Files
pytorch/tools/setup_helpers/cuda.py
Hong Xu 8fbefa06f6 Avoid configuring ROCm if USE_CUDA is on. (#26910)
Summary:
Move the resolution of conflict between `USE_CUDA` and `USE_ROCM` to CMake as to effectuate:

- `USE_CUDA=ON` and CUDA is found, `USE_ROCM=ON` and ROCM is found --> fatal error
- Either `USE_CUDA=ON` and CUDA is found or `USE_ROCM=ON` and ROCM is found --> The respective GPU feature is ON
- Otherwise no GPU support
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26910

Differential Revision: D17738652

Pulled By: ezyang

fbshipit-source-id: 8e07cc7e922e0abda24a6518119c28952276064e
2019-10-03 08:31:03 -07:00

83 lines
2.9 KiB
Python

import os
import glob
import re
import ctypes.util
from subprocess import Popen, PIPE
from . import which
from .env import IS_WINDOWS, IS_LINUX, IS_DARWIN, check_negative_env_flag
LINUX_HOME = '/usr/local/cuda'
WINDOWS_HOME = glob.glob('C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
def find_nvcc():
nvcc = which('nvcc')
if nvcc is not None:
return os.path.dirname(nvcc)
else:
return None
def find_cuda_version(cuda_home):
if cuda_home is None:
return None
if IS_WINDOWS:
candidate_names = [os.path.basename(cuda_home)]
else:
# get CUDA lib folder
cuda_lib_dirs = ['lib64', 'lib']
for lib_dir in cuda_lib_dirs:
cuda_lib_path = os.path.join(cuda_home, lib_dir)
if os.path.exists(cuda_lib_path):
break
# get a list of candidates for the version number
# which are files containing cudart
candidate_names = list(glob.glob(os.path.join(cuda_lib_path, '*cudart*')))
candidate_names = [os.path.basename(c) for c in candidate_names]
# if we didn't find any cudart, ask nvcc
if len(candidate_names) == 0:
proc = Popen(['nvcc', '--version'], stdout=PIPE, stderr=PIPE)
out, err = proc.communicate()
candidate_names = [out.decode().rsplit('V')[-1]]
# suppose version is MAJOR.MINOR.PATCH, all numbers
version_regex = re.compile(r'[0-9]+\.[0-9]+\.[0-9]+')
candidates = [c.group() for c in map(version_regex.search, candidate_names) if c]
if len(candidates) > 0:
# normally only one will be retrieved, take the first result
return candidates[0]
# if no candidates were found, try MAJOR.MINOR
version_regex = re.compile(r'[0-9]+\.[0-9]+')
candidates = [c.group() for c in map(version_regex.search, candidate_names) if c]
if len(candidates) > 0:
return candidates[0]
if check_negative_env_flag('USE_CUDA'):
USE_CUDA = False
CUDA_HOME = None
CUDA_VERSION = None
else:
if IS_LINUX or IS_DARWIN:
CUDA_HOME = os.getenv('CUDA_HOME', LINUX_HOME)
else:
CUDA_HOME = os.getenv('CUDA_PATH', '').replace('\\', '/')
if CUDA_HOME == '' and len(WINDOWS_HOME) > 0:
CUDA_HOME = WINDOWS_HOME[0].replace('\\', '/')
if not os.path.exists(CUDA_HOME):
# We use nvcc path on Linux and cudart path on macOS
if IS_LINUX or IS_WINDOWS:
cuda_path = find_nvcc()
else:
cudart_path = ctypes.util.find_library('cudart')
if cudart_path is not None:
cuda_path = os.path.dirname(cudart_path)
else:
cuda_path = None
if cuda_path is not None:
CUDA_HOME = os.path.dirname(cuda_path)
else:
CUDA_HOME = None
CUDA_VERSION = find_cuda_version(CUDA_HOME)
USE_CUDA = CUDA_HOME is not None