mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19. The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller. The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed. Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948 Approved by: https://github.com/Skylion007
1851 lines
63 KiB
C++
1851 lines
63 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/tensor_new.h>
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Size.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/device_lazy_init.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_scalars.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/tensor_numpy.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/DLConvertor.h>
|
|
#include <ATen/InitialTensorOptions.h>
|
|
#include <ATen/NamedTensorUtils.h>
|
|
#include <ATen/NativeFunctions.h>
|
|
#include <ATen/SparseCsrTensorUtils.h>
|
|
#include <ATen/TracerMode.h>
|
|
#include <ATen/dlpack.h>
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/DispatchKeySet.h>
|
|
#include <c10/core/Layout.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/irange.h>
|
|
#include <optional>
|
|
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
using at::Device;
|
|
using at::IntArrayRef;
|
|
using at::kInt;
|
|
using at::kLong;
|
|
using at::ScalarType;
|
|
using at::Storage;
|
|
using at::Tensor;
|
|
using at::TensorOptions;
|
|
using std::optional;
|
|
|
|
namespace torch::utils {
|
|
namespace {
|
|
const int MAX_DIMS = 128;
|
|
|
|
thread_local bool kOnlyLiftCPUTensors = false;
|
|
|
|
TensorOptions build_options(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
const std::optional<Device>& device = std::nullopt) {
|
|
options = options.dtype(scalar_type);
|
|
if (device.has_value()) {
|
|
return options.device(device);
|
|
}
|
|
return options;
|
|
}
|
|
|
|
// NB: It appears there is some consistency invariant between options and
|
|
// device, where if device is non-empty, its type must be consistent with the
|
|
// device type in options.
|
|
// TODO: Refactor this so we just pass everything in via options
|
|
|
|
Tensor new_with_sizes(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
const std::optional<Device>& device,
|
|
c10::SymIntArrayRef sizes) {
|
|
maybe_initialize_device(options.device());
|
|
pybind11::gil_scoped_release no_gil;
|
|
return at::empty_symint(sizes, build_options(options, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_storage(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
Storage storage) {
|
|
auto tensor = at::empty({}, build_options(options, scalar_type));
|
|
tensor.set_(std::move(storage));
|
|
return tensor;
|
|
}
|
|
|
|
std::vector<int64_t> compute_sizes(PyObject* seq, ScalarType scalar_type) {
|
|
bool is_storage = isStorage(seq);
|
|
std::vector<int64_t> sizes;
|
|
// Note that after the first iteration, obj is the only thing that keeps
|
|
// the seq raw pointer alive.
|
|
THPObjectPtr obj;
|
|
while (PySequence_Check(seq)) {
|
|
auto length = PySequence_Length(seq);
|
|
if (length < 0)
|
|
throw python_error();
|
|
if (is_storage) {
|
|
length /= static_cast<int64_t>(elementSize(scalar_type));
|
|
}
|
|
sizes.push_back(length);
|
|
TORCH_CHECK_VALUE(
|
|
sizes.size() <= MAX_DIMS,
|
|
"too many dimensions '",
|
|
Py_TYPE(seq)->tp_name,
|
|
"'");
|
|
if (length == 0)
|
|
break;
|
|
PyObject* new_obj = PySequence_GetItem(seq, 0);
|
|
// This line uses seq so we must NOT override obj before this line
|
|
TORCH_CHECK_VALUE(
|
|
new_obj,
|
|
"could not determine the shape of object type '",
|
|
Py_TYPE(seq)->tp_name,
|
|
"'");
|
|
obj = THPObjectPtr(new_obj);
|
|
seq = obj.get();
|
|
}
|
|
|
|
return sizes;
|
|
}
|
|
|
|
ScalarType infer_scalar_type(PyObject* obj) {
|
|
if (torch::is_symint(obj)) {
|
|
return ScalarType::Long;
|
|
}
|
|
if (torch::is_symfloat(obj)) {
|
|
return torch::tensors::get_default_scalar_type();
|
|
}
|
|
#ifdef USE_NUMPY
|
|
if (is_numpy_available()) {
|
|
if (PyArray_Check(obj)) {
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj));
|
|
}
|
|
if (PyArray_CheckScalar(obj)) {
|
|
THPObjectPtr arr(PyArray_FromScalar(obj, nullptr));
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)arr.get()));
|
|
}
|
|
}
|
|
#endif
|
|
if (PyFloat_Check(obj)) {
|
|
// this is always guaranteed to be a floating-point type, and makes it more
|
|
// convenient to write e.g. torch.tensor(0.) than torch.tensor(0.,
|
|
// dtype=torch.Tensor.dtype).
|
|
return torch::tensors::get_default_scalar_type();
|
|
}
|
|
if (THPUtils_checkLong(obj)) {
|
|
return ScalarType::Long;
|
|
}
|
|
if (PyBool_Check(obj)) {
|
|
return ScalarType::Bool;
|
|
}
|
|
if (PyComplex_Check(obj)) {
|
|
switch (torch::tensors::get_default_scalar_type()) {
|
|
case ScalarType::Float:
|
|
return ScalarType::ComplexFloat;
|
|
case ScalarType::Double:
|
|
return ScalarType::ComplexDouble;
|
|
case ScalarType::Half:
|
|
return ScalarType::ComplexHalf;
|
|
default:
|
|
TORCH_CHECK(false, "invalid default scalar type for complex");
|
|
}
|
|
}
|
|
if (THPVariable_Check(obj)) {
|
|
const auto& var = THPVariable_Unpack(obj);
|
|
return var.scalar_type();
|
|
}
|
|
TORCH_CHECK_TYPE(
|
|
!THPUtils_checkString(obj),
|
|
"new(): invalid data type '",
|
|
Py_TYPE(obj)->tp_name,
|
|
"'");
|
|
if (PySequence_Check(obj)) {
|
|
std::optional<ScalarType> scalarType;
|
|
auto length = PySequence_Length(obj);
|
|
if (length < 0)
|
|
throw python_error();
|
|
// match NumPy semantics, except use default tensor type instead of double.
|
|
if (length == 0)
|
|
return torch::tensors::get_default_scalar_type();
|
|
for (const auto i : c10::irange(length)) {
|
|
THPObjectPtr handle(PySequence_GetItem(obj, i));
|
|
if (!handle)
|
|
throw python_error();
|
|
auto cur_item = handle.get();
|
|
TORCH_CHECK_TYPE(
|
|
cur_item != obj, "new(): self-referential lists are incompatible");
|
|
ScalarType item_scalarType = infer_scalar_type(cur_item);
|
|
scalarType = (scalarType) ? at::promoteTypes(*scalarType, item_scalarType)
|
|
: item_scalarType;
|
|
if (scalarType == ScalarType::ComplexDouble) {
|
|
// this won't change (unless we hit undefined, but that will fail
|
|
// later).
|
|
return *scalarType;
|
|
}
|
|
}
|
|
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
|
|
return *scalarType;
|
|
}
|
|
TORCH_CHECK(false, "Could not infer dtype of ", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
void recursive_store(
|
|
char* data,
|
|
IntArrayRef sizes,
|
|
IntArrayRef strides,
|
|
int64_t dim,
|
|
ScalarType scalarType,
|
|
size_t elementSize,
|
|
PyObject* obj) {
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(data != nullptr);
|
|
|
|
int64_t ndim = static_cast<int64_t>(sizes.size());
|
|
bool is_symfloat = torch::is_symfloat(obj);
|
|
bool is_symint = torch::is_symint(obj);
|
|
if (dim == ndim) {
|
|
if (is_symfloat) {
|
|
auto new_obj = py::reinterpret_borrow<py::object>(obj);
|
|
auto val = new_obj.cast<c10::SymFloat>();
|
|
const double double_val = val.guard_float(__FILE__, __LINE__);
|
|
obj = Py_BuildValue("d", double_val);
|
|
}
|
|
if (is_symint) {
|
|
auto new_obj = py::reinterpret_borrow<py::object>(obj);
|
|
auto val = new_obj.cast<c10::SymInt>();
|
|
const int64_t int_val = val.guard_int(__FILE__, __LINE__);
|
|
obj = Py_BuildValue("i", int_val);
|
|
}
|
|
torch::utils::store_scalar(data, scalarType, obj);
|
|
return;
|
|
}
|
|
|
|
auto n = sizes[dim];
|
|
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
|
|
if (!seq)
|
|
throw python_error();
|
|
// NOLINTNEXTLINE(bugprone-branch-clone)
|
|
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
|
|
TORCH_CHECK_VALUE(
|
|
seq_size == n,
|
|
"expected sequence of length ",
|
|
n,
|
|
" at dim ",
|
|
dim,
|
|
" (got ",
|
|
seq_size,
|
|
")");
|
|
|
|
PyObject** items = PySequence_Fast_ITEMS(seq.get());
|
|
for (const auto i : c10::irange(n)) {
|
|
#ifdef USE_NUMPY
|
|
if (is_numpy_available() && PyArray_Check(items[i])) {
|
|
TORCH_WARN_ONCE(
|
|
"Creating a tensor from a list of numpy.ndarrays is extremely slow. "
|
|
"Please consider converting the list to a single numpy.ndarray with "
|
|
"numpy.array() before converting to a tensor.");
|
|
}
|
|
#endif
|
|
recursive_store(
|
|
data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
|
|
data += strides[dim] * elementSize;
|
|
}
|
|
}
|
|
|
|
Tensor internal_new_from_data(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
std::optional<Device> device_opt,
|
|
PyObject* data,
|
|
bool copy_variables,
|
|
bool copy_numpy,
|
|
bool type_inference,
|
|
bool pin_memory = false) {
|
|
TORCH_CHECK_TYPE(
|
|
!THPUtils_checkString(data),
|
|
"new(): invalid data type '",
|
|
Py_TYPE(data)->tp_name,
|
|
"'");
|
|
|
|
if (THPVariable_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable");
|
|
// TODO: use MaybeOwned
|
|
auto var = THPVariable_Unpack(data);
|
|
if (copy_variables) {
|
|
var = var.detach();
|
|
}
|
|
// infer the scalar type and device type; it's not expected to infer the
|
|
// layout since these constructors are defined per-layout-type (e.g. tensor
|
|
// vs sparse_coo_tensor).
|
|
const auto& inferred_scalar_type =
|
|
type_inference ? var.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : var.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_device(device);
|
|
return var.to(
|
|
device,
|
|
inferred_scalar_type,
|
|
/*non_blocking=*/false,
|
|
/*copy=*/copy_variables);
|
|
}
|
|
|
|
#ifdef USE_NUMPY
|
|
if (PyObject_HasAttrString(data, "__cuda_array_interface__")) {
|
|
TORCH_CHECK(
|
|
!pin_memory,
|
|
"Can't pin tensor constructed from __cuda_array_interface__");
|
|
auto tensor = tensor_from_cuda_array_interface(data);
|
|
const auto& inferred_scalar_type =
|
|
type_inference ? tensor.scalar_type() : scalar_type;
|
|
|
|
// Device preference is:
|
|
// - explicitly user specified device in `device_opt`
|
|
// - either by setting device='...'
|
|
// - or setting torch.set_default_device(...)
|
|
// - device of already constructed tensor
|
|
// This prevents an unnecessary device -> host copy when the tensor is
|
|
// already on the device, while respecting a default device and allows the
|
|
// user to overwrite the behavior explicitly.
|
|
at::Device device = device_opt.has_value() ? *device_opt : tensor.device();
|
|
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_device(device);
|
|
return tensor.to(
|
|
device,
|
|
inferred_scalar_type,
|
|
/*non_blocking=*/false,
|
|
/*copy=*/copy_numpy);
|
|
}
|
|
|
|
if (is_numpy_available() && PyArray_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy");
|
|
auto tensor =
|
|
tensor_from_numpy(data, /*warn_if_not_writeable=*/!copy_numpy);
|
|
const auto& inferred_scalar_type =
|
|
type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : options.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_device(device);
|
|
return tensor.to(
|
|
device,
|
|
inferred_scalar_type,
|
|
/*non_blocking=*/false,
|
|
/*copy=*/copy_numpy);
|
|
}
|
|
#endif
|
|
|
|
if (PyObject_HasAttrString(data, "__dlpack__")) {
|
|
py::object tensor_o =
|
|
py::module::import("torch").attr("utils").attr("dlpack").attr(
|
|
"from_dlpack")(py::handle(data));
|
|
Tensor tensor = py::cast<Tensor>(tensor_o);
|
|
const auto& inferred_scalar_type =
|
|
type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : tensor.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_device(device);
|
|
return tensor.to(
|
|
device,
|
|
inferred_scalar_type,
|
|
/*non_blocking=*/false,
|
|
/*copy=*/copy_variables);
|
|
}
|
|
|
|
auto device = device_opt.has_value() ? *device_opt : options.device();
|
|
|
|
auto sizes = compute_sizes(data, scalar_type);
|
|
|
|
ScalarType inferred_scalar_type =
|
|
type_inference ? infer_scalar_type(data) : scalar_type;
|
|
// This exists to prevent us from tracing the call to empty(). The actual
|
|
// autograd code doesn't really matter, because requires_grad is always false
|
|
// here.
|
|
// What are the semantics of tensor_new()?
|
|
// We manually construct a tensor and place on it on the correct device with
|
|
// empty() and to(). We then have to "lift" the newly constructed tensor in
|
|
// some cases, like when we're performing a functorch transform or running
|
|
// functionalization. The exclude guards are all to ensure that extra logic
|
|
// doesn't run when we're constructing the raw tensor.
|
|
Tensor tensor;
|
|
{
|
|
at::AutoDispatchBelowADInplaceOrView guard;
|
|
c10::impl::ExcludeDispatchKeyGuard torchdispatchmode_guard(
|
|
c10::DispatchKey::Python);
|
|
c10::impl::ExcludeDispatchKeyGuard torchdispatchmode_snapshot_guard(
|
|
c10::DispatchKey::PythonTLSSnapshot);
|
|
// functorch uses FuncTorchDynamicLayerBackMode as a mode key to wrap all
|
|
// tensors returned from operators in special TensorWrapper tensor extension
|
|
c10::impl::ExcludeDispatchKeyGuard functorch_front_guard(
|
|
c10::DispatchKey::FuncTorchDynamicLayerFrontMode);
|
|
c10::impl::ExcludeDispatchKeyGuard functorch_back_guard(
|
|
c10::DispatchKey::FuncTorchDynamicLayerBackMode);
|
|
// We disable Fake and DeferredInit handlers for similar reasons as
|
|
// functorch.
|
|
c10::impl::ExcludeDispatchKeyGuard fake_and_deferred_init_guard(
|
|
c10::DispatchKeySet{
|
|
c10::DispatchKey::Fake, c10::DispatchKey::DeferredInit});
|
|
// Note [Functionalization <> torch.Tensor constructor]
|
|
// Functionalization "lifts" the newly constructed tensor into a wrapper
|
|
// using aten::lift().
|
|
c10::impl::ExcludeDispatchKeyGuard functionalize_guard(
|
|
c10::DispatchKey::Functionalize);
|
|
{
|
|
// Tracing should probably also use the "lift" operator to add the tensor
|
|
// to a trace, but it's technically BC-breaking to do that, since we
|
|
// currently trace .to() calls.
|
|
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
|
|
|
if (isStorage(data)) {
|
|
auto [storage, storage_scalar_type, is_typed_storage] =
|
|
createStorageGetType(data);
|
|
|
|
TORCH_CHECK(
|
|
!is_typed_storage || storage_scalar_type == scalar_type,
|
|
"Expected a Storage of type ",
|
|
scalar_type,
|
|
" or an UntypedStorage, but got ",
|
|
storage_scalar_type);
|
|
tensor = at::empty(
|
|
sizes,
|
|
at::initialTensorOptions()
|
|
.dtype(
|
|
is_typed_storage ? storage_scalar_type
|
|
: inferred_scalar_type)
|
|
.pinned_memory(pin_memory)
|
|
.device(storage.device()));
|
|
tensor.set_(storage);
|
|
|
|
} else {
|
|
TensorOptions opts =
|
|
at::initialTensorOptions().dtype(inferred_scalar_type);
|
|
|
|
// If the device is Meta, take the shortcut. We don't want to allocate
|
|
// an empty CPU tensor which would break our contract for meta tensors.
|
|
if (device == at::kMeta) {
|
|
return at::empty(sizes, opts.device(device));
|
|
}
|
|
tensor = at::empty(sizes, opts.pinned_memory(pin_memory));
|
|
if (c10::multiply_integers(tensor.sizes()) != 0) {
|
|
recursive_store(
|
|
(char*)tensor.data_ptr(),
|
|
tensor.sizes(),
|
|
tensor.strides(),
|
|
0,
|
|
inferred_scalar_type,
|
|
tensor.dtype().itemsize(),
|
|
data);
|
|
}
|
|
}
|
|
}
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_device(device);
|
|
// However, it is VERY important that we trace the to() call here (even
|
|
// though the reason this is important is a hack). Without *some* factory
|
|
// function call that is traced at construction time, we will consider
|
|
// a tensor constant as originating from "outside" the trace, and if you
|
|
// try to return it directly we will fail with the error saying no
|
|
// "no observable data dependence". In an ideal world, we wouldn't trace
|
|
// a to() call but I need to think harder about what exactly we should trace
|
|
// in this case.
|
|
if (only_lift_cpu_tensors()) {
|
|
tensor = tensor.to(
|
|
inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
|
|
|
|
} else {
|
|
tensor = tensor.to(
|
|
device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
|
|
}
|
|
}
|
|
|
|
// torch.jit.trace will continue to trace out `.to()` instead of `.lift()`,
|
|
// since changing it is BC-breaking.
|
|
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
|
{
|
|
// lift has no autograd implementation, so we need to make sure we don't try
|
|
// to dispatch to it.
|
|
// TODO: arguably it should have an autograd implementation that noops
|
|
at::AutoDispatchBelowADInplaceOrView guard;
|
|
tensor = at::lift_fresh(tensor);
|
|
}
|
|
if (only_lift_cpu_tensors() && device.type() != DeviceType::CPU) {
|
|
if (!device.has_index() &&
|
|
!torch::utils::is_device_initialized(device.type())) {
|
|
// Infer device 0 to avoid device init
|
|
device = c10::Device(device.type(), 0);
|
|
}
|
|
tensor = tensor.to(device, /*non_blocking=*/false, /*copy=*/false);
|
|
}
|
|
return tensor;
|
|
}
|
|
|
|
Tensor new_from_data_copy(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
std::optional<Device> device,
|
|
PyObject* data) {
|
|
return internal_new_from_data(
|
|
options,
|
|
scalar_type,
|
|
device,
|
|
data,
|
|
/*copy_variables=*/true,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
}
|
|
|
|
Tensor legacy_new_from_sequence(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
std::optional<Device> device,
|
|
PyObject* data) {
|
|
TORCH_CHECK_TYPE(
|
|
PySequence_Check(data),
|
|
"new(): data must be a sequence (got ",
|
|
Py_TYPE(data)->tp_name,
|
|
")");
|
|
return internal_new_from_data(
|
|
options,
|
|
scalar_type,
|
|
device,
|
|
data,
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
}
|
|
|
|
// "base" here refers to the Tensor type on which the function was invoked,
|
|
// e.g.: in x.new(y), 'x' is the base.
|
|
// TODO: Rewrite this using dispatchKeyToTensorOptions
|
|
void check_base_legacy_new(
|
|
c10::DispatchKey dispatch_key,
|
|
at::Layout expected_layout) {
|
|
if (expected_layout == c10::kStrided) {
|
|
constexpr c10::DispatchKeySet expected_key_set({
|
|
c10::DispatchKey::CPU,
|
|
c10::DispatchKey::CUDA,
|
|
c10::DispatchKey::HIP,
|
|
c10::DispatchKey::XLA,
|
|
c10::DispatchKey::Lazy,
|
|
c10::DispatchKey::IPU,
|
|
c10::DispatchKey::XPU,
|
|
c10::DispatchKey::HPU,
|
|
c10::DispatchKey::MPS,
|
|
c10::DispatchKey::Meta,
|
|
c10::DispatchKey::PrivateUse1,
|
|
});
|
|
TORCH_CHECK(
|
|
expected_key_set.has(dispatch_key),
|
|
"new(): expected key in ",
|
|
expected_key_set,
|
|
" but got: ",
|
|
dispatch_key);
|
|
} else if (expected_layout == c10::kSparse) {
|
|
// NOTE: no sparse XLA or Lazy
|
|
constexpr c10::DispatchKeySet expected_key_set({
|
|
c10::DispatchKey::SparseCPU,
|
|
c10::DispatchKey::SparseCUDA,
|
|
c10::DispatchKey::SparseHIP,
|
|
c10::DispatchKey::SparseXPU,
|
|
c10::DispatchKey::SparsePrivateUse1,
|
|
});
|
|
TORCH_CHECK(
|
|
expected_key_set.has(dispatch_key),
|
|
"new(): expected key in ",
|
|
expected_key_set,
|
|
" but got: ",
|
|
dispatch_key);
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(false, "unexpected layout");
|
|
}
|
|
}
|
|
|
|
// TODO: Make this accept options instead of dispatch key
|
|
void check_legacy_ctor_device(
|
|
c10::DispatchKey dispatch_key,
|
|
std::optional<Device> device) {
|
|
if (device.has_value()) {
|
|
TORCH_CHECK(
|
|
dispatchKeyToDeviceType(dispatch_key) == device.value().type(),
|
|
"legacy constructor expects device type: ",
|
|
dispatchKeyToDeviceType(dispatch_key),
|
|
" but device type: ",
|
|
device.value().type(),
|
|
" was passed");
|
|
}
|
|
}
|
|
|
|
std::optional<Device> device_or_from_dispatch_key(
|
|
std::optional<Device> device,
|
|
c10::DispatchKey dispatch_key) {
|
|
if (device.has_value()) {
|
|
return device;
|
|
} else {
|
|
return Device(dispatchKeyToDeviceType(dispatch_key));
|
|
}
|
|
}
|
|
|
|
enum class CtorOrNew {
|
|
BASE_CTOR,
|
|
CTOR,
|
|
NEW,
|
|
};
|
|
|
|
Tensor legacy_sparse_tensor_generic_ctor_new(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs,
|
|
CtorOrNew ctor_or_new) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor indices, Tensor values, *, Device? device=None)",
|
|
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
|
|
"new(SymIntArrayRef size, *, Device? device=None)",
|
|
});
|
|
if (ctor_or_new == CtorOrNew::NEW)
|
|
check_base_legacy_new(dispatch_key, c10::kSparse);
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
if (ctor_or_new == CtorOrNew::CTOR) {
|
|
TORCH_WARN_ONCE(
|
|
"torch.sparse.SparseTensor() is deprecated."
|
|
" Please use torch.sparse_coo_tensor((0,), dtype=).");
|
|
}
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return at::empty({0}, build_options(options, scalar_type, deviceOptional));
|
|
} else if (r.idx == 1) {
|
|
if (ctor_or_new == CtorOrNew::CTOR) {
|
|
TORCH_WARN_ONCE(
|
|
"torch.sparse.SparseTensor(cdata=x._cdata) is deprecated."
|
|
" Please use torch.sparse_coo_tensor(x._indices(), x._values(), x.shape).");
|
|
}
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 2) {
|
|
if (ctor_or_new == CtorOrNew::CTOR) {
|
|
TORCH_WARN_ONCE(
|
|
"torch.sparse.SparseTensor(indices, values, *, device=) is deprecated."
|
|
" Please use torch.sparse_coo_tensor(indices, values, dtype=, device=).");
|
|
}
|
|
// Note: this signature doesn't have a dtype, even though it has a device;
|
|
// it probably shouldn't have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(2);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
|
|
} else if (r.idx == 3) {
|
|
if (ctor_or_new == CtorOrNew::CTOR) {
|
|
TORCH_WARN_ONCE(
|
|
"torch.sparse.SparseTensor(indices, values, shape, *, device=) is deprecated."
|
|
" Please use torch.sparse_coo_tensor(indices, values, shape, dtype=, device=).");
|
|
}
|
|
// Note: this signature doesn't have a dtype, even though it has a device;
|
|
// it probably shouldn't have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(3);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 &&
|
|
arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
if (ctor_or_new == CtorOrNew::CTOR) {
|
|
throw TypeError(
|
|
"torch.sparse.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() "
|
|
"or construct a strided tensor and convert it to sparse via to_sparse.");
|
|
} else {
|
|
throw TypeError(
|
|
"SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() "
|
|
"or construct a strided tensor and convert it to sparse via to_sparse.");
|
|
}
|
|
}
|
|
if (ctor_or_new == CtorOrNew::CTOR) {
|
|
TORCH_WARN_ONCE(
|
|
"torch.sparse.SparseTensor(shape, *, device=) is deprecated."
|
|
" Please use torch.sparse_coo_tensor(shape, dtype=, device=).");
|
|
}
|
|
return new_with_sizes(
|
|
options, scalar_type, deviceOptional, r.symintlist(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
|
|
c10::TensorOptions typeIdWithDefault(
|
|
PythonArgs& r,
|
|
int64_t device_idx,
|
|
c10::DispatchKey dispatch_key) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
if (!r.isNone(static_cast<int>(device_idx))) {
|
|
// TODO: This line doesn't seem to be exercised at all in tests
|
|
options = options.device(r.device(static_cast<int>(device_idx)).type());
|
|
}
|
|
return options;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
static Tensor legacy_tensor_generic_ctor_new(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs,
|
|
CtorOrNew ctor_or_new) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(Storage storage)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
// This constructor is no longer legacy, it will also be usable for
|
|
// subclass initialization
|
|
"new(Tensor other)",
|
|
"new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor
|
|
// matching with
|
|
// IntArrayRef,
|
|
// PyObject*
|
|
"new(SymIntArrayRef size, *, Device? device=None)",
|
|
"new(PyObject* data, *, Device? device=None)",
|
|
});
|
|
|
|
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
|
|
return legacy_sparse_tensor_generic_ctor_new(
|
|
dispatch_key, scalar_type, args, kwargs, ctor_or_new);
|
|
}
|
|
|
|
if (ctor_or_new == CtorOrNew::NEW)
|
|
check_base_legacy_new(dispatch_key, c10::kStrided);
|
|
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, build_options(options, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
at::ScalarType storage_scalar_type{at::ScalarType::Undefined};
|
|
bool is_typed_storage = false;
|
|
at::Storage storage = r.storage(0, storage_scalar_type, is_typed_storage);
|
|
if (storage_scalar_type != at::ScalarType::Undefined && is_typed_storage) {
|
|
TORCH_CHECK(
|
|
storage_scalar_type == scalar_type,
|
|
"Expected a Storage of type ",
|
|
scalar_type,
|
|
" or an UntypedStorage, but got type ",
|
|
storage_scalar_type,
|
|
" for argument 1 'storage'");
|
|
}
|
|
return new_with_storage(options, scalar_type, storage);
|
|
} else if (r.idx == 2) {
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 3) {
|
|
const auto& other = r.tensor(0);
|
|
// BASE_CTOR (aka torch.Tensor) is now relaxed to accept any
|
|
// dtype; previously it was "float" biased
|
|
if (ctor_or_new != CtorOrNew::BASE_CTOR) {
|
|
options = options.dtype(scalar_type);
|
|
TORCH_CHECK_TYPE(
|
|
other.options().type_equal(options),
|
|
"expected ",
|
|
options,
|
|
" (got ",
|
|
other.options(),
|
|
")");
|
|
}
|
|
return other.alias();
|
|
} else if (r.idx == 4) {
|
|
if (ctor_or_new == CtorOrNew::CTOR || ctor_or_new == CtorOrNew::BASE_CTOR) {
|
|
TORCH_CHECK(
|
|
false,
|
|
"Legacy tensor constructor of the form torch.Tensor(tensor, device=device) "
|
|
"is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead.");
|
|
} else {
|
|
TORCH_CHECK(
|
|
false,
|
|
"Legacy tensor new of the form tensor.new(tensor, device=device) "
|
|
"is not supported. Use torch.as_tensor(...) instead.");
|
|
}
|
|
} else if (r.idx == 5) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 &&
|
|
arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(
|
|
options, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(
|
|
options, scalar_type, deviceOptional, r.symintlist(0));
|
|
} else if (r.idx == 6) {
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return legacy_new_from_sequence(
|
|
options, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
// Handles ONLY torch.Tensor
|
|
// Unlike the legacy dtype/device specialized constructors, this one is
|
|
// relaxed to accept any device/dtype input tensor (even if it doesn't
|
|
// match the default)
|
|
Tensor base_tensor_ctor(PyObject* args, PyObject* kwargs) {
|
|
return legacy_tensor_generic_ctor_new(
|
|
torch::tensors::get_default_dispatch_key(),
|
|
torch::tensors::get_default_scalar_type(),
|
|
args,
|
|
kwargs,
|
|
CtorOrNew::BASE_CTOR);
|
|
}
|
|
|
|
// Handles calls like torch.DoubleTensor, torch.cuda.FloatTensor,
|
|
// torch.sparse.FloatTensor, etc.
|
|
Tensor legacy_tensor_ctor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
return legacy_tensor_generic_ctor_new(
|
|
dispatch_key, scalar_type, args, kwargs, CtorOrNew::CTOR);
|
|
}
|
|
|
|
// Handles tensor.new(...)
|
|
Tensor legacy_tensor_new(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
return legacy_tensor_generic_ctor_new(
|
|
dispatch_key, scalar_type, args, kwargs, CtorOrNew::NEW);
|
|
}
|
|
|
|
Tensor indexing_tensor_from_data(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
std::optional<Device> device,
|
|
PyObject* data) {
|
|
// Specific to tensor indexing, converts an indexing list to an
|
|
// indexing tensor (type Byte or Long)
|
|
ScalarType inferred_scalar_type = infer_scalar_type(data);
|
|
if (inferred_scalar_type == ScalarType::Byte ||
|
|
inferred_scalar_type == ScalarType::Bool) {
|
|
return internal_new_from_data(
|
|
options,
|
|
inferred_scalar_type,
|
|
device,
|
|
data,
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
} else {
|
|
return internal_new_from_data(
|
|
options,
|
|
scalar_type,
|
|
device,
|
|
data,
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
}
|
|
}
|
|
|
|
class CheckSparseTensorInvariantsContext {
|
|
public:
|
|
CheckSparseTensorInvariantsContext()
|
|
: state{at::globalContext().checkSparseTensorInvariants()} {}
|
|
~CheckSparseTensorInvariantsContext() {
|
|
at::globalContext().setCheckSparseTensorInvariants(state);
|
|
}
|
|
CheckSparseTensorInvariantsContext(
|
|
const CheckSparseTensorInvariantsContext&) = delete;
|
|
CheckSparseTensorInvariantsContext(CheckSparseTensorInvariantsContext&&) =
|
|
delete;
|
|
CheckSparseTensorInvariantsContext& operator=(
|
|
const CheckSparseTensorInvariantsContext&) = delete;
|
|
CheckSparseTensorInvariantsContext& operator=(
|
|
CheckSparseTensorInvariantsContext&&) = delete;
|
|
|
|
private:
|
|
bool state;
|
|
};
|
|
|
|
static Tensor sparse_compressed_tensor_ctor_worker(
|
|
const std::string& name,
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r,
|
|
std::optional<c10::Layout> required_layout) {
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
enum {
|
|
ARG_COMPRESSED_INDICES = 0,
|
|
ARG_PLAIN_INDICES,
|
|
ARG_VALUES,
|
|
ARG_SIZE,
|
|
ARG_TYPE,
|
|
ARG_LAYOUT,
|
|
ARG_DEVICE,
|
|
ARG_PIN_MEMORY,
|
|
ARG_REQUIRES_GRAD,
|
|
ARG_CHECK_INVARIANTS,
|
|
ARGS_COUNT
|
|
};
|
|
enum {
|
|
ARG_VALUES1 = ARG_VALUES,
|
|
ARG_TYPE1,
|
|
ARG_LAYOUT1,
|
|
ARG_DEVICE1,
|
|
ARG_PIN_MEMORY1,
|
|
ARG_REQUIRES_GRAD1,
|
|
ARG_CHECK_INVARIANTS1,
|
|
ARGS_COUNT1
|
|
};
|
|
|
|
auto safe_get_attr_string = [](PyObject* o,
|
|
const char* attr_name) -> PyObject* {
|
|
// Clear error indicator if attribute does not exists.
|
|
// Otherwise subsequent Python C API calls might return bogus values.
|
|
// See https://github.com/pytorch/pytorch/issues/58520 for more details
|
|
auto rc = PyObject_GetAttrString(o, attr_name);
|
|
if (!rc) {
|
|
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
|
|
throw python_error();
|
|
}
|
|
// Warning: a wrong attribute error may be suppressed here
|
|
PyErr_Clear();
|
|
}
|
|
return rc;
|
|
};
|
|
THPObjectPtr compressed_indices_dtype_attr(
|
|
safe_get_attr_string(r.pyobject(ARG_COMPRESSED_INDICES), "dtype"));
|
|
THPObjectPtr plain_indices_dtype_attr(
|
|
safe_get_attr_string(r.pyobject(ARG_PLAIN_INDICES), "dtype"));
|
|
at::ScalarType compressed_indices_scalar_type = compressed_indices_dtype_attr
|
|
? reinterpret_cast<THPDtype*>(compressed_indices_dtype_attr.get())
|
|
->scalar_type
|
|
: kInt;
|
|
at::ScalarType plain_indices_scalar_type = plain_indices_dtype_attr
|
|
? reinterpret_cast<THPDtype*>(plain_indices_dtype_attr.get())->scalar_type
|
|
: kInt;
|
|
CheckSparseTensorInvariantsContext
|
|
restores_check_sparse_tensor_invariants_global_state{};
|
|
bool default_check_invariants =
|
|
at::globalContext().checkSparseTensorInvariants();
|
|
|
|
if (r.idx == 0) {
|
|
const bool pin_memory = r.toBool(ARG_PIN_MEMORY);
|
|
bool type_inference = r.isNone(ARG_TYPE);
|
|
const auto inferred_options =
|
|
typeIdWithDefault(r, ARG_DEVICE, dispatch_key);
|
|
const auto inferred_scalar_type =
|
|
r.scalartypeWithDefault(ARG_TYPE, scalar_type);
|
|
auto deviceOptional = r.deviceOptional(ARG_DEVICE);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
// the global state of invariants check flag will be restored via
|
|
// CheckSparseTensorInvariantsContext destructor
|
|
at::globalContext().setCheckSparseTensorInvariants(
|
|
r.toBoolWithDefault(ARG_CHECK_INVARIANTS, default_check_invariants));
|
|
Tensor values = internal_new_from_data(
|
|
inferred_options,
|
|
inferred_scalar_type,
|
|
deviceOptional,
|
|
r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor compressed_indices = internal_new_from_data(
|
|
values.options(),
|
|
compressed_indices_scalar_type,
|
|
deviceOptional,
|
|
r.pyobject(ARG_COMPRESSED_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
Tensor plain_indices = internal_new_from_data(
|
|
values.options(),
|
|
plain_indices_scalar_type,
|
|
deviceOptional,
|
|
r.pyobject(ARG_PLAIN_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
std::optional<c10::Layout> layout =
|
|
(required_layout
|
|
? r.layoutWithDefault(ARG_LAYOUT, required_layout.value())
|
|
: r.layoutOptional(ARG_LAYOUT));
|
|
if (required_layout.has_value()) {
|
|
TORCH_CHECK(
|
|
layout.has_value() && layout == required_layout,
|
|
name,
|
|
": layout must be ",
|
|
required_layout.value(),
|
|
" but got ",
|
|
layout);
|
|
}
|
|
return at::sparse_compressed_tensor(
|
|
compressed_indices,
|
|
plain_indices,
|
|
values,
|
|
r.intlist(ARG_SIZE),
|
|
values.options().layout(layout).pinned_memory(pin_memory))
|
|
.set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
|
|
} else if (r.idx == 1) {
|
|
bool type_inference = r.isNone(ARG_TYPE1);
|
|
const auto inferred_options =
|
|
typeIdWithDefault(r, ARG_DEVICE1, dispatch_key);
|
|
const auto inferred_scalar_type =
|
|
r.scalartypeWithDefault(ARG_TYPE1, scalar_type);
|
|
auto deviceOptional = r.deviceOptional(ARG_DEVICE1);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
const bool pin_memory = r.toBool(ARG_PIN_MEMORY1);
|
|
// the global state of invariants check flag will be restored via
|
|
// CheckSparseTensorInvariantsContext destructor
|
|
at::globalContext().setCheckSparseTensorInvariants(
|
|
r.toBoolWithDefault(ARG_CHECK_INVARIANTS1, default_check_invariants));
|
|
Tensor values = internal_new_from_data(
|
|
inferred_options,
|
|
inferred_scalar_type,
|
|
deviceOptional,
|
|
r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor compressed_indices = internal_new_from_data(
|
|
values.options(),
|
|
compressed_indices_scalar_type,
|
|
deviceOptional,
|
|
r.pyobject(ARG_COMPRESSED_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
Tensor plain_indices = internal_new_from_data(
|
|
values.options(),
|
|
plain_indices_scalar_type,
|
|
deviceOptional,
|
|
r.pyobject(ARG_PLAIN_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
std::optional<c10::Layout> layout =
|
|
(required_layout
|
|
? r.layoutWithDefault(ARG_LAYOUT1, required_layout.value())
|
|
: r.layoutOptional(ARG_LAYOUT1));
|
|
if (required_layout.has_value()) {
|
|
TORCH_CHECK(
|
|
layout == required_layout,
|
|
name,
|
|
": layout must be ",
|
|
required_layout.value(),
|
|
" but got ",
|
|
layout);
|
|
}
|
|
return at::sparse_compressed_tensor(
|
|
compressed_indices,
|
|
plain_indices,
|
|
values,
|
|
values.options().layout(layout).pinned_memory(pin_memory))
|
|
.set_requires_grad(r.toBool(ARG_REQUIRES_GRAD1));
|
|
}
|
|
throw std::runtime_error(name + ": invalid arguments");
|
|
}
|
|
|
|
Tensor sparse_compressed_tensor_ctor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r) {
|
|
std::optional<c10::Layout> required_layout{};
|
|
return sparse_compressed_tensor_ctor_worker(
|
|
"sparse_compressed_tensor",
|
|
dispatch_key,
|
|
scalar_type,
|
|
r,
|
|
required_layout);
|
|
}
|
|
|
|
Tensor sparse_csr_tensor_ctor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r) {
|
|
std::optional<c10::Layout> required_layout(c10::Layout::SparseCsr);
|
|
return sparse_compressed_tensor_ctor_worker(
|
|
"sparse_csr_tensor", dispatch_key, scalar_type, r, required_layout);
|
|
}
|
|
|
|
Tensor sparse_csc_tensor_ctor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r) {
|
|
std::optional<c10::Layout> required_layout(c10::Layout::SparseCsc);
|
|
return sparse_compressed_tensor_ctor_worker(
|
|
"sparse_csc_tensor", dispatch_key, scalar_type, r, required_layout);
|
|
}
|
|
|
|
Tensor sparse_bsr_tensor_ctor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r) {
|
|
std::optional<c10::Layout> required_layout(c10::Layout::SparseBsr);
|
|
return sparse_compressed_tensor_ctor_worker(
|
|
"sparse_bsr_tensor", dispatch_key, scalar_type, r, required_layout);
|
|
}
|
|
|
|
Tensor sparse_bsc_tensor_ctor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r) {
|
|
std::optional<c10::Layout> required_layout(c10::Layout::SparseBsc);
|
|
return sparse_compressed_tensor_ctor_worker(
|
|
"sparse_bsc_tensor", dispatch_key, scalar_type, r, required_layout);
|
|
}
|
|
|
|
// Note [Ensuring sparse values and indices match devices]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// In all places where we construct indices, we read out options from values
|
|
// (rather than use inferred_options). Why? This handles the case when
|
|
// values is a CUDA tensor, but indices is a non-Tensor value (and the device
|
|
// argument is not set). Example:
|
|
//
|
|
// torch.sparse_coo_tensor(([0, 1],), self.empty(2, 0).cuda(), (4, 0))
|
|
//
|
|
// Sparse tensors require both indices and values to live on the same device.
|
|
// If values lives on CUDA, we can infer where the indices should live, and
|
|
// should accept even ordinary index sequences (and just make sure we write them
|
|
// into the correct device). values is the ONLY way we know that the index
|
|
// tensor should go to CUDA, so we have to get the information in somehow.
|
|
//
|
|
// This code is kind of jank. For one, the dtype in options is silently ignored
|
|
// by internal_new_from_data. Also, in classic janky code style, it used to
|
|
// not work quite right: if values lives on "cuda:1", before all we said was
|
|
// "this needs to be CUDA" and indices would be allocated on the wrong tensor.
|
|
// Options is more right and gets this correct.
|
|
|
|
Tensor sparse_coo_tensor_ctor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r) {
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
enum {
|
|
ARG_INDICES = 0,
|
|
ARG_VALUES,
|
|
ARG_TYPE,
|
|
ARG_DEVICE,
|
|
ARG_PIN_MEMORY,
|
|
ARG_REQUIRES_GRAD,
|
|
ARG_CHECK_INVARIANTS,
|
|
ARGS_COUNT
|
|
};
|
|
enum {
|
|
ARG_INDICES1 = 0,
|
|
ARG_VALUES1,
|
|
ARG_SIZE1,
|
|
ARG_TYPE1,
|
|
ARG_DEVICE1,
|
|
ARG_PIN_MEMORY1,
|
|
ARG_REQUIRES_GRAD1,
|
|
ARG_CHECK_INVARIANTS1,
|
|
ARG_IS_COALESCED1,
|
|
ARGS_COUNT1
|
|
};
|
|
enum {
|
|
ARG_SIZE2 = 0,
|
|
ARG_TYPE2,
|
|
ARG_DEVICE2,
|
|
ARG_REQUIRES_GRAD2,
|
|
ARG_CHECK_INVARIANTS2,
|
|
ARGS_COUNT2
|
|
};
|
|
|
|
CheckSparseTensorInvariantsContext
|
|
restores_check_sparse_tensor_invariants_global_state{};
|
|
bool default_check_invariants =
|
|
at::globalContext().checkSparseTensorInvariants();
|
|
|
|
if (r.idx == 0) {
|
|
bool pin_memory = r.toBool(ARG_PIN_MEMORY);
|
|
bool type_inference = r.isNone(ARG_TYPE);
|
|
const auto inferred_options =
|
|
typeIdWithDefault(r, ARG_DEVICE, dispatch_key);
|
|
const auto inferred_scalar_type =
|
|
r.scalartypeWithDefault(ARG_TYPE, scalar_type);
|
|
auto deviceOptional = r.deviceOptional(ARG_DEVICE);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
at::globalContext().setCheckSparseTensorInvariants(
|
|
r.toBoolWithDefault(ARG_CHECK_INVARIANTS, default_check_invariants));
|
|
|
|
// if no dtype provided, infer type based on value type.
|
|
Tensor values = internal_new_from_data(
|
|
inferred_options,
|
|
inferred_scalar_type,
|
|
deviceOptional,
|
|
r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(
|
|
values.options(),
|
|
kLong,
|
|
deviceOptional,
|
|
r.pyobject(ARG_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::sparse_coo_tensor(
|
|
indices,
|
|
values,
|
|
values.options().layout(at::kSparse).pinned_memory(pin_memory))
|
|
.set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
|
|
} else if (r.idx == 1) {
|
|
bool pin_memory = r.toBool(ARG_PIN_MEMORY1);
|
|
bool type_inference = r.isNone(ARG_TYPE1);
|
|
const auto inferred_options =
|
|
typeIdWithDefault(r, ARG_DEVICE1, dispatch_key);
|
|
const auto inferred_scalar_type =
|
|
r.scalartypeWithDefault(ARG_TYPE1, scalar_type);
|
|
auto deviceOptional = r.deviceOptional(ARG_DEVICE1);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
at::globalContext().setCheckSparseTensorInvariants(
|
|
r.toBoolWithDefault(ARG_CHECK_INVARIANTS1, default_check_invariants));
|
|
|
|
Tensor values = internal_new_from_data(
|
|
inferred_options,
|
|
inferred_scalar_type,
|
|
deviceOptional,
|
|
r.pyobject(ARG_VALUES1),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(
|
|
values.options(),
|
|
kLong,
|
|
deviceOptional,
|
|
r.pyobject(ARG_INDICES1),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::sparse_coo_tensor(
|
|
indices,
|
|
values,
|
|
r.intlist(ARG_SIZE1),
|
|
values.options().layout(at::kSparse).pinned_memory(pin_memory),
|
|
r.toBoolOptional(ARG_IS_COALESCED1))
|
|
.set_requires_grad(r.toBool(ARG_REQUIRES_GRAD1));
|
|
} else if (r.idx == 2) {
|
|
const auto inferred_options =
|
|
typeIdWithDefault(r, ARG_DEVICE2, dispatch_key);
|
|
const auto inferred_scalar_type =
|
|
r.scalartypeWithDefault(ARG_TYPE2, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE2));
|
|
at::globalContext().setCheckSparseTensorInvariants(
|
|
r.toBoolWithDefault(ARG_CHECK_INVARIANTS2, default_check_invariants));
|
|
|
|
return at::sparse_coo_tensor(
|
|
r.intlist(ARG_SIZE2),
|
|
inferred_options.dtype(inferred_scalar_type).layout(at::kSparse))
|
|
.set_requires_grad(r.toBool(ARG_REQUIRES_GRAD2));
|
|
}
|
|
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
|
|
}
|
|
|
|
void _validate_sparse_coo_tensor_args(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"_validate_sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size)",
|
|
});
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Tensor values = internal_new_from_data(
|
|
options,
|
|
scalar_type,
|
|
std::nullopt,
|
|
r.pyobject(1),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(
|
|
values.options(),
|
|
kLong,
|
|
std::nullopt,
|
|
r.pyobject(0),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
at::native::_validate_sparse_coo_tensor_args(indices, values, r.intlist(2));
|
|
}
|
|
|
|
void _validate_sparse_compressed_tensor_args(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
enum {
|
|
ARG_COMPRESSED_INDICES = 0,
|
|
ARG_PLAIN_INDICES,
|
|
ARG_VALUES,
|
|
ARG_SIZE,
|
|
ARG_LAYOUT,
|
|
ARGS_COUNT
|
|
};
|
|
|
|
const std::string signature =
|
|
"_validate_sparse_compressed_tensor(PyObject* compressed_indices, PyObject* plain_indices, PyObject* values, IntArrayRef size, Layout layout)";
|
|
static PythonArgParser parser({signature});
|
|
|
|
ParsedArgs<ARGS_COUNT> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Tensor values = internal_new_from_data(
|
|
options,
|
|
scalar_type,
|
|
std::nullopt,
|
|
r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor compressed_indices = internal_new_from_data(
|
|
values.options(),
|
|
kInt,
|
|
std::nullopt,
|
|
r.pyobject(ARG_COMPRESSED_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
Tensor plain_indices = internal_new_from_data(
|
|
values.options(),
|
|
kInt,
|
|
std::nullopt,
|
|
r.pyobject(ARG_PLAIN_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
at::native::_validate_sparse_compressed_tensor_args(
|
|
compressed_indices,
|
|
plain_indices,
|
|
values,
|
|
r.intlist(ARG_SIZE),
|
|
r.layout(ARG_LAYOUT));
|
|
}
|
|
|
|
template <c10::Layout required_layout>
|
|
static void _validate_sparse_compressed_tensor_args_template(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
enum {
|
|
ARG_COMPRESSED_INDICES = 0,
|
|
ARG_PLAIN_INDICES,
|
|
ARG_VALUES,
|
|
ARG_SIZE,
|
|
ARGS_COUNT
|
|
};
|
|
static std::string sig;
|
|
switch (required_layout) {
|
|
case c10::Layout::SparseCsr:
|
|
sig =
|
|
"_validate_sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size)";
|
|
break;
|
|
case c10::Layout::SparseCsc:
|
|
sig =
|
|
"_validate_sparse_csc_tensor(PyObject* ccol_indices, PyObject* row_indices, PyObject* values, IntArrayRef size)";
|
|
break;
|
|
case c10::Layout::SparseBsr:
|
|
sig =
|
|
"_validate_sparse_bsr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size)";
|
|
break;
|
|
case c10::Layout::SparseBsc:
|
|
sig =
|
|
"_validate_sparse_bsc_tensor(PyObject* ccol_indices, PyObject* row_indices, PyObject* values, IntArrayRef size)";
|
|
break;
|
|
default:;
|
|
}
|
|
static PythonArgParser parser({sig});
|
|
|
|
ParsedArgs<ARGS_COUNT> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Tensor values = internal_new_from_data(
|
|
options,
|
|
scalar_type,
|
|
std::nullopt,
|
|
r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor compressed_indices = internal_new_from_data(
|
|
values.options(),
|
|
kInt,
|
|
std::nullopt,
|
|
r.pyobject(ARG_COMPRESSED_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
Tensor plain_indices = internal_new_from_data(
|
|
values.options(),
|
|
kInt,
|
|
std::nullopt,
|
|
r.pyobject(ARG_PLAIN_INDICES),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
|
|
at::native::_validate_sparse_compressed_tensor_args(
|
|
compressed_indices, plain_indices, values, r.intlist(3), required_layout);
|
|
}
|
|
|
|
void _validate_sparse_csr_tensor_args(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
_validate_sparse_compressed_tensor_args_template<c10::Layout::SparseCsr>(
|
|
dispatch_key, scalar_type, args, kwargs);
|
|
}
|
|
|
|
void _validate_sparse_csc_tensor_args(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
_validate_sparse_compressed_tensor_args_template<c10::Layout::SparseCsc>(
|
|
dispatch_key, scalar_type, args, kwargs);
|
|
}
|
|
|
|
void _validate_sparse_bsr_tensor_args(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
_validate_sparse_compressed_tensor_args_template<c10::Layout::SparseBsr>(
|
|
dispatch_key, scalar_type, args, kwargs);
|
|
}
|
|
|
|
void _validate_sparse_bsc_tensor_args(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
_validate_sparse_compressed_tensor_args_template<c10::Layout::SparseBsc>(
|
|
dispatch_key, scalar_type, args, kwargs);
|
|
}
|
|
|
|
Tensor tensor_ctor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r) {
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
auto ret = PyErr_WarnEx(
|
|
PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.detach().clone() "
|
|
"or sourceTensor.detach().clone().requires_grad_(True), rather than torch.tensor(sourceTensor).",
|
|
1);
|
|
if (ret != 0)
|
|
throw python_error();
|
|
}
|
|
|
|
bool type_inference = r.isNone(1);
|
|
bool pin_memory = r.toBool(3);
|
|
bool args_requires_grad = r.toBool(4);
|
|
auto new_tensor = internal_new_from_data(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data,
|
|
/*copy_variables=*/true,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference,
|
|
pin_memory);
|
|
auto names = r.toDimnameListOptional(5);
|
|
if (names) {
|
|
at::namedinference::propagate_names(
|
|
new_tensor, *names, /*validate_names=*/true);
|
|
}
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor as_tensor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PythonArgs& r) {
|
|
// TODO: add requires_grad once we decide on semantics for sharing data.
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(1);
|
|
return internal_new_from_data(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
r.pyobject(0),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/false,
|
|
/*type_inference=*/type_inference);
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor new_tensor(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
auto ret = PyErr_WarnEx(
|
|
PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.detach().clone() "
|
|
"or sourceTensor.detach().clone().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).",
|
|
1);
|
|
if (ret != 0)
|
|
throw python_error();
|
|
}
|
|
|
|
bool args_requires_grad = r.toBool(3);
|
|
auto deviceOptional =
|
|
device_or_from_dispatch_key(r.deviceOptional(2), dispatch_key);
|
|
auto new_tensor = new_from_data_copy(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
deviceOptional,
|
|
data);
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("new_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor tensor_frombuffer(
|
|
PyObject* buffer,
|
|
ScalarType dtype,
|
|
int64_t count,
|
|
int64_t offset,
|
|
bool requires_grad) {
|
|
auto elsize = at::elementSize(dtype);
|
|
size_t actual_count = 0;
|
|
|
|
Py_buffer view;
|
|
if (PyObject_GetBuffer(buffer, &view, PyBUF_WRITABLE) < 0) {
|
|
TORCH_CHECK(
|
|
PyObject_GetBuffer(buffer, &view, PyBUF_SIMPLE) >= 0,
|
|
"could not retrieve buffer from object");
|
|
TORCH_WARN_ONCE(
|
|
"The given buffer is not writable, and PyTorch does "
|
|
"not support non-writable tensors. This means you can write to the "
|
|
"underlying (supposedly non-writable) buffer using the tensor. "
|
|
"You may want to copy the buffer to protect its data or make it writable "
|
|
"before converting it to a tensor. This type of warning will be "
|
|
"suppressed for the rest of this program.");
|
|
PyErr_Clear();
|
|
}
|
|
|
|
Py_INCREF(view.obj);
|
|
THPObjectPtr obj(view.obj);
|
|
|
|
auto len = view.len;
|
|
auto buf = view.buf;
|
|
PyBuffer_Release(&view);
|
|
|
|
TORCH_CHECK_VALUE(
|
|
len > 0 && count != 0,
|
|
"both buffer length (",
|
|
len,
|
|
") and count (",
|
|
count,
|
|
") must not be 0");
|
|
TORCH_CHECK_VALUE(
|
|
offset >= 0 && offset < len,
|
|
"offset (",
|
|
offset,
|
|
" bytes) must be non-negative and no greater than "
|
|
"buffer length (",
|
|
len,
|
|
" bytes) minus 1");
|
|
TORCH_CHECK_VALUE(
|
|
count > 0 || (len - offset) % elsize == 0,
|
|
"buffer length (",
|
|
len - offset,
|
|
" bytes) after offset (",
|
|
offset,
|
|
" bytes) "
|
|
"must be a multiple of element size (",
|
|
elsize,
|
|
")");
|
|
|
|
if (count < 0) {
|
|
actual_count = (len - offset) / elsize;
|
|
} else {
|
|
actual_count = static_cast<size_t>(count);
|
|
}
|
|
|
|
TORCH_CHECK_VALUE(
|
|
static_cast<size_t>(offset) + actual_count * elsize <=
|
|
static_cast<size_t>(len),
|
|
"requested buffer length (",
|
|
actual_count,
|
|
" * ",
|
|
elsize,
|
|
" bytes) "
|
|
"after offset (",
|
|
offset,
|
|
" bytes) must not be greater than actual "
|
|
"buffer length (",
|
|
len,
|
|
" bytes)");
|
|
|
|
auto offset_buf = static_cast<char*>(buf) + offset;
|
|
auto options = TensorOptions().dtype(dtype).device(c10::kCPU);
|
|
|
|
auto tensor = at::for_blob(offset_buf, static_cast<int64_t>(actual_count))
|
|
.options(options)
|
|
.deleter([obj = obj.release()](void*) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
Py_DECREF(obj);
|
|
})
|
|
.make_tensor();
|
|
tensor.set_requires_grad(requires_grad);
|
|
return tensor;
|
|
}
|
|
|
|
Tensor tensor_fromDLPack(PyObject* data) {
|
|
DLManagedTensor* dlMTensor =
|
|
(DLManagedTensor*)PyCapsule_GetPointer(data, "dltensor");
|
|
TORCH_CHECK(
|
|
dlMTensor,
|
|
"from_dlpack received an invalid capsule. "
|
|
"Note that DLTensor capsules can be consumed only once, "
|
|
"so you might have already constructed a tensor from it once.");
|
|
|
|
auto deleter_with_gil = [dlMTensor](void*) {
|
|
if (dlMTensor->deleter) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
dlMTensor->deleter(dlMTensor);
|
|
}
|
|
};
|
|
|
|
// atensor steals the ownership of the underlying storage. It also passes a
|
|
// destructor function that will be called when the underlying storage goes
|
|
// out of scope. When the destructor is called, the dlMTensor is destructed
|
|
// too.
|
|
// HACK: Ensure that we hold the GIL here just in case the
|
|
// managed tensor originating from a buggy NumPy build.
|
|
auto atensor = torch::utils::is_numpy_dlpack_deleter_bugged()
|
|
? at::fromDLPack(dlMTensor, std::move(deleter_with_gil))
|
|
: at::fromDLPack(dlMTensor);
|
|
|
|
// Make sure this capsule will never be used again.
|
|
PyCapsule_SetName(data, "used_dltensor");
|
|
|
|
// It is possible that the call to at::fromDLPack is the very first
|
|
// call to create a Tensor in PyTorch. If so, then _lazy_init has
|
|
// not been called, and the attempt to call createPyObject will fail
|
|
// because cuda ATen types have not been registered in Python yet.
|
|
// so if we have a cuda tensor, then we need to make sure
|
|
// we have called _lazy_init here
|
|
maybe_initialize_device(atensor.device());
|
|
return atensor;
|
|
}
|
|
|
|
Tensor asarray(
|
|
PyObject* obj,
|
|
std::optional<ScalarType> dtype,
|
|
std::optional<Device> device,
|
|
std::optional<bool> copy,
|
|
bool requires_grad) {
|
|
Tensor tensor;
|
|
|
|
bool force_copy = copy.value_or(false);
|
|
bool force_alias = !copy.value_or(true);
|
|
bool should_warn_numpy_not_writable = false;
|
|
|
|
// Used when:
|
|
// 1. 'obj' implements the buffer protocol and no type is given.
|
|
// 2. creating a new tensor from a Python sequence.
|
|
auto dtype_unwrapped =
|
|
dtype.value_or(torch::tensors::get_default_scalar_type());
|
|
|
|
// Check whether 'obj' is a 'Tensor'
|
|
if (THPVariable_Check(obj)) {
|
|
tensor = THPVariable_Unpack(obj);
|
|
}
|
|
|
|
#ifdef USE_NUMPY
|
|
if (is_numpy_available()) {
|
|
// Check whether 'obj' is a NumPy Array or Scalar.
|
|
bool is_numpy_array = PyArray_Check(obj);
|
|
bool is_numpy_scalar = PyArray_CheckScalar(obj);
|
|
|
|
if (is_numpy_array || is_numpy_scalar) {
|
|
THPObjectPtr ptr;
|
|
auto arr = obj;
|
|
|
|
// PyArray_CheckScalar is true for both scalars and 0-dim arrays, per
|
|
// https://numpy.org/devdocs/reference/c-api/array.html#c.PyArray_CheckScalar
|
|
// But for 0-dim arrays no `PyArray_FromScalar` call is needed
|
|
if (is_numpy_scalar && !is_numpy_array) {
|
|
TORCH_CHECK(
|
|
!force_alias,
|
|
"can't alias NumPy scalars. ",
|
|
"Either remove copy=False or transform it in a ndarray. ")
|
|
|
|
ptr = PyArray_FromScalar(obj, nullptr);
|
|
arr = ptr.get();
|
|
}
|
|
|
|
tensor = tensor_from_numpy(arr, /*warn_if_not_writeable=*/false);
|
|
should_warn_numpy_not_writable =
|
|
!PyArray_ISWRITEABLE((PyArrayObject*)arr);
|
|
|
|
if (is_numpy_scalar) {
|
|
// Uses a newly cloned storage, instead of the shared one.
|
|
// The THPObjectPtr will delete the previous storage in the
|
|
// end of the previous scope.
|
|
tensor = tensor.clone();
|
|
|
|
// No need to clone again, later.
|
|
force_copy = false;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Check whether 'obj' is a 'DLPack' capsule
|
|
if (!tensor.defined() && PyCapsule_IsValid(obj, "dltensor") != 0) {
|
|
tensor = tensor_fromDLPack(obj);
|
|
}
|
|
|
|
// Check whether 'obj' implements the buffer protocol
|
|
if (!tensor.defined() && PyObject_CheckBuffer(obj) != 0) {
|
|
tensor = tensor_frombuffer(obj, dtype_unwrapped, -1, 0, requires_grad);
|
|
}
|
|
|
|
if (tensor.defined()) {
|
|
// Given an aliasable tensor, should we copy it?
|
|
bool wrong_device = device.has_value() && device.value() != tensor.device();
|
|
bool wrong_dtype =
|
|
dtype.has_value() && dtype.value() != tensor.scalar_type();
|
|
bool needs_copying = !copy.has_value() && (wrong_device || wrong_dtype);
|
|
|
|
// Given a defined tensor, we copy it if either we have to (copy=True) or
|
|
// if we need to (copy=None) because of mismatched device or dtype.
|
|
if (force_copy || needs_copying) {
|
|
if (wrong_device || wrong_dtype) {
|
|
tensor = tensor.to(
|
|
device.value_or(tensor.device()),
|
|
dtype.value_or(tensor.scalar_type()),
|
|
/*non_blocking=*/false,
|
|
/*copy=*/force_copy);
|
|
} else {
|
|
tensor = tensor.clone();
|
|
}
|
|
} else {
|
|
// If we are not copying, we have to check whther we have the tensor
|
|
// in the right device, with the right dtype.
|
|
TORCH_CHECK_VALUE(
|
|
!wrong_device,
|
|
"can't alias tensor from device '",
|
|
tensor.device(),
|
|
"' to '",
|
|
device.value(),
|
|
"'.");
|
|
TORCH_CHECK_VALUE(
|
|
!wrong_dtype,
|
|
"can't alias tensor with dtype '",
|
|
tensor.scalar_type(),
|
|
"' into dtype '",
|
|
dtype.value(),
|
|
"'.");
|
|
// If tensor is a NumPy Array view, we warn the user about non-writeable
|
|
// arrays if this is the case.
|
|
if (should_warn_numpy_not_writable) {
|
|
warn_numpy_not_writeable();
|
|
}
|
|
}
|
|
|
|
// Setting 'requires_grad' when the tensor is not a leaf does not work.
|
|
// Whenever that happens, we have to use 'detach'.
|
|
if (!tensor.is_leaf() && !requires_grad) {
|
|
tensor = tensor.detach();
|
|
} else {
|
|
tensor.set_requires_grad(requires_grad);
|
|
}
|
|
} else {
|
|
// Undefined tensor means it does not implement neither DLPack nor
|
|
// the buffer protocol. Last case is a sequence, in which case we must
|
|
// copy (copy can't be false).
|
|
TORCH_CHECK_VALUE(
|
|
!force_alias, "can't alias arbitrary sequence into a tensor.");
|
|
|
|
// Make tensor from sequence, inferring its type, and then convert
|
|
// it to the desired type.
|
|
// Type inference is activated only if the dtype has not been specified.
|
|
// Otherwise, we force the unwrapped dtype.
|
|
tensor = internal_new_from_data(
|
|
TensorOptions(),
|
|
dtype_unwrapped,
|
|
device,
|
|
obj,
|
|
/* copy_variables = */ false,
|
|
/* copy_numpy = */ false,
|
|
/* type_inference = */ !dtype.has_value());
|
|
tensor.set_requires_grad(requires_grad);
|
|
}
|
|
|
|
return tensor;
|
|
}
|
|
|
|
bool only_lift_cpu_tensors() {
|
|
return kOnlyLiftCPUTensors;
|
|
}
|
|
|
|
void set_only_lift_cpu_tensors(bool value) {
|
|
kOnlyLiftCPUTensors = value;
|
|
}
|
|
|
|
} // namespace torch::utils
|