mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-05 16:44:58 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44735 Reviewed By: mruberry Differential Revision: D23731306 Pulled By: ezyang fbshipit-source-id: 0ba009a99e475ddbe22981be8ac636f8a1c8b02f
35 lines
1.2 KiB
Python
35 lines
1.2 KiB
Python
import time
|
|
from collections import namedtuple
|
|
from torch.utils import ThroughputBenchmark
|
|
|
|
NUM_LOOP_ITERS = 1000
|
|
BenchmarkConfig = namedtuple('BenchmarkConfig', 'num_warmup_iters num_iters')
|
|
ModuleConfig = namedtuple('ModuleConfig', 'pt_fn c2_op num_params graph_mode')
|
|
|
|
def ms_to_us(time_ms):
|
|
return (time_ms * 1e3)
|
|
|
|
def secs_to_us(time_s):
|
|
return (time_s * 1e6)
|
|
|
|
def secs_to_ms(time_s):
|
|
return (time_s * 1e3)
|
|
|
|
def benchmark_using_throughput_benchmark(config, module):
|
|
print("Benchmarking via ThroughputBenchmark")
|
|
bench = ThroughputBenchmark(module.module)
|
|
bench.add_input(*module.tensor_inputs)
|
|
stats = bench.benchmark(1, config.num_warmup_iters, config.num_iters)
|
|
return stats.latency_avg_ms / NUM_LOOP_ITERS
|
|
|
|
def benchmark_module(config, module, use_throughput_benchmark=False):
|
|
if use_throughput_benchmark:
|
|
return benchmark_using_throughput_benchmark(config, module)
|
|
module.forward(config.num_warmup_iters)
|
|
print("Running module for {} iterations".format(config.num_iters))
|
|
start = time.time()
|
|
module.forward(config.num_iters)
|
|
end = time.time()
|
|
time_elapsed_s = (end - start)
|
|
return (secs_to_ms(time_elapsed_s) / config.num_iters / NUM_LOOP_ITERS)
|