y = torch.randn([], device=device)
class A(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x, y)
return x * y
@staticmethod
def backward(ctx, gz):
# The override can be literally anything
override = (1, 2, 3)
wrapped = torch._functorch.autograd_function.CtxWithSavedTensors(
ctx, override
)
assert wrapped.needs_input_grad[0] == ctx.needs_input_grad[0]
assert wrapped.needs_input_grad[1] == ctx.needs_input_grad[1]
wrapped.foo = "bar"
assert wrapped.foo == "bar"
assert ctx.foo == "bar"
return gz, gz
out = A.apply(x, y)
out.backward()
def test_reductify_leaf(self, device):
reductify_leaf = torch._functorch.autograd_function.reductify_leaf
B = 2
# grad_input None case
output = reductify_leaf(None, None, 0, B)
self.assertIsNone(output)
output = reductify_leaf(None, None, None, B)
self.assertIsNone(output)
# grad_input has bdim, input does not have bdim
grad_input = torch.randn([B, 3, 4], device=device)
output = reductify_leaf(grad_input, 0, None, B)
self.assertEqual(output, grad_input.sum(0))
grad_input = torch.randn([3, B, 4], device=device)
output = reductify_leaf(grad_input, 1, None, B, (3,))
self.assertEqual(output, grad_input.sum(1))
# grad_input does not have bdim, input has bdim
# This can happen if the user returns a fresh Tensor from the backward pass
# that is unrelated to the input
grad_input = torch.randn([3, 4], device=device)
output = reductify_leaf(grad_input, None, 1, B)
self.assertEqual(output, grad_input.view(3, 1, 4).expand(3, B, 4))
grad_input = torch.randn([3, 4], device=device)
output = reductify_leaf(grad_input, None, 1, B, (4,))
self.assertEqual(output, grad_input.view(3, 4, 1).expand(3, 4, B).sum(0))
# grad_input has bdim, input has bdim
grad_input = torch.randn([B, 3, 4], device=device)
output = reductify_leaf(grad_input, 0, 1, B)
self.assertEqual(output, grad_input.movedim(0, 1))
grad_input = torch.randn([3, 4, 5, B], device=device)
output = reductify_leaf(grad_input, 3, 0, B, (5,))
self.assertEqual(output, grad_input.movedim(-1, 2).sum(0).sum(0))
@markDynamoStrictTest
class TestComposability(TestCase):
def test_deprecation_vmap(self, device):
x = torch.randn(3, device=device)
# functorch version of the API is deprecated
with self.assertWarnsRegex(FutureWarning, "Please use `torch.vmap`"):
vmap(torch.sin)
# the non-functorch version is not deprecated
with warnings.catch_warnings():
warnings.simplefilter("error")
torch.vmap(torch.sin)
# Some of these pass, some of these don't
@parametrize(
"transform",
["grad", "jacrev", "jacfwd", "grad_and_value", "hessian", "functionalize"],
)
def test_deprecation_transforms(self, device, transform):
api = getattr(functorch, transform)
new_api = getattr(torch.func, transform)
# functorch version of the API is deprecated
with self.assertWarnsRegex(
FutureWarning, f"Please use `torch.func.{transform}`"
):
api(torch.sin)
# the non-functorch version is not deprecated
with warnings.catch_warnings():
warnings.simplefilter("error")
new_api(torch.sin)
def test_grad_grad(self, device):
x = torch.randn([], device=device)
y = grad(grad(torch.sin))(x)
self.assertEqual(y, -x.sin())
def test_grad_vmap(self, device):
def foo(x):
y = vmap(torch.sin)(x)
return y.sum()
x = torch.randn(3, device=device)
y = grad(foo)(x)
self.assertEqual(y, x.cos())
def test_grad_vjp(self, device):
x = torch.randn(3, device=device)
def foo(x):
_, vjp_fn = vjp(torch.sin, x)
return vjp_fn(x)[0].sum()
y = grad(foo)(x)
expected = grad(lambda x: (x * x.cos()).sum())(x)
self.assertEqual(y, expected)
def test_vmap_grad(self, device):
x = torch.randn(3, device=device)
y = vmap(grad(torch.sin))(x)
self.assertEqual(y, x.cos())
def test_vmap_vmap(self, device):
x = torch.randn(2, 3, device=device)
y = vmap(vmap(torch.sin))(x)
self.assertEqual(y, x.sin())
def test_vmap_vjp(self, device):
x = torch.randn(3, device=device)
_, vjp_fn = vjp(torch.sin, x)
def foo(x):
_, vjp_fn = vjp(torch.sin, x)
return vjp_fn(x)
y = vmap(foo)(x)
self.assertEqual(y, vjp_fn(x))
# TODO: there's a very interesting error message when the following
# is on CPU
xs = torch.randn(5, 3, device=device)
expected = torch.stack([vjp_fn(x)[0] for x in xs])
result = vmap(lambda x: vjp_fn(x)[0])(xs)
self.assertEqual(result, expected)
def test_vjp_grad(self, device):
x = torch.randn([], device=device)
y, vjp_fn = vjp(grad(torch.sin), x)
self.assertEqual(y, x.cos())
v = torch.randn([])
self.assertEqual(vjp_fn(v)[0], -x.sin() * v)
def test_vjp_vmap(self, device):
x = torch.randn(3, device=device)
y, vjp_fn = vjp(vmap(torch.sin), x)
self.assertEqual(y, x.sin())
v = torch.randn(3, device=device)
self.assertEqual(vjp_fn(v)[0], x.cos() * v)
def test_vjp_vjp(self, device):
x = torch.randn(3, device=device)
y, vjp_fn = vjp(torch.sin, x)
self.assertEqual(y, x.sin())
y, vjp_fn = vjp(lambda x: vjp_fn(x)[0], x)
self.assertEqual(y, x * x.cos())
y = vjp_fn(x)[0]
# Honestly IDK what the result here is... but at least it runs
def test_make_fx_vmap(self, device):
def f(x):
return torch.sin(x)
inp = torch.randn(5, 3)
f = vmap(f)
fx_f = make_fx(f)(inp)
new_inp = torch.randn(5, 3)
self.assertEqual(fx_f(new_inp), f(new_inp))
def test_make_fx_jacrev(self, device):
def f(x):
return x.sin().sum()
inp = torch.randn(3)
f = jacrev(jacrev(f))
fx_f = make_fx(f)(inp)
new_inp = torch.randn(3)
self.assertEqual(fx_f(new_inp), f(new_inp))
def test_make_fx_vjp(self, device):
def f(x):
return torch.sin(x).sum()
primals = torch.randn(3)
_, vjp_fn = vjp(f, primals)
cotangent = torch.randn(())
fx_f = make_fx(vjp_fn)(cotangent, True, True)
new_cotangent = torch.randn(())
self.assertEqual(fx_f(new_cotangent, True, True), vjp_fn(new_cotangent))
# FIXME: test fails in Windows
@unittest.skipIf(IS_WINDOWS, "fails in Windows; needs investigation")
@unittest.skipIf(IS_FBCODE, "can't subprocess in fbcode")
# it is redundant to run this test twice on a machine that has GPUs
@onlyCPU
def test_no_warning_on_import_functorch(self, device):
out = subprocess.check_output(
[sys.executable, "-W", "always", "-c", "import functorch"],
stderr=subprocess.STDOUT,
cwd=os.path.dirname(os.path.realpath(__file__)),
).decode("utf-8")
self.assertEqual(out, "")
def test_requires_grad_inside_transform(self, device):
def f(x):
x.requires_grad_()
return x.sin().sum()
x = torch.randn(3)
with self.assertRaisesRegex(RuntimeError, "Tensor.requires_grad_()"):
vmap(f)(x)
with self.assertRaisesRegex(RuntimeError, "Tensor.requires_grad_()"):
grad(f)(x)
with self.assertRaisesRegex(RuntimeError, "Tensor.requires_grad_()"):
vmap(grad(f))(x)
x = torch.randn([])
with self.assertRaisesRegex(RuntimeError, "Tensor.requires_grad_()"):
grad(grad(f))(x)
def test_retain_grad_inside_transform(self, device):
def f(x):
y = x.sin()
y.retain_grad()
return y.sum()
x = torch.randn(3)
with self.assertRaisesRegex(RuntimeError, "Tensor.retain_grad()"):
grad(f)(x)
def test_autograd_functional_jacrev_inside_transform(self, device):
def f(x):
y = torch.autograd.functional.jacobian(lambda x: x.sin().sum(), x)
return y
B = 5
x = torch.randn(B, 3)
with self.assertRaisesRegex(RuntimeError, "torch.autograd.functional"):
vmap(f)(x)
x = torch.randn([])
with self.assertRaisesRegex(RuntimeError, "torch.autograd.functional"):
grad(f)(x)
def test_autograd_functional_vjp_inside_transform(self, device):
def f(x):
y = torch.autograd.functional.vjp(lambda x: x.sin().sum(), x)
return y
B = 5
x = torch.randn(B, 3)
with self.assertRaisesRegex(RuntimeError, "torch.autograd.functional"):
vmap(f)(x)
x = torch.randn([])
with self.assertRaisesRegex(RuntimeError, "torch.autograd.functional"):
grad(f)(x)
def test_autograd_functional_jvp_inside_transform(self, device):
def f(x):
t = torch.ones_like(x)
y = torch.autograd.functional.jvp(lambda x: x.sin().sum(), (x,), (t,))
return y
B = 5
x = torch.randn(B, 3)
with self.assertRaisesRegex(RuntimeError, "torch.autograd.functional"):
vmap(f)(x)
x = torch.randn([])
with self.assertRaisesRegex(RuntimeError, "torch.autograd.functional"):
grad(f)(x)
def test_autograd_functional_jacfwd_inside_transform(self, device):
def f(x):
y = torch.autograd.functional.jacobian(
lambda x: x.sin().sum(), x, strategy="forward-mode", vectorize=True
)
return y
B = 5
x = torch.randn(B, 3)
with self.assertRaisesRegex(
RuntimeError, "Batching rule not implemented for aten::_make_dual"
):
vmap(f)(x)
@parametrize(
"transform",
[
"vmap",
"grad",
"jacrev",
"jacfwd",
"grad_and_value",
"hessian",
"functionalize",
],
)
def test_autograd_function_no_setup_context(self, device, transform):
class MySin(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.sin()
@staticmethod
def backward(ctx, gy):
(x,) = ctx.saved_tensors
return gy * x.cos()
x = torch.randn(3, device=device)
transform = getattr(functorch, transform)
with self.assertRaisesRegex(RuntimeError, "must override the setup_context"):
transform(MySin.apply)(x)
# Some of these pass, some of these don't
@parametrize(
"transform",
[
"grad",
"jacrev",
"grad_and_value",
"hessian",
],
)
def test_transforms_dont_support_saved_tensor_hooks(self, device, transform):
def f(x):
return torch.sin(x).sum()
def g(x):
with torch.autograd.graph.save_on_cpu():
return f(x)
x = torch.randn(3, device=device)
if transform == "functionalize":
transform = functorch.experimental.functionalize
else:
transform = getattr(functorch, transform)
with self.assertRaisesRegex(RuntimeError, "saved tensor hooks"):
with torch.autograd.graph.save_on_cpu():
transform(f)(x)
with self.assertRaisesRegex(RuntimeError, "saved tensor hooks"):
transform(g)(x)
def test_vjp_doesnt_support_saved_tensor_hooks(self, device):
def f(x):
return torch.sin(x).sum()
def g(x):
with torch.autograd.graph.save_on_cpu():
return f(x)
x = torch.randn(3, device=device)
with self.assertRaisesRegex(RuntimeError, "saved tensor hooks"):
with torch.autograd.graph.save_on_cpu():
vjp(f, x)
with self.assertRaisesRegex(RuntimeError, "saved tensor hooks"):
vjp(g, x)
def test_jvp_supports_saved_tensor_hooks(self, device):
def f(x):
return torch.sin(x).sum()
def g(x):
with torch.autograd.graph.save_on_cpu():
return f(x)
x = torch.randn(3, device=device)
t = torch.randn(3, device=device)
# smoke tests
with torch.autograd.graph.save_on_cpu():
jvp(f, (x,), (t,))
# smoke tests
jvp(g, (x,), (t,))
def test_can_use_functionalize_when_key_is_excluded(self, device):
def f(x):
y = x.clone()
y.sin_()
return y
x = torch.randn([], device=device)
expected = f(x)
with _ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.Functionalize)):
gm = make_fx(functorch.functionalize(f))(x)
self.assertTrue("sin_" not in gm.code)
self.assertEqual(gm(x), expected)
local_exclude_set = torch._C._dispatch_tls_local_exclude_set()
self.assertTrue(local_exclude_set.has(DispatchKey.Functionalize))
def test_can_use_vmap_when_key_is_excluded(self, device):
def f(x):
return x.sum(0)
x = torch.randn(3, device=device)
expected = vmap(f)(x)
with _ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.FuncTorchBatched)):
result = vmap(f)(x)
self.assertEqual(result, expected)
local_exclude_set = torch._C._dispatch_tls_local_exclude_set()
self.assertTrue(local_exclude_set.has(DispatchKey.FuncTorchBatched))
def test_can_use_grad_when_key_is_excluded(self, device):
def f(x):
return x.sin()
x = torch.randn([], device=device)
expected = grad(f)(x)
with _ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.Autograd)):
result = grad(f)(x)
self.assertEqual(result, expected)
local_exclude_set = torch._C._dispatch_tls_local_exclude_set()
self.assertTrue(local_exclude_set.has(DispatchKey.Autograd))
@markDynamoStrictTest
class TestMakeFunctional(TestCase):
@parametrize("disable_autograd_tracking", [True, False])
def test_disable_autograd_tracking(self, disable_autograd_tracking):
class Foo(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3)
def forward(self, x):
x = self.linear(x)
return x
mod = Foo()
_, params = make_functional(
mod, disable_autograd_tracking=disable_autograd_tracking
)
self.assertEqual(len(params), 2)
for param in params:
self.assertEqual(param.requires_grad, not disable_autograd_tracking)
def test_parameter_tying(self):
class Foo(nn.Module):
def __init__(self):
super().__init__()
self.bias = nn.Parameter(torch.randn(3))
self.linear = nn.Linear(3, 3)
self.linear.bias = self.bias
self.linear_tied = self.linear
def forward(self, x):
x = self.linear(x)
x = self.linear_tied(x)
x = x + self.bias
return x
torch.manual_seed(1)
mod = Foo()
func, _ = make_functional(mod)
torch.manual_seed(0)
mod = Foo()
_, params = make_functional(mod)
self.assertEqual(len(params), 2)
x = torch.randn(2, 3)
result = func(params, x)
expected = mod(x)
self.assertEqual(result, expected)
def test_buffer_tying(self):
class Foo(nn.Module):
def __init__(self):
super().__init__()
self.bias = nn.Parameter(torch.randn(3))
self.linear = nn.Linear(3, 3)
self.register_buffer("buffer", torch.randn(3))
self.register_buffer("buffer_tied", self.buffer)
def forward(self, x):
x = self.linear(x)
x = x + self.bias
x = x + self.buffer
x = x + self.buffer_tied
return x
torch.manual_seed(1)
mod = Foo()
func, _, _ = make_functional_with_buffers(mod)
torch.manual_seed(0)
mod = Foo()
_, params, buffers = make_functional_with_buffers(mod)
self.assertEqual(len(params), 3)
self.assertEqual(len(buffers), 1)
x = torch.randn(2, 3)
result = func(params, buffers, x)
expected = mod(x)
self.assertEqual(result, expected)
@parametrize("disable_autograd_tracking", [True, False])
def test_with_buffers_disable_autograd_tracking(self, disable_autograd_tracking):
class Foo(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3)
self.register_buffer("buffer", torch.randn(3))
def forward(self, x):
x = self.linear(x)
x = x + self.buffer
return x
mod = Foo()
_, params, buffers = make_functional_with_buffers(
mod, disable_autograd_tracking=disable_autograd_tracking
)
self.assertEqual(len(params), 2)
self.assertEqual(len(buffers), 1)
for param in params:
self.assertEqual(param.requires_grad, not disable_autograd_tracking)
@parametrize("detach_params", [True, False])
def test_using_detach_functional_call(self, detach_params):
class Foo(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3)
self.register_buffer("buffer", torch.randn(3))
def forward(self, x):
x = self.linear(x)
x = x + self.buffer
return x
def params_dict(mod):
named_params = mod.named_parameters()
return (
{k: v.detach() for k, v in named_params}
if detach_params
else dict(named_params)
)
mod = Foo()
x = torch.randn(3, 3)
d = (params_dict(mod), dict(mod.named_buffers()))
out = functional_call(mod, d, x)
self.assertEqual(out.grad_fn is None, detach_params)
def test_parameter_tying_grad(self):
class Foo(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3)
self.weight = self.linear.weight
self.bias = self.linear.bias
def forward(self, x):
x = self.linear(x)
x = F.linear(x, self.weight, self.bias)
return x
x = torch.randn(2, 3)
torch.manual_seed(0)
mod = Foo()
loss = mod(x).sum()
expected = torch.autograd.grad(loss, mod.parameters())
mod = Foo()
fmod, _, _ = make_functional_with_buffers(mod)
torch.manual_seed(0)
mod = Foo()
_, params, buffers = make_functional_with_buffers(mod)
def compute_loss(params, buffers, x):
return fmod(params, buffers, x).sum()
result = grad(compute_loss)(params, buffers, x)
self.assertEqual(result, expected)
def test_parameter_tying_ensemble(self):
class Foo(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3)
self.weight = self.linear.weight
self.bias = self.linear.bias
self.register_buffer("buffer", torch.randn(3))
self.register_buffer("buffer_tied", self.buffer)
def forward(self, x):
x = self.linear(x)
x = F.linear(x, self.weight, self.bias)
x = x + self.buffer
x = x + self.buffer_tied
return x
num_models = 2
xs = torch.randn(num_models, 64, 3)
models = [Foo() for _ in range(num_models)]
fmodel, _, _ = combine_state_for_ensemble(models)
torch.manual_seed(0)
models = [Foo() for _ in range(num_models)]
_, params, buffers = combine_state_for_ensemble(models)
result = vmap(fmodel)(params, buffers, xs)
torch.manual_seed(0)
models = [Foo() for _ in range(num_models)]
expected = torch.stack([model(x) for model, x in zip(models, xs)])
self.assertEqual(result, expected)
@parametrize("mechanism", ["make_functional", "functional_call"])
def test_correctness_mnist(self, mechanism):
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
x = torch.randn(64, 1, 32, 32)
torch.manual_seed(301)
fnet, _ = _get_weights_and_functional_call(Net(), mechanism)
torch.manual_seed(0)
_, params = _get_weights_and_functional_call(Net(), mechanism)
result = fnet(params, x)
torch.manual_seed(0)
net = Net()
expected = net(x)
self.assertEqual(result, expected)
def test_combine_state_for_ensemble_error(self):
in_features = 2
out_features = 2
models = []
with self.assertRaisesRegex(RuntimeError, "Expected at least one model"):
_ = combine_state_for_ensemble(models)
num_models = 3
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
models[1].eval()
with self.assertRaisesRegex(RuntimeError, "same training/eval mode"):
_ = combine_state_for_ensemble(models)
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
models[1] = torch.nn.Conv2d(3, 3, (3, 3))
with self.assertRaisesRegex(RuntimeError, "models to be of the same class"):
_ = combine_state_for_ensemble(models)
def test_combine_state_for_ensemble_smoke(self):
in_features = 2
out_features = 2
num_models = 3
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
_ = combine_state_for_ensemble(models)
def test_stack_module_state_smoke(self):
in_features = 2
out_features = 2
num_models = 3
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
_ = stack_module_state(models)
def test_stack_module_state_leaf(self):
in_features = 2
out_features = 2
num_models = 3
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
params, buffers = stack_module_state(models)
for param in params.values():
self.assertTrue(param.requires_grad)
self.assertTrue(param.is_leaf)
def test_stack_module_state_mismatch_error(self):
in_features = 2
out_features = 2
num_models = 3
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
models[0].weight.requires_grad_(False)
with self.assertRaisesRegex(RuntimeError, "same .requires_grad"):
params, buffers = stack_module_state(models)
def test_stack_module_state_error(self):
in_features = 2
out_features = 2
models = []
with self.assertRaisesRegex(
RuntimeError, "stack_module_state:.* Expected at least one model"
):
_ = stack_module_state(models)
num_models = 3
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
models[1].eval()
with self.assertRaisesRegex(
RuntimeError, "stack_module_state:.* same training/eval mode."
):
_ = stack_module_state(models)
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
models[1] = torch.nn.Conv2d(3, 3, (3, 3))
with self.assertRaisesRegex(
RuntimeError, "stack_module_state:.* models to be of the same class"
):
_ = stack_module_state(models)
@parametrize("mechanism", ["make_functional", "functional_call"])
def test_make_functional_state_correctly_returned_after_forward(self, mechanism):
class Net(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3)
def forward(self, x):
x = self.linear(x)
return x
def get_module_info(mod):
if mechanism == "make_functional":
return make_functional(mod)
else:
assert mechanism == "functional_call"
return mod, dict(mod.named_parameters())
mod = Net()
func_mod, params = get_module_info(mod)
# state in func.names_map
mod = func_mod.stateless_model if mechanism == "make_functional" else func_mod
old_state_linear_weight = mod.linear.weight
old_state_linear_bias = mod.linear.bias
self.assertIsNotNone(old_state_linear_weight)
self.assertIsNotNone(old_state_linear_bias)
x = torch.randn(4, 3)
if mechanism == "make_functional":
func_mod(params, x)
else:
assert mechanism == "functional_call"
functional_call(func_mod, params, x)
mod = func_mod.stateless_model if mechanism == "make_functional" else func_mod
new_state_linear_weight = mod.linear.weight
new_state_linear_bias = mod.linear.bias
self.assertIsNotNone(new_state_linear_weight)
self.assertIsNotNone(new_state_linear_bias)
self.assertEqual(old_state_linear_weight, new_state_linear_weight)
self.assertEqual(old_state_linear_bias, new_state_linear_bias)
@markDynamoStrictTest
class TestExamplesCorrectness(TestCase):
def _update_params(self, params, grads, alpha, mechanism):
if mechanism == "make_functional":
return [(params[i] - alpha * grads[i]) for i in range(len(params))]
else:
assert mechanism == "functional_call"
return {k: params[k] - alpha * grads[k] for k in params}
@parametrize("mechanism", ["make_functional", "functional_call"])
def test_maml_regression(self, device, mechanism):
class ThreeLayerNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(1, 40)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(40, 40)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(40, 1)
def forward(self, x):
x = self.fc1(x)
x = self.relu1(x)
x = self.fc2(x)
x = self.relu2(x)
x = self.fc3(x)
return x
# TODO: should replace with F.mse_loss
def mse_loss(x, y):
return torch.mean((x - y) ** 2)
net, params = _get_weights_and_functional_call(
ThreeLayerNet().to(device), mechanism
)
K = 20
num_tasks = 4
alpha = 0.1
def sample_tasks(outer_batch_size, inner_batch_size):
# Select amplitude and phase for the task
As = []
phases = []
for _ in range(outer_batch_size):
As.append(np.random.uniform(low=0.1, high=0.5))
phases.append(np.random.uniform(low=0.0, high=np.pi))
def get_batch():
xs, ys = [], []
for A, phase in zip(As, phases):
x = np.random.uniform(
low=-5.0, high=5.0, size=(inner_batch_size, 1)
)
y = A * np.sin(x + phase)
xs.append(x)
ys.append(y)
return torch.tensor(xs, dtype=torch.float, device=device), torch.tensor(
ys, dtype=torch.float, device=device
)
x1, y1 = get_batch()
x2, y2 = get_batch()
return x1, y1, x2, y2
def get_loss_for_task(use_transform, x1, y1, x2, y2):
def inner_loss(params, x1, y1):
f = net(params, x1)
loss = mse_loss(f, y1)
return loss
if use_transform:
grads = grad(inner_loss)(params, x1, y1)
else:
loss = inner_loss(params, x1, y1)
grad_params, spec = tree_flatten(params)
grads = torch.autograd.grad(loss, grad_params, create_graph=True)
grads = tree_unflatten(grads, spec)
new_params = self._update_params(params, grads, alpha, mechanism)
v_f = net(new_params, x2)
return mse_loss(v_f, y2)
task = sample_tasks(num_tasks, K)
list_params = (
params if mechanism == "make_functional" else list(params.values())
)
# Compute with vmap+grad
inner_losses = vmap(partial(get_loss_for_task, True))(
task[0], task[1], task[2], task[3]
)
loss2 = sum(inner_losses) / len(inner_losses)
result_grads = torch.autograd.grad(loss2, list_params)
# Compute without vmap+grad
inner_losses = [
get_loss_for_task(False, task[0][i], task[1][i], task[2][i], task[3][i])
for i in range(num_tasks)
]
loss2 = sum(inner_losses) / len(inner_losses)
expected_grads = torch.autograd.grad(loss2, list_params)
self.assertEqual(result_grads, expected_grads)
@parametrize("mechanism", ["make_functional", "functional_call"])
def test_maml_omniglot(self, device, mechanism):
# TODO: there appears to be precision issues for float32
dtype = torch.double
# TODO: We don't support inplace relu?
inplace_relu = False
n_way = 5
n_inner_iter = 2
num_tasks = 2
# real example uses batch norm but it's numerically unstable in the first
# iteration, when near 0, and won't produce same gradients. Uses group norm instead
net = (
nn.Sequential(
nn.Conv2d(1, 64, 3),
nn.GroupNorm(64, 64, affine=True),
nn.ReLU(inplace=inplace_relu),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 64, 3),
nn.GroupNorm(64, 64, affine=True),
nn.ReLU(inplace=inplace_relu),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 64, 3),
nn.GroupNorm(64, 64, affine=True),
nn.ReLU(inplace=inplace_relu),
nn.MaxPool2d(2, 2),
nn.Flatten(),
nn.Linear(64, n_way),
)
.to(device)
.to(dtype)
)
fnet, params, buffers = _get_weights_and_functional_call_with_buffers(
net, mechanism
)
net = (params, buffers, fnet)
def loss_for_task(net, n_inner_iter, use_transform, x_spt, y_spt, x_qry, y_qry):
params, buffers, fnet = net
querysz = x_qry.size(0)
def compute_loss(new_params, buffers, x, y):
logits = fnet(new_params, buffers, x)
loss = F.cross_entropy(logits, y)
return loss
new_params = params
for _ in range(n_inner_iter):
if use_transform:
grads = grad(compute_loss)(new_params, buffers, x_spt, y_spt)
else:
res = compute_loss(new_params, buffers, x_spt, y_spt)
grad_params, spec = tree_flatten(new_params)
grads = torch.autograd.grad(res, grad_params, create_graph=True)
grads = tree_unflatten(grads, spec)
new_params = self._update_params(new_params, grads, 1e-1, mechanism)
qry_logits = fnet(new_params, buffers, x_qry)
qry_loss = F.cross_entropy(qry_logits, y_qry)
qry_acc = (qry_logits.argmax(dim=1) == y_qry).sum() / querysz
return qry_loss, qry_acc
# Get some sample inputs...
x_spt = torch.randn(num_tasks, 25, 1, 28, 28, dtype=dtype, device=device)
y_spt = torch.randint(0, 5, (num_tasks, 25), device=device)
x_qry = torch.randn(num_tasks, 75, 1, 28, 28, dtype=dtype, device=device)
y_qry = torch.randint(0, 5, (num_tasks, 75), device=device)
# compute with vmap + grad
compute_loss = partial(loss_for_task, net, n_inner_iter, True)
qry_losses, _ = vmap(compute_loss)(x_spt, y_spt, x_qry, y_qry)
list_params = (
params if mechanism == "make_functional" else list(params.values())
)
result_grads = torch.autograd.grad(qry_losses.sum(), list_params)
# compute without vmap + grad
compute_loss = partial(loss_for_task, net, n_inner_iter, False)
losses = [
compute_loss(x_spt[i], y_spt[i], x_qry[i], y_qry[i])[0]
for i in range(num_tasks)
]
expected_grads = torch.autograd.grad(sum(losses), list_params)
self.assertEqual(result_grads, expected_grads)
@parametrize("mechanism", ["make_functional", "functional_call"])
@parametrize("originally_track_running_stats", [True, False])
def test_update_batch_norm(self, device, originally_track_running_stats, mechanism):
dtype = torch.double
inplace_relu = False
classes = 5
num_batches = 2
net = (
nn.Sequential(
nn.Conv2d(64, 64, 3),
nn.BatchNorm2d(
64, affine=True, track_running_stats=originally_track_running_stats
),
nn.ReLU(inplace=inplace_relu),
nn.Flatten(),
nn.Linear(43264, classes),
)
.to(device)
.to(dtype)
)
replace_all_batch_norm_modules_(net)
transformed_net = net
fnet, params, buffers = _get_weights_and_functional_call_with_buffers(
transformed_net, mechanism
)
criterion = nn.CrossEntropyLoss()
def compute_loss(x, y, params, buffers):
return criterion(fnet(params, buffers, x), y)
# Get some sample inputs...
x = torch.randn(num_batches, 1, 64, 28, 28, device=device, dtype=dtype)
y = torch.randint(0, classes, (num_batches, 1), device=device)
# compute some per sample grads with vmap + grad
result_grads = vmap(grad(compute_loss, argnums=2), in_dims=(0, 0, None, None))(
x, y, params, buffers
)
# compute some per sample grads without vmap + grad
fnet, params, buffers = _get_weights_and_functional_call_with_buffers(
transformed_net, mechanism
)
flat_params, spec = tree_flatten(params)
expected_grads = [
torch.autograd.grad(compute_loss(x[i], y[i], params, buffers), flat_params)
for i in range(num_batches)
]
expected_grads = [torch.stack(shards) for shards in zip(*expected_grads)]
expected_grads = tree_unflatten(expected_grads, spec)
self.assertEqual(result_grads, expected_grads)
@parametrize("jac", ["jacfwd", "jacrev"])
def test_lennard_jones_batched_jac(self, device, jac):
sigma = 0.5
epsilon = 4.0
jac = getattr(functorch, jac)
def lennard_jones(r):
return epsilon * ((sigma / r) ** 12 - (sigma / r) ** 6)
def lennard_jones_force(r):
"""Get magnitude of LJ force"""
return -epsilon * (
(-12 * sigma**12 / r**13) + (6 * sigma**6 / r**7)
)
r = torch.linspace(0.5, 2 * sigma, steps=100, requires_grad=True, device=device)
drs = torch.outer(r, torch.tensor([1.0, 0, 0], device=device))
norms = torch.norm(drs, dim=1).reshape(-1, 1)
training_energies = torch.stack(list(map(lennard_jones, norms))).reshape(-1, 1)
training_forces = torch.stack(
[force * dr for force, dr in zip(map(lennard_jones_force, norms), drs)]
)
model = nn.Sequential(
nn.Linear(1, 16),
nn.Tanh(),
nn.Linear(16, 16),
nn.Tanh(),
nn.Linear(16, 16),
nn.Tanh(),
nn.Linear(16, 16),
nn.Tanh(),
nn.Linear(16, 1),
).to(device)
def make_prediction(model, drs, use_functorch):
norms = torch.norm(drs, dim=1).reshape(-1, 1)
energies = model(norms)
if use_functorch:
network_derivs = vmap(jac(model))(norms).squeeze(-1)
forces = -network_derivs * drs / norms
else:
forces = []
for r, dr in zip(norms, drs):
network_deriv = torch.autograd.functional.jacobian(
model, r, create_graph=True
)
force = -network_deriv * dr / r
forces.append(force)
forces = torch.cat(forces)
return energies, forces
def loss_fn(energies, forces, predicted_energies, predicted_forces):
return (
F.mse_loss(energies, predicted_energies)
+ 0.01 * F.mse_loss(forces, predicted_forces) / 3
)
energies, forces = make_prediction(model, drs, use_functorch=True)
loss = loss_fn(training_energies, training_forces, energies, forces)
result = torch.autograd.grad(loss, model.parameters())
energies, forces = make_prediction(model, drs, use_functorch=False)
loss = loss_fn(training_energies, training_forces, energies, forces)
expected = torch.autograd.grad(loss, model.parameters())
self.assertEqual(result, expected)
@parametrize("mechanism", ["make_functional", "functional_call"])
def test_ensemble_regression(self, device, mechanism):
def make_spirals(n_samples, noise_std=0.0, rotations=1.0):
ts = torch.linspace(0, 1, n_samples)
rs = ts**0.5
thetas = rs * rotations * 2 * math.pi
signs = torch.randint(0, 2, (n_samples,)) * 2 - 1
labels = (signs > 0).to(torch.long)
xs = rs * signs * torch.cos(thetas) + torch.randn(n_samples) * noise_std
ys = rs * signs * torch.sin(thetas) + torch.randn(n_samples) * noise_std
points = torch.stack([xs, ys], dim=1)
return points.to(device), labels.to(device)
points, labels = make_spirals(100, noise_std=0.05)
class MLPClassifier(nn.Module):
def __init__(self, hidden_dim=32, n_classes=2):
super().__init__()
self.hidden_dim = hidden_dim
self.n_classes = n_classes
self.fc1 = nn.Linear(2, self.hidden_dim)
self.fc2 = nn.Linear(self.hidden_dim, self.n_classes)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.log_softmax(x, -1)
return x
loss_fn = nn.NLLLoss()
func_model, weights = _get_weights_and_functional_call(
MLPClassifier().to(device), mechanism
)
def train_step_fn(use_transform, weights, batch, targets, lr=0.2):
def compute_loss(weights, batch, targets):
output = func_model(weights, batch)
loss = loss_fn(output, targets)
return loss
if use_transform:
grad_weights, loss = grad_and_value(compute_loss)(
weights, batch, targets
)
else:
loss = compute_loss(weights, batch, targets)
flat_weights, spec = tree_flatten(weights)
flat_grad_weights = torch.autograd.grad(loss, flat_weights)
grad_weights = tree_unflatten(flat_grad_weights, spec)
new_weights = self._update_params(weights, grad_weights, lr, mechanism)
return (loss, new_weights)
def unpack(train_result):
return train_result[0], train_result[1]
def init_fn(num_models):
models = tuple(MLPClassifier().to(device) for _ in range(num_models))
if mechanism == "make_functional":
return combine_state_for_ensemble(models)[1]
else:
return stack_module_state(models)[0]
def slice_weights(batched_weights, index):
return tree_map(
lambda weight: weight[index].detach().requires_grad_(), batched_weights
)
batched_weights = init_fn(num_models=2)
parallel_train_step_fn = vmap(
partial(train_step_fn, True), in_dims=(0, None, None)
)
result_loss, result_weights = unpack(
parallel_train_step_fn(batched_weights, points, labels)
)
loss0, weights0 = unpack(
train_step_fn(False, slice_weights(batched_weights, 0), points, labels)
)
loss1, weights1 = unpack(
train_step_fn(False, slice_weights(batched_weights, 1), points, labels)
)
expected_loss = torch.stack([loss0, loss1])
weights0, spec0 = tree_flatten(weights0)
weights1, spec1 = tree_flatten(weights1)
assert spec0 == spec1
expected_weights = tuple(
torch.stack([w0, w1]) for w0, w1 in zip(weights0, weights1)
)
expected_weights = tree_unflatten(expected_weights, spec0)
self.assertEqual(result_loss, expected_loss)
self.assertEqual(result_weights, expected_weights)
@parametrize(
"dropout_layer",
[
subtest(nn.Dropout, "Dropout"),
subtest(nn.AlphaDropout, "AlphaDropout"),
subtest(nn.FeatureAlphaDropout, "FeatureAlphaDropout"),
],
)
@parametrize("mechanism", ["make_functional", "functional_call"])
def test_find_learning_rate_ensembling(self, device, dropout_layer, mechanism):
# This example mimics what a user might do when trying to find the optimal learning rate. They would
# want to run a bunch of models with the same behavior (including the same dropout!) and have them
# each run with different learning rates. Specifically, this is an example of using same randomness with vmap
points, labels = torch.randn(100, 2, 2, 2, 2, device=device), torch.randint(
0, 2, (100,), device=device
)
class MLPClassifier(nn.Module):
def __init__(self, hidden_dim=32, n_classes=2):
super().__init__()
self.hidden_dim = hidden_dim
self.n_classes = n_classes
self.dropout = dropout_layer()
self.fc1 = nn.Linear(16, self.hidden_dim)
self.fc2 = nn.Linear(self.hidden_dim, self.n_classes)
def forward(self, x):
x = self.dropout(x)
x = torch.flatten(x, start_dim=1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.log_softmax(x, -1)
return x
loss_fn = nn.NLLLoss()
func_model, weights = _get_weights_and_functional_call(
MLPClassifier().to(device), mechanism
)
def train_step_fn(weights, batch, targets, lr):
def compute_loss(weights, batch, targets):
output = func_model(weights, batch)
loss = loss_fn(output, targets)
return loss
grad_weights, loss = grad_and_value(compute_loss)(weights, batch, targets)
new_weights = self._update_params(weights, grad_weights, lr, mechanism)
if mechanism != "make_functional":
new_weights = list(new_weights.values())
# NB: return looks weird because torch.vmap must return Tensors
return (loss, *new_weights)
def unpack(train_result):
return train_result[0], train_result[1:]
def init_fn(num_models):
og_model = MLPClassifier().to(device)
models = tuple(
copy.deepcopy(og_model) for _ in range(num_models)
) # have same initialization
if mechanism == "make_functional":
return combine_state_for_ensemble(models)[1]
else:
return stack_module_state(models)[0]
batched_weights = init_fn(num_models=2)
parallel_train_step_fn = vmap(
train_step_fn, in_dims=(0, None, None, 0), randomness="same"
)
lrs = torch.tensor([0.2, 0.4], device=device)
result_loss, result_weights = unpack(
parallel_train_step_fn(batched_weights, points, labels, lrs)
)
self.assertEqual(result_loss[0], result_loss[1])
self.assertNotEqual(
tuple(weight[0] for weight in result_weights),
tuple(weight[1] for weight in result_weights),
)
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
@parametrize("mechanism", ["make_functional", "functional_call"])
def test_resnet18_per_sample_grads(self, device, mechanism):
import torchvision.models as models
model = models.__dict__["resnet18"](
pretrained=False, norm_layer=(lambda c: nn.GroupNorm(min(32, c), c))
).to(device)
criterion = nn.CrossEntropyLoss(
reduction="sum"
) # avoid cross batch reductions for for loop comparison
func_model, weights = _get_weights_and_functional_call(model, mechanism)
def compute_loss(weights, image, target):
image = image.unsqueeze(0)
target = target.unsqueeze(0)
output = func_model(weights, image)
loss = criterion(output, target)
return loss
batch_size = 3
images = torch.randn(batch_size, 3, 32, 32, device=device)
targets = torch.randint(0, 10, (batch_size,), device=device)
result_grads = vmap(grad(compute_loss), in_dims=(None, 0, 0))(
weights, images, targets
)
flat_weights, spec = tree_flatten(weights)
expected_grads = [
torch.autograd.grad(
compute_loss(weights, images[i], targets[i]), flat_weights
)
for i in range(batch_size)
]
expected_grads = [torch.stack(shards) for shards in zip(*expected_grads)]
expected_grads = tree_unflatten(expected_grads, spec)
self.assertEqual(result_grads, expected_grads, atol=1e-3, rtol=1.0)
def normalize_devices(fx_g):
for node in fx_g.graph.nodes:
args = list(node.args)
for idx, arg in enumerate(args):
if isinstance(arg, torch.device):
args[idx] = "cpu"
node.args = tuple(args)
new_kwargs = {}
for k, v in node.kwargs.items():
if isinstance(v, torch.device):
v = "cpu"
new_kwargs[k] = v
node.kwargs = new_kwargs
fx_g.recompile()
return fx_g
@markDynamoStrictTest
class TestFunctionalize(TestCase):
def _check_functionalize_correctness(self, f, inpt, *, skip_vmap=False):
inpt1 = inpt.clone()
inpt2 = inpt.clone()
inpt3 = inpt.clone()
expected_outputs = f(inpt1)
if skip_vmap:
actual_outputs = functionalize(f)(inpt2)
else:
actual_outputs = vmap(functionalize(f))(inpt2.unsqueeze(0))[0].squeeze()
# Right now the flavor of functionalize that also removes view ops
# isn't being used with vmap
# That's because {view}_copy ops don't have batching rules yet
# (although we should probably fix that)
actual_outputs_view_copy = functionalize(f, remove="mutations_and_views")(inpt3)
# Check that outputs are the same
self.assertEqual(actual_outputs, expected_outputs)
self.assertEqual(actual_outputs_view_copy, expected_outputs)
# Inputs might have been mutated by f: check that they were mutated properly
self.assertEqual(inpt1, inpt2)
self.assertEqual(inpt1, inpt3)
def test_simple_view(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
tmp = torch.ones(2, device=device)
y = x.view(4, 2)
y.add_(tmp)
return x
self._check_functionalize_correctness(f, torch.zeros(4, 2, device=device))
def test_multioutput_view(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
tmp = torch.ones(2, device=device)
y1, y2 = x.split(2)
y1_view = y1.diagonal()
y1_view.add_(tmp)
return x
self._check_functionalize_correctness(f, torch.zeros(4, 2, device=device))
def test_inplace_view(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
tmp = torch.ones(4, device=device)
y = x + x
y2 = y.transpose(1, 0)
z = y2[0]
z.add_(tmp)
return y
self._check_functionalize_correctness(
f, torch.zeros(4, 2, device=device), skip_vmap=True
)
# See https://github.com/pytorch/functorch/issues/780
def test_linear(self, device):
def f(x, y, z) -> torch.Tensor:
return torch._C._nn.linear(x, y, z)
x = torch.randn(14, 1, 384, device=device)
y = torch.randn(96, 384, device=device)
z = torch.randn(96, device=device)
out_expected = f(x, y, z)
out_actual = functionalize(f)(x, y, z)
self.assertEqual(out_expected, out_actual)
def test_multioutput_inplace_slice_view(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
tmp = torch.ones(2, 2, device=device)
y = x.view(8)
z0 = y.reshape(2, 4)
z1 = z0.transpose(1, 0)
z1.unsqueeze_(0)
z1.squeeze_()
z2, z3 = z1.split(2)
z2.add_(tmp)
return x
# See Note [Fix vmap slice_scatter]
self._check_functionalize_correctness(
f, torch.zeros(4, 2, device=device), skip_vmap=True
)
# Ensure functionalize works with List[Optional[Tensor]] arguments.
# See the fix / discussion at https://github.com/pytorch/pytorch/pull/76085
def test_functionalize_opt_tensor_list(self, device):
def f(x: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
return x[indices]
inpta = torch.ones(4, device=device)
inptb = torch.arange(2, device=device)
out1 = f(inpta, inptb)
out2 = functionalize(f)(inpta, inptb)
self.assertEqual(out1, out2)
out = make_fx(functionalize(f))(inpta, inptb)
self.assertExpectedInline(
(out.code),
"""\
def forward(self, x_1, indices_1) -> torch.Tensor:
index = torch.ops.aten.index.Tensor(x_1, [indices_1]); x_1 = indices_1 = None
return index
""",
)
# Ensure grad(functionalize(f)) works
def test_functionalize_grad(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
tmp = torch.ones(2, device=device)
y = x + x
z = y.view(4, 2)
y.add_(tmp)
return z.sum()
inpt1 = torch.ones(4, 2, device=device)
inpt2 = torch.ones(4, 2, device=device)
out1 = grad(f)(inpt1)
out2 = grad(functionalize(f))(inpt2)
self.assertEqual(out1, out2)
self.assertEqual(inpt1, inpt2)
@unittest.skipIf(IS_FBCODE, "fails in fbcode")
def test_vmap_functionalize_jvp(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
y = x + x
z = y.view(-1)
y.add_(1)
return z
def jvp_wrapper(x, t):
return jvp(
f,
(x,),
(t,),
)
x = torch.randn(2, 3, device=device)
t = torch.randn(2, 3, device=device)
out1 = vmap(jvp_wrapper)(x, t)
out2 = vmap(functionalize(jvp_wrapper))(x, t)
self.assertEqual(out1, out2)
# TODO: move this test into test_fake_tensor.py
# once functionalize() can be used in core tests.
def test_functionalize_fake_tensors(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
y = x.detach()
return y + y
with FakeTensorMode() as mode:
x = torch.ones(2, device=device, requires_grad=True)
out = functionalize(f)(x)
self.assertEqual(x.size(), (2,))
def test_functionalize_fx_simple(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
tmp = torch.ones(2, device=device)
y = x.view(4, 2)
y.add_(tmp)
return x
# There's a copy_ in the graph, because the input (x) was mutated.
# To preserve semantics, functionalize() needs to propagate the mutation.
fn = make_fx(functionalize(f, remove="mutations_and_views"))
out = fn(torch.zeros(4, 2, device=device))
out = normalize_devices(out)
self.assertExpectedInline(
(out.code),
"""\
def forward(self, x_1) -> torch.Tensor:
ones = torch.ops.aten.ones.default([2], device = 'cpu', pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(x_1, [4, 2])
add = torch.ops.aten.add.Tensor(view_copy, ones); view_copy = ones = None
view_copy_1 = torch.ops.aten.view_copy.default(add, [4, 2]); add = None
view_copy_2 = torch.ops.aten.view_copy.default(view_copy_1, [4, 2])
copy_ = torch.ops.aten.copy_.default(x_1, view_copy_1); x_1 = None
return view_copy_1
""",
)
def test_functionalize_fx_transpose_simple(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
return x.transpose(1, 0)
fn = make_fx(functionalize(f, remove="mutations_and_views"))
out = fn(torch.zeros(4, 2, device=device))
out = normalize_devices(out)
self.assertExpectedInline(
out.code,
"""\
def forward(self, x_1) -> torch.Tensor:
transpose_copy = torch.ops.aten.transpose_copy.int(x_1, 1, 0); x_1 = None
return transpose_copy
""",
)
def test_functionalize_fx_out_op(self, device):
def f(inpt: torch.Tensor) -> torch.Tensor:
out = torch.empty((), dtype=torch.float32)
torch.add(inpt, inpt, out=out)
out_view = out.view(4)
out_view.add_(1)
return out
fn = make_fx(functionalize(f, remove="mutations_and_views"))
out = fn(torch.arange(4, device=device, dtype=torch.float32))
out = normalize_devices(out)
self.assertExpectedInline(
out.code,
"""\
def forward(self, inpt_1) -> torch.Tensor:
empty = torch.ops.aten.empty.memory_format([], dtype = torch.float32, device = 'cpu', pin_memory = False)
add = torch.ops.aten.add.Tensor(inpt_1, inpt_1); inpt_1 = None
view_copy = torch.ops.aten.view_copy.default(add, [4])
view_copy_1 = torch.ops.aten.view_copy.default(add, [4]); add = None
add_1 = torch.ops.aten.add.Tensor(view_copy_1, 1); view_copy_1 = None
view_copy_2 = torch.ops.aten.view_copy.default(add_1, [4]); add_1 = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [4])
return view_copy_2
""",
)
def test_functionalize_fx_multi_out_op(self, device):
def f(inpt: torch.Tensor) -> torch.Tensor:
mins = torch.empty(4, dtype=torch.float32)
maxs = torch.empty(2, 2, dtype=torch.float32)
maxs_view = maxs.view(4)
inpt_view = inpt.view(2, 4)
torch.aminmax(inpt_view, dim=0, out=(mins, maxs_view))
return (maxs, mins)
fn = make_fx(functionalize(f, remove="mutations_and_views"))
out = fn(torch.arange(8, device=device, dtype=torch.float32))
out = normalize_devices(out)
self.assertExpectedInline(
out.code,
"""\
def forward(self, inpt_1) -> torch.Tensor:
empty = torch.ops.aten.empty.memory_format([4], dtype = torch.float32, device = 'cpu', pin_memory = False)
empty_1 = torch.ops.aten.empty.memory_format([2, 2], dtype = torch.float32, device = 'cpu', pin_memory = False)
view_copy = torch.ops.aten.view_copy.default(empty_1, [4]); empty_1 = None
view_copy_1 = torch.ops.aten.view_copy.default(inpt_1, [2, 4]); inpt_1 = None
aminmax = torch.ops.aten.aminmax.default(view_copy_1, dim = 0); view_copy_1 = None
getitem = aminmax[0]
getitem_1 = aminmax[1]; aminmax = None
view_copy_2 = torch.ops.aten.view_copy.default(getitem_1, [2, 2]); getitem_1 = None
view_copy_3 = torch.ops.aten.view_copy.default(view_copy_2, [4])
return (view_copy_2, getitem)
""",
)
def test_functionalize_fx_reapply_views_simple(self, device):
def f(x: torch.Tensor) -> torch.Tensor:
tmp = torch.ones(2, device=device)
y = x.view(4, 2)
y.add_(tmp)
return x
out = make_fx(functionalize(f))(torch.zeros(4, 2, device=device))
out = normalize_devices(out)
self.assertExpectedInline(
out.code,
"""\
def forward(self, x_1) -> torch.Tensor:
ones = torch.ops.aten.ones.default([2], device = 'cpu', pin_memory = False)
view = torch.ops.aten.view.default(x_1, [4, 2])
add = torch.ops.aten.add.Tensor(view, ones); view = ones = None
view_1 = torch.ops.aten.view.default(add, [4, 2]); add = None
view_2 = torch.ops.aten.view.default(view_1, [4, 2])
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = None
return view_1
""",
)
def test_functionalize_nonfunctional_output(self, device):
global_out = torch.ones(2, device=device)
def f() -> torch.Tensor:
return global_out
out = make_fx(functionalize(f))()
out = normalize_devices(out)
self.assertExpectedInline(
out.code,
"""\
def forward(self) -> torch.Tensor:
_tensor_constant0 = self._tensor_constant0
return _tensor_constant0
""",
)
def test_functionalize_optional_tensorlist1(self, device):
def f(a, b) -> torch.Tensor:
# at::index has OptionalTensorList arguments,
# test that here
return a[b]
a = torch.arange(4).reshape(2, 2)
b = torch.ones(2, dtype=torch.long)
out = make_fx(functionalize(f))(a, b)
out = normalize_devices(out)
self.assertExpectedInline(
out.code,
"""\
def forward(self, a_1, b_1) -> torch.Tensor:
index = torch.ops.aten.index.Tensor(a_1, [b_1]); a_1 = b_1 = None
return index
""",
)
@unittest.skipIf(IS_FBCODE, "fails in fbcode")
def test_functionalize_optional_tensorlist2(self, device):
def f(a, b) -> torch.Tensor:
# See https://github.com/pytorch/pytorch/pull/77846
return torch.ops.aten.index(a, b)
a = torch.arange(4).reshape(2, 2)
b = torch.ones(2, dtype=torch.long)
out = make_fx(functionalize(f))(a, b)
self.assertExpectedInline(
out.code,
"""\
def forward(self, a_1, b_1) -> torch.Tensor:
unbind = torch.ops.aten.unbind.int(b_1); b_1 = None
getitem = unbind[0]
getitem_1 = unbind[1]; unbind = None
index = torch.ops.aten.index.Tensor(a_1, [getitem, getitem_1]); a_1 = getitem = getitem_1 = None
return index
""",
)
def test_resize_program_inputs(self, device):
def f(x):
x.resize_(10)
x.fill_(2)
fn = make_fx(functionalize(f))
out = fn(torch.zeros(0, device=device))
out = normalize_devices(out)
self.assertExpectedInline(
(out.code),
"""\
def forward(self, x_1):
resize = torch.ops.aten.resize.default(x_1, [10])
fill = torch.ops.aten.fill.Scalar(resize, 2); resize = None
resize_ = torch.ops.aten.resize_.default(x_1, [10]); x_1 = None
copy_ = torch.ops.aten.copy_.default(resize_, fill); resize_ = fill = None
return None
""",
)
def construct_sum_pyop():
mysum = HigherOrderOperator("mysum")
@mysum.py_impl(torch._C._functorch.TransformType.Vmap)
def mysum_batch_rule(interpreter, x, dim):
if not torch._C._functorch.is_batchedtensor(x):
with interpreter.lower():
x = x.view_as(x) # unnecessary, just here to test the dispatch
return mysum(x, dim)
bdim = torch._C._functorch.maybe_get_bdim(x)
value = torch._C._functorch.get_unwrapped(x)
with interpreter.lower():
value = value.movedim(bdim, 0)
result = mysum(value, dim + 1)
return torch._C._functorch._add_batch_dim(result, 0, interpreter.level())
@mysum.py_impl(torch._C._functorch.TransformType.Grad)
def mysum_grad_rule(interpreter, x, dim):
level = interpreter.level()
class MySum(torch.autograd.function._SingleLevelFunction):
@staticmethod
def forward(ctx, x, dim):
ctx.x_shape = x.shape
ctx.dim = dim
x = torch._C._functorch._unwrap_for_grad(x, level)
with torch.enable_grad(), interpreter.lower():
x = x.view_as(x) # unnecessary, just here to test the dispatch
y = mysum(x, dim)
y = torch._C._functorch._wrap_for_grad(y, level)
return y
@staticmethod
def backward(ctx, gy):
return gy.unsqueeze(ctx.dim).expand(ctx.x_shape), None
with enable_single_level_autograd_function():
return MySum.apply(x, dim)
@mysum.py_impl(torch._C.DispatchKey.AutogradCPU)
def mysum_autograd_cpu(x, dim):
return torch.sum(x, dim)
@mysum.py_impl(torch._C.DispatchKey.AutogradCUDA)
def mysum_autograd_cuda(x, dim):
return torch.sum(x, dim)
return mysum
sum_pyop = construct_sum_pyop()
@markDynamoStrictTest
class TestHigherOrderOperatorInteraction(TestCase):
def test_basic_sum(self, device):
x = torch.randn(2, 3, 4, device=device)
result = sum_pyop(x, 1)
self.assertEqual(result, torch.sum(x, 1))
def test_vmap_sum(self, device):
x = torch.randn(2, 3, 4, device=device)
result = vmap(sum_pyop, (0, None))(x, 0)
self.assertEqual(result, torch.sum(x, 1))
result = vmap(vmap(sum_pyop, (0, None)), (0, None))(x, 0)
self.assertEqual(result, torch.sum(x, 2))
def test_grad_sum(self, device):
x = torch.randn(3, device=device)
gx = grad(sum_pyop)(x, 0)
self.assertEqual(gx, torch.ones_like(x))
def test_grad_grad_sum(self, device):
x = torch.randn(3, requires_grad=True, device=device)
def f(x):
# higher order grad. Requires a non-linearity
return sum_pyop(x.sin(), 0)
def grad_f_sum(x):
return grad(f)(x).sum()
ggx = grad(grad_f_sum)(x)
self.assertEqual(ggx, -x.sin())
def test_vmap_grad_sum(self, device):
x = torch.randn(2, 3, device=device)
gx = vmap(grad(sum_pyop), (0, None))(x, 0)
self.assertEqual(gx, torch.ones_like(x))
def test_no_grad_outside_grad(self, device):
x = torch.randn(3, device=device, requires_grad=True)
with torch.no_grad():
y = grad(sum_pyop)(x, 0)
self.assertEqual(y, torch.ones_like(x))
self.assertFalse(y.requires_grad)
def test_no_grad_inside_grad(self, device):
def f(x):
with torch.no_grad():
shift = sum_pyop(x**2, 0)
return sum_pyop(x**2, 0) - shift
x = torch.randn(3, device=device)
y = grad(f)(x)
self.assertEqual(y, 2 * x)
y = grad(lambda x: grad(f)(x).sum())(x)
self.assertEqual(y, torch.full_like(x, 2))
x = torch.randn(3, device=device, requires_grad=True)
y = grad(f)(x)
(z,) = torch.autograd.grad(y.sum(), x)
self.assertEqual(z, torch.full_like(x, 2))
def test_grad_name_wrapping(self, device):
def my_fn(x):
return x.sum()
grad_fn = grad(my_fn)
self.assertEqual(grad_fn.__name__, "my_fn")
def test_functional_call_multiple_dicts(self):
mod = nn.Linear(1, 1)
x = torch.randn((1, 1))
params = ({"weight": torch.zeros(1, 1)}, {"bias": torch.ones(1)})
functional_call(mod, params, x)
def traceable(f):
f = allow_in_graph(f)
@wraps(f)
def wrapper(*args, **kwargs):
return f(*args, **kwargs)
return wrapper
@markDynamoStrictTest
class TestCompileTransforms(TestCase):
@skipIfRocm(msg="test leaks memory on ROCm")
# torch.compile is not supported on Windows CUDA.
# Triton only supports GPU with SM70 or later.
@expectedFailureIf((IS_WINDOWS and TEST_CUDA) or (TEST_CUDA and not SM70OrLater))
def test_compile_vmap_hessian(self, device):
# The model and inputs are a smaller version
# of code at benchmark repo:
# https://github.com/pytorch/benchmark/blob/main/userbenchmark/functorch/vmap_hessian_fc.py
D = 2
B = 4
x = torch.randn(B, D, device=device)
model = nn.Sequential(nn.Linear(D, D), nn.ReLU()).to(device)
params_and_buffers = (
dict(model.named_parameters()),
dict(model.named_buffers()),
)
def predict(params_and_buffers, x):
out = torch.func.functional_call(model, params_and_buffers, x)
return out, out
fn = vmap(
jacfwd(jacrev(predict, argnums=1, has_aux=True), argnums=1, has_aux=True),
in_dims=(None, 0),
)
expected = fn(params_and_buffers, x)
opt_fn = torch.compile(traceable(fn))
actual = opt_fn(params_and_buffers, x)
self.assertEqual(actual, expected)
# torch.compile is not supported on Windows
@expectedFailureIf(IS_WINDOWS)
@torch._dynamo.config.patch(suppress_errors=False)
def test_grad_deprecated_api(self, device):
x = torch.randn((), device=device)
y = torch.randn((), device=device)
def wrapper_fn(x, y):
return functorch.grad(torch.mul)(x, y)
actual = wrapper_fn(x, y)
expected = torch.compile(wrapper_fn, backend="eager", fullgraph=True)(x, y)
fn = torch.compile(wrapper_fn, backend="eager", fullgraph=True)
self.assertEqual(actual, expected)
def wrapper_fn(x, y):
return functorch.grad(torch.mul, argnums=(0, 1))(x, y)
actual = wrapper_fn(x, y)
expected = torch.compile(wrapper_fn, backend="eager", fullgraph=True)(x, y)
self.assertEqual(actual, expected)
only_for = ("cpu", "cuda")
instantiate_device_type_tests(
TestGradTransform,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestVmapOfGrad,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestJac,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestJvp,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestLinearize,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestVmapJvpInplaceView,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestHessian,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestComposability,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestExamplesCorrectness,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestHigherOrderOperatorInteraction,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestFunctionalize,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestAutogradFunction,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestAutogradFunctionVmapAPI,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestHelpers,
globals(),
only_for=only_for,
)
instantiate_parametrized_tests(
TestMakeFunctional,
)
instantiate_device_type_tests(
TestCompileTransforms,
globals(),
only_for=only_for,
)
if __name__ == "__main__":
run_tests()