Files
pytorch/torch/csrc/utils/tensor_numpy.cpp
cyy 8fa81a6066 Enable misc-use-internal-linkage check and apply fixes (#148948)
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.

The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.

The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
2025-03-12 14:22:56 +00:00

572 lines
18 KiB
C++

#include <torch/csrc/THP.h>
#include <torch/csrc/utils/tensor_numpy.h>
#define WITH_NUMPY_IMPORT_ARRAY
#include <c10/util/irange.h>
#include <torch/csrc/utils/numpy_stub.h>
#ifndef USE_NUMPY
namespace torch::utils {
PyObject* tensor_to_numpy(const at::Tensor&, bool) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
at::Tensor tensor_from_numpy(
PyObject* obj,
bool warn_if_not_writeable /*=true*/) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
bool is_numpy_available() {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
bool is_numpy_int(PyObject* obj) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
bool is_numpy_scalar(PyObject* obj) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
void warn_numpy_not_writeable() {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
// No-op stubs.
void validate_numpy_for_dlpack_deleter_bug() {}
bool is_numpy_dlpack_deleter_bugged() {
return false;
}
} // namespace torch::utils
#else
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/object_ptr.h>
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <memory>
#include <stdexcept>
using namespace at;
using namespace torch::autograd;
namespace torch::utils {
bool is_numpy_available() {
static bool available = []() {
if (_import_array() >= 0) {
return true;
}
// Try to get exception message, print warning and return false
std::string message = "Failed to initialize NumPy";
PyObject *type = nullptr, *value = nullptr, *traceback = nullptr;
PyErr_Fetch(&type, &value, &traceback);
if (auto str = value ? PyObject_Str(value) : nullptr) {
if (auto enc_str = PyUnicode_AsEncodedString(str, "utf-8", "strict")) {
if (auto byte_str = PyBytes_AS_STRING(enc_str)) {
message += ": " + std::string(byte_str);
}
Py_XDECREF(enc_str);
}
Py_XDECREF(str);
}
PyErr_Clear();
TORCH_WARN(message);
return false;
}();
return available;
}
static std::vector<npy_intp> to_numpy_shape(IntArrayRef x) {
// shape and stride conversion from int64_t to npy_intp
auto nelem = x.size();
auto result = std::vector<npy_intp>(nelem);
for (const auto i : c10::irange(nelem)) {
result[i] = static_cast<npy_intp>(x[i]);
}
return result;
}
static std::vector<int64_t> to_aten_shape(int ndim, npy_intp* values) {
// shape and stride conversion from npy_intp to int64_t
auto result = std::vector<int64_t>(ndim);
for (const auto i : c10::irange(ndim)) {
result[i] = static_cast<int64_t>(values[i]);
}
return result;
}
static std::vector<int64_t> seq_to_aten_shape(PyObject* py_seq) {
int ndim = PySequence_Length(py_seq);
if (ndim == -1) {
throw TypeError("shape and strides must be sequences");
}
auto result = std::vector<int64_t>(ndim);
for (const auto i : c10::irange(ndim)) {
auto item = THPObjectPtr(PySequence_GetItem(py_seq, i));
if (!item)
throw python_error();
result[i] = PyLong_AsLongLong(item);
if (result[i] == -1 && PyErr_Occurred())
throw python_error();
}
return result;
}
PyObject* tensor_to_numpy(const at::Tensor& tensor, bool force /*=false*/) {
TORCH_CHECK(is_numpy_available(), "Numpy is not available");
TORCH_CHECK(
!tensor.unsafeGetTensorImpl()->is_python_dispatch(),
".numpy() is not supported for tensor subclasses.");
TORCH_CHECK_TYPE(
tensor.layout() == Layout::Strided,
"can't convert ",
c10::str(tensor.layout()).c_str(),
" layout tensor to numpy. ",
"Use Tensor.dense() first.");
if (!force) {
TORCH_CHECK_TYPE(
tensor.device().type() == DeviceType::CPU,
"can't convert ",
tensor.device().str().c_str(),
" device type tensor to numpy. Use Tensor.cpu() to ",
"copy the tensor to host memory first.");
TORCH_CHECK(
!(at::GradMode::is_enabled() && tensor.requires_grad()),
"Can't call numpy() on Tensor that requires grad. "
"Use tensor.detach().numpy() instead.");
TORCH_CHECK(
!tensor.is_conj(),
"Can't call numpy() on Tensor that has conjugate bit set. ",
"Use tensor.resolve_conj().numpy() instead.");
TORCH_CHECK(
!tensor.is_neg(),
"Can't call numpy() on Tensor that has negative bit set. "
"Use tensor.resolve_neg().numpy() instead.");
}
auto prepared_tensor = tensor.detach().cpu().resolve_conj().resolve_neg();
auto dtype = aten_to_numpy_dtype(prepared_tensor.scalar_type());
auto sizes = to_numpy_shape(prepared_tensor.sizes());
auto strides = to_numpy_shape(prepared_tensor.strides());
// NumPy strides use bytes. Torch strides use element counts.
auto element_size_in_bytes = prepared_tensor.element_size();
for (auto& stride : strides) {
stride *= element_size_in_bytes;
}
auto array = THPObjectPtr(PyArray_New(
&PyArray_Type,
static_cast<int>(prepared_tensor.dim()),
sizes.data(),
dtype,
strides.data(),
prepared_tensor.data_ptr(),
0,
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE,
nullptr));
if (!array)
return nullptr;
// TODO: This attempts to keep the underlying memory alive by setting the base
// object of the ndarray to the tensor and disabling resizes on the storage.
// This is not sufficient. For example, the tensor's storage may be changed
// via Tensor.set_, which can free the underlying memory.
PyObject* py_tensor = THPVariable_Wrap(prepared_tensor);
if (!py_tensor)
throw python_error();
if (PyArray_SetBaseObject((PyArrayObject*)array.get(), py_tensor) == -1) {
return nullptr;
}
// Use the private storage API
prepared_tensor.storage().unsafeGetStorageImpl()->set_resizable(false);
return array.release();
}
void warn_numpy_not_writeable() {
TORCH_WARN_ONCE(
"The given NumPy array is not writable, and PyTorch does "
"not support non-writable tensors. This means writing to this tensor "
"will result in undefined behavior. "
"You may want to copy the array to protect its data or make it writable "
"before converting it to a tensor. This type of warning will be "
"suppressed for the rest of this program.");
}
at::Tensor tensor_from_numpy(
PyObject* obj,
bool warn_if_not_writeable /*=true*/) {
if (!is_numpy_available()) {
throw std::runtime_error("Numpy is not available");
}
TORCH_CHECK_TYPE(
PyArray_Check(obj),
"expected np.ndarray (got ",
Py_TYPE(obj)->tp_name,
")");
auto array = (PyArrayObject*)obj;
// warn_if_not_writable is true when a copy of numpy variable is created.
// the warning is suppressed when a copy is being created.
if (!PyArray_ISWRITEABLE(array) && warn_if_not_writeable) {
warn_numpy_not_writeable();
}
int ndim = PyArray_NDIM(array);
auto sizes = to_aten_shape(ndim, PyArray_DIMS(array));
auto strides = to_aten_shape(ndim, PyArray_STRIDES(array));
// NumPy strides use bytes. Torch strides use element counts.
auto element_size_in_bytes = PyArray_ITEMSIZE(array);
for (auto& stride : strides) {
TORCH_CHECK_VALUE(
stride % element_size_in_bytes == 0,
"given numpy array strides not a multiple of the element byte size. "
"Copy the numpy array to reallocate the memory.");
stride /= element_size_in_bytes;
}
for (const auto i : c10::irange(ndim)) {
TORCH_CHECK_VALUE(
strides[i] >= 0,
"At least one stride in the given numpy array is negative, "
"and tensors with negative strides are not currently supported. "
"(You can probably work around this by making a copy of your array "
" with array.copy().) ");
}
void* data_ptr = PyArray_DATA(array);
TORCH_CHECK_VALUE(
PyArray_EquivByteorders(PyArray_DESCR(array)->byteorder, NPY_NATIVE),
"given numpy array has byte order different from the native byte order. "
"Conversion between byte orders is currently not supported.");
// This has to go before the INCREF in case the dtype mapping doesn't
// exist and an exception is thrown
auto torch_dtype = numpy_dtype_to_aten(PyArray_TYPE(array));
Py_INCREF(obj);
return at::lift_fresh(at::from_blob(
data_ptr,
sizes,
strides,
[obj](void* data) {
pybind11::gil_scoped_acquire gil;
Py_DECREF(obj);
},
at::device(kCPU).dtype(torch_dtype)));
}
int aten_to_numpy_dtype(const ScalarType scalar_type) {
switch (scalar_type) {
case kDouble:
return NPY_DOUBLE;
case kFloat:
return NPY_FLOAT;
case kHalf:
return NPY_HALF;
case kComplexDouble:
return NPY_COMPLEX128;
case kComplexFloat:
return NPY_COMPLEX64;
case kLong:
return NPY_INT64;
case kInt:
return NPY_INT32;
case kShort:
return NPY_INT16;
case kChar:
return NPY_INT8;
case kByte:
return NPY_UINT8;
case kUInt16:
return NPY_UINT16;
case kUInt32:
return NPY_UINT32;
case kUInt64:
return NPY_UINT64;
case kBool:
return NPY_BOOL;
default:
throw TypeError("Got unsupported ScalarType %s", toString(scalar_type));
}
}
ScalarType numpy_dtype_to_aten(int dtype) {
switch (dtype) {
case NPY_DOUBLE:
return kDouble;
case NPY_FLOAT:
return kFloat;
case NPY_HALF:
return kHalf;
case NPY_COMPLEX64:
return kComplexFloat;
case NPY_COMPLEX128:
return kComplexDouble;
case NPY_INT16:
return kShort;
case NPY_INT8:
return kChar;
case NPY_UINT8:
return kByte;
case NPY_UINT16:
return kUInt16;
case NPY_UINT32:
return kUInt32;
case NPY_UINT64:
return kUInt64;
case NPY_BOOL:
return kBool;
default:
// Workaround: MSVC does not support two switch cases that have the same
// value
if (dtype == NPY_INT || dtype == NPY_INT32) {
// To cover all cases we must use NPY_INT because
// NPY_INT32 is an alias which maybe equal to:
// - NPY_INT, when sizeof(int) = 4 and sizeof(long) = 8
// - NPY_LONG, when sizeof(int) = 4 and sizeof(long) = 4
return kInt;
} else if (dtype == NPY_LONGLONG || dtype == NPY_INT64) {
// NPY_INT64 is an alias which maybe equal to:
// - NPY_LONG, when sizeof(long) = 8 and sizeof(long long) = 8
// - NPY_LONGLONG, when sizeof(long) = 4 and sizeof(long long) = 8
return kLong;
} else {
break; // break as if this is one of the cases above because this is
// only a workaround
}
}
auto pytype = THPObjectPtr(PyArray_TypeObjectFromType(dtype));
if (!pytype)
throw python_error();
throw TypeError(
"can't convert np.ndarray of type %s. The only supported types are: "
"float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint64, uint32, uint16, uint8, and bool.",
((PyTypeObject*)pytype.get())->tp_name);
}
bool is_numpy_int(PyObject* obj) {
return is_numpy_available() && PyArray_IsScalar((obj), Integer);
}
bool is_numpy_bool(PyObject* obj) {
return is_numpy_available() && PyArray_IsScalar((obj), Bool);
}
bool is_numpy_scalar(PyObject* obj) {
return is_numpy_available() &&
(is_numpy_int(obj) || PyArray_IsScalar(obj, Bool) ||
PyArray_IsScalar(obj, Floating) ||
PyArray_IsScalar(obj, ComplexFloating));
}
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
if (!is_numpy_available()) {
throw std::runtime_error("Numpy is not available");
}
auto cuda_dict =
THPObjectPtr(PyObject_GetAttrString(obj, "__cuda_array_interface__"));
TORCH_INTERNAL_ASSERT(cuda_dict);
if (!PyDict_Check(cuda_dict.get())) {
throw TypeError("`__cuda_array_interface__` must be a dict");
}
// Extract the `obj.__cuda_array_interface__['shape']` attribute
std::vector<int64_t> sizes;
{
PyObject* py_shape = nullptr;
if (PyDict_GetItemStringRef(cuda_dict, "shape", &py_shape) < 0) {
throw python_error();
}
if (py_shape == nullptr) {
throw TypeError("attribute `shape` must exist");
}
sizes = seq_to_aten_shape(py_shape);
}
// Extract the `obj.__cuda_array_interface__['typestr']` attribute
ScalarType dtype{};
int64_t dtype_size_in_bytes = 0;
{
PyObject* py_typestr = nullptr;
if (PyDict_GetItemStringRef(cuda_dict, "typestr", &py_typestr) < 0) {
throw python_error();
}
if (py_typestr == nullptr) {
throw TypeError("attribute `typestr` must exist");
}
PyArray_Descr* descr = nullptr;
TORCH_CHECK_VALUE(
PyArray_DescrConverter(py_typestr, &descr), "cannot parse `typestr`");
dtype = numpy_dtype_to_aten(descr->type_num);
#if NPY_ABI_VERSION >= 0x02000000
dtype_size_in_bytes = PyDataType_ELSIZE(descr);
#else
dtype_size_in_bytes = descr->elsize;
#endif
TORCH_INTERNAL_ASSERT(dtype_size_in_bytes > 0);
}
// Extract the `obj.__cuda_array_interface__['data']` attribute
void* data_ptr = nullptr;
{
PyObject* py_data = nullptr;
if (PyDict_GetItemStringRef(cuda_dict, "data", &py_data) < 0) {
throw python_error();
}
if (py_data == nullptr) {
throw TypeError("attribute `shape` data exist");
}
if (!PyTuple_Check(py_data) || PyTuple_GET_SIZE(py_data) != 2) {
throw TypeError("`data` must be a 2-tuple of (int, bool)");
}
data_ptr = PyLong_AsVoidPtr(PyTuple_GET_ITEM(py_data, 0));
if (data_ptr == nullptr && PyErr_Occurred()) {
throw python_error();
}
int read_only = PyObject_IsTrue(PyTuple_GET_ITEM(py_data, 1));
if (read_only == -1) {
throw python_error();
}
if (read_only) {
throw TypeError(
"the read only flag is not supported, should always be False");
}
}
// Extract the `obj.__cuda_array_interface__['strides']` attribute
std::vector<int64_t> strides;
{
PyObject* py_strides = nullptr;
if (PyDict_GetItemStringRef(cuda_dict, "strides", &py_strides) < 0) {
throw python_error();
}
if (py_strides != nullptr && py_strides != Py_None) {
if (PySequence_Length(py_strides) == -1 ||
static_cast<size_t>(PySequence_Length(py_strides)) != sizes.size()) {
throw TypeError(
"strides must be a sequence of the same length as shape");
}
strides = seq_to_aten_shape(py_strides);
// __cuda_array_interface__ strides use bytes. Torch strides use element
// counts.
for (auto& stride : strides) {
TORCH_CHECK_VALUE(
stride % dtype_size_in_bytes == 0,
"given array strides not a multiple of the element byte size. "
"Make a copy of the array to reallocate the memory.");
stride /= dtype_size_in_bytes;
}
} else {
strides = at::detail::defaultStrides(sizes);
}
}
const auto target_device = [&]() -> std::optional<Device> {
// note(crcrpar): zero-size arrays come with nullptr.
// ref:
// https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
if (data_ptr != nullptr) {
return {};
} else {
const auto current_device = at::detail::getCUDAHooks().getCurrentDevice();
return Device(
kCUDA,
static_cast<DeviceIndex>(current_device > -1 ? current_device : 0));
}
}();
Py_INCREF(obj);
return at::from_blob(
data_ptr,
sizes,
strides,
[obj](void* data) {
pybind11::gil_scoped_acquire gil;
Py_DECREF(obj);
},
at::device(kCUDA).dtype(dtype),
target_device);
}
// Mutated only once (during module init); behaves as an immutable variable
// thereafter.
static bool numpy_with_dlpack_deleter_bug_installed = false;
// NumPy implemented support for Dlpack capsules in version 1.22.0. However, the
// initial implementation did not correctly handle the invocation of
// `DLManagedTensor::deleter` in a no-GIL context. Until PyTorch 1.13.0, we
// were implicitly holding the GIL when the deleter was invoked, but this
// incurred a significant performance overhead when mem-unmapping large tensors.
// Starting with PyTorch 1.13.0, we release the GIL in `THPVariable_clear` just
// before deallocation, but this triggers the aforementioned bug in NumPy.
//
// The NumPy bug should be fixed in version 1.24.0, but all releases
// between 1.22.0 and 1.23.5 result in internal assertion failures that
// consequently lead to segfaults. To work around this, we need to selectively
// disable the optimization whenever we detect a buggy NumPy installation.
// We would ideally restrict the "fix" just to Dlpack-backed tensors that stem
// from NumPy, but given that it is difficult to confidently detect the
// provenance of such tensors, we have to resort to a more general approach.
//
// References:
// https://github.com/pytorch/pytorch/issues/88082
// https://github.com/pytorch/pytorch/issues/77139
// https://github.com/numpy/numpy/issues/22507
void validate_numpy_for_dlpack_deleter_bug() {
// Ensure that we don't call this more than once per session.
static bool validated = false;
TORCH_INTERNAL_ASSERT(validated == false);
validated = true;
THPObjectPtr numpy_module(PyImport_ImportModule("numpy"));
if (!numpy_module) {
PyErr_Clear();
return;
}
THPObjectPtr version_attr(
PyObject_GetAttrString(numpy_module.get(), "__version__"));
if (!version_attr) {
PyErr_Clear();
return;
}
Py_ssize_t version_utf8_size = 0;
const char* version_utf8 =
PyUnicode_AsUTF8AndSize(version_attr.get(), &version_utf8_size);
if (!version_utf8_size) {
PyErr_Clear();
return;
}
std::string version(version_utf8, version_utf8_size);
if (version_utf8_size < 4)
return;
std::string truncated_version(version.substr(0, 4));
numpy_with_dlpack_deleter_bug_installed =
truncated_version == "1.22" || truncated_version == "1.23";
}
bool is_numpy_dlpack_deleter_bugged() {
return numpy_with_dlpack_deleter_bug_installed;
}
} // namespace torch::utils
#endif // USE_NUMPY